WINDOWS AP

VOLUME Il

WINDOWS 3.1
REFERENCE GUIDE

BORLAND

Windows APl Guide

Reference

Volume 3

Version 3.1
for the MS-DOS and PC-DOS
Operating Systems

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

Copyright © 1992 by Borland International. All rights reserved.

All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

PRINTED IN THE USA.
109876543

Chapter 1 Common dialog
box library 1
Using Color dialog boxes 3
Color models used by the Color
dialogboxol 4
RGB colormodel 4
HSL colormodel 6
Converting HSL values to RGB
valuesol 6
Using the Color djalog box to display
basiccolorsol 7
Initializing the CHOOSECOLOR
structurel 7

Calling the ChooseColor function .. 8
Using the Color dialog box to

display custom colors 8
Initializing the CHOOSECOLOR
structurel 8
Calling the ChooseColor function .. 9

Using Font dialog boxes 11

Displaying the Font dialog box in

your application 11

Using Open and Save As dialog boxes ... 13
Displaying the Open dialog

box in your application 13
Displaying the Save As dialog box in
your application 16
Monitoring list box controls in an
Open or Save As dialogbox 18
Monitoring filenames in an Open or
Save Asdialogbox 19
Using Print and Print Setup dialog
boxes ...l 20

Device drivers and the Print

dialogboxl 21
Displaying a Print dialog box for
the default printer 21
Using Find and Replace dialog boxes 23
Displaying the Find dialogbox 23
Displaying
the Replace dialog box 25
Processing dialog box messages for a
Find or Replace dialog box 26
Customizing common dialog boxes 27
Appropriate and inappropriate
customizations 27
Hook functions and custom dialog
box templates 28
Hook function 28
Customizing a dialog box ,
template oL 31
Displaying
the custom dialogbox 32
Supporting help for the common
dialogboxesooil 34
Errordetection 35

Chapter 2 Dynamic Data Exchange

Management Library 37
Basicconcepts 38
Client and server interaction 39
Transactions and the DDE callback
function i 39
Service names, topic names, and
temmnamesoviit i 40
Systemtopicol 40

Initialization, 42

Callback function 43

String management 45
Nameservice ... 47
Service-name registration 47
Service-namefilter 48
Conversation management 48
Single conversations 48
Multiple conversations 52
Data management..................... 54
Transaction management 57
Request transaction 57
Poke transaction 58
Advise transaction 59
Execute transaction 60
Synchronous and asynchronous
transactionsol 61
Transactioncontrol 62
Transactionclasses 63
Transaction summary 64
Errordetection 66
Monitoring applications 66

Chapter 3 Object linking and embedding
libraries 71

Basics of object linking and embedding .. 71

Compound documents 72
Linked and embedded objects 73
Packagescooiuiinn 74
Verbs ...l 74
Benefits of object linking and
embedding 75
Choosing between OLE and the
DDEML ..., 76
Using OLE for standard
DDE operations 77
Using both OLE
and the DDEML 79
Data transfer in object linking and
embeddingl 79
Client applications 80

Server applications 80
Objecthandlers 80
Communication between OLE
libraries ool 81
Clipboard conventions 81
Registration..................... ... 85
Registration database 85
Version control
forservers 87
Client user interface 88
New and changed commands 88
Using packages 91
Server user interface 92
Updating objects from
multiple-instance servers 92
Updating objects from
single-instance servers 93
Object storage formats 93
Client applications 95
Starting a client application 96
Opening a compound document 97
Document management 98
Savingadocument 99
Closing adocument 99
Asynchronous operations 99
Displaying and printing objects 102
Opening and closing objects 102
Deleting objects 103
Client Cut and Copy commands 103
Creating objects 105
Object-creation functions 105
Paste and Paste Link commands . 107
Undocommand 108
Class Name Object command 109
Linkscommand 109
Closing a client application 110
Server applications 111
Starting a server application 112
Opening a document or object 114

Windows APl Guide

Server Cut and Copy commands 115 ChooseFont 147

Update, Save As, and New ClassFirstcoovut.. 148
commands ... 116 ClassNextcovviivineennn.n. 149
Closing a server application 117 CloseDriverccovviieeunienn.. 150
Objecthandlers 119 CommbDlgExtendedError 151
Implementing object handlers 119 CopyCursorccouenn.. 154
Creating objects in an object handler . 122 Copylcon ...l 155
DefCreateFromClip and CopyLZFilecccoovunn... 155
g”firea;fro“;fhp NSRS 122 CPIAPPIet . veeeeeeeneen. 157

efl_.oadFromStream an
DllLoadFromStream 123 CreateScalableFontResource 157
DdeAbandonTransaction 160

Direct use of Dynamic Data Exchange .. 124

Cli L . DdeAccessData 162
ient applications and direct use
of Dynamic Data Exchange 124 DdeAddData 163
Server applications and direct use of DdeCallback 165
Dynamic Data Exchange 127 DdeClientTransaction 167
Conversations 128 DdeCmpStringHandles 170
Items for the system topic 128 DdeConnect 172
Standard item names and notification DdeConnectList 174
control EEEAIAERREREE 129 DdeCreateDataHandle 176
Standard commands in DDE DdeCreateStringHandle 179
executestrings 131 DdeDisconnecto 181
igtirrﬁzﬁgga.l 'e'x.e.c-u't'e '''''''''' 131 DdeDisconnectList 181
Required commands 132 DdeEnableCallback 182
Variants on required DdeFreeDataHandle 183
commandst 134 DdeFreeStringHandle 185
DdeGetData 186
Chapter 4 Functions 135 DdeGetLastErrorccouveu.... 187
AbortDoc ... 135 Ddelnitializec.cc..... 190
AbortProc 136 DdeKeepStringHandle 194
AllocDiskSpace 136 DdeNameServicecoovvn... 195
AllocFileHandles 137 D dePost Advise 197
AllocGDIMemuv.. 138 DdeQueryConvInfo 199
AllocMemcooii.... 139 DdeQu eryNextServer 200
AllocUserMem 139 DdeQueryString 202
CallNextHoOokEx 140 DdeReconnectooueooonno .. 203
CalandProc 140 DdeSetUs erI-Ian dle 204
CBTProc.....oovvvvvinninnn.. 141 DdeUnaccessDataoo.noon. ... 205
ChooseColor 145 DdeUninitialize 206

Table of Contents iii

DebugOutput 207

DebugProc 208
DefDriverProc 209
DirectedYield 210
DlgDirSelectComboBoxEx 211
DigDirSelectEx 212
DragAcceptFiles 213
DragFinish........................ 213
DragQueryFile 214
DragQueryPoint 214
DriverProc........cocvviiiiii.. .. 215
EnableCommNotification........... 217
EnableScrollBar 218
EndDocoiiiiiiiin... 220
EndPage.................oooiiiil 220
EnumFontFamilies................. 221
EnumFontFamProc 222
EnumFontsProc 225
EnumMetaFileProc 227
EnumObjectsProc 228
EnumPropFixedProc 230
EnumPropMovableProc 231
EnumTaskWndProc 232
EnumWindowsProc 232
ExitWindowsExec 233
Extractlcon 234
FindExecutable 234
FindText 236
FMExtensionProc.................. 238
FreeAlIGDIMem 239
FreeAllMem 240
FreeAllUserMem 240
GetAspectRatioFilterEx 240
GetBitmapDimensionEx 241
GetBoundsRect 241
GetBrushOrgEx 243
GetCharABCWidths 243
GetClipCursorcoocovuue... 244

GetCurrentPositionEx 245
GetCursorcvvviiiiiiin... 245
GetDCEXooviiiiiiiie i 246
GetDriverInfo 247
GetDriverModuleHandle 248
GetExpandedName 249
GetFileResource 250
GetFileResourceSize 251
GetFileTitle 252
GetFileVersionInfo 253
GetFileVersionInfoSize 254
GetFontData 254
GetFreeFileHandles 257
GetFreeSystemResources 257
GetGlyphQutline 258
GetKerningPairs 260
GetMessageExtralnfo 261
GetMsgProcooo. 261
GetNextDriver 262
GetOpenClipboardWindow 263
GetOpenFileName................. 264
GetOutlineTextMetrics 266
GetQueueStatus 268
GetRasterizerCaps 269
GetSaveFileName 270
GetSelectorBase 272
GetSelectorLimit 273
GetSystemDebugState 273
GetSystemDir 274
GetTextExtentPoint 275
GetTimerResolution 276
GetViewportExtEx 276
GetViewportOrgEx 276
GetWinDebuginfo 277
GetWindowExtEx 278
GetWindowOrgEx................. 278
GetWindowPlacement 278
GetWindowsDir................... 279

Windows APl Guide

GetWinMem32Version 280
Globall6PointerAlloc 281
Globall6PointerFree 282
Global32Allocoovveii 283
Global32CodeAlias 285
Global32CodeAliasFree 286
Global32Freecoovunn... 287
Global32Realloc 287
GlobalEntryHandle 289
GlobalEntryModule................ 290
GlobalFirst.........c.covviinna... 291
GlobalHandleToSel 292
Globallnfo 293
GlobalNextoov..t. 293
GrayStringProc...........oooouo.. 295
HardwareProc 295
hardware event 296
hmemcpy ...l 297
“hread ... 298
“hwrite ..o o 298
InterruptRegister 299

Low-stackFaults 301
InterruptUnRegister 302
IsBadCodePtr 303
IsBadHugeReadPtr 304
IsBadHugeWritePtr 304
IsBadReadPtr 305
IsBadStringPtr 305
IsBadWritePtr 306
IsGDIObjectcocvinnan.. 306
IsMenu........................... 307
IsTask ..., 307
JournalPlaybackProc 307
JournalRecordProc................. 309
KeyboardProc..................... 310
LibMain e 311
LineDDAProccovvviianninn. 312
LoadProccoiiiit. 313

Table of Contents

LocalFirst..........covi i, 314

Locallnfocooit. 315
LocalNextooovviiniian, 315
LockInput 316
LockWindowUpdate............... 317
LogError ...l 318
LogParamError 319
LZCloseooviiiiiiiiiii 322
LZCopy oo 323
LZDonecoiiiiiiiii, 324
LZInit ..o 325
LZOpenFile..................o 0l 327
LZRead 329
LZSeeko, 331
LZStart.......... ...l 332
MapWindowPoints 333
MemManlInfo 334
MemoryRead 335
MemoryWrite 336
MessageProc 337
ModuleFindHandle................ 338
ModuleFindName 339
ModuleFirst 340
ModuleNext 341
MouseProcl 342
MoveToEx ..ot 343
NotifyProc.................... ... 343
NotifyRegister 344
NotifyUnRegister 347
OffsetViewportOrgEx 347
OffsetWindowOrgEx 348
OleActivateo. .. 349
OleBlockServer 350
OleClonecooviviviinnnn, 351
OleClosecviiiiinn, 352
OleCopyFromLink 352
OleCopyToClipboard 353
OleCreateccovvinnt. 354

v

vi

OleCreateFromClip 355

OleCreateFromFile 357
OleCreateFromTemplate 360
OleCreatelnvisible 362
OleCreateLinkFromClip 364
OleCreateLinkFromFile 366
OleDeletecovvviiin o 368
OleDrawcoviiiinnnn... 369
OleEnumFormats 370
OleEnumObjects 371
OleEqualcovviiinnnn, 372
OleExecutecoovunn.. 372
OleGetDataoovnn. 373
OleGetLinkUpdateOptions 374
Olel[sDcMetacoovvvvinnn 375
OleLoadFromStream 376
OleLockServer 377
OleObjectConvert 378
OleQueryBounds 379
OleQueryClientVersion 380
OleQueryCreateFromClip 380
OleQueryLinkFromClip 382
OleQueryName 383
OleQueryOpen 384
OleQueryOutOfDate 384
OleQueryProtocol 385
OleQueryReleaseError 386
OleQueryReleaseMethod 386
OleQueryReleaseStatus 388
OleQueryServerVersion 388
OleQuerySize 389
OleQueryType ...t 389
OleReconnect 390
OleRegisterClientDoc 390
OleRegisterServer 391
OleRegisterServerDoc 393
OleReleasecoovvvinnnt. 394
OleRenameov.nn. 394

OleRenameClientDoc 395
OleRenameServerDoc 396
OleRequestData 396
OleRevertClientDoc 397
OleRevertServerDoc 398
OleRevokeClientDoc 399
OleRevokeObject 399
OleRevokeServer 400
OleRevokeServerDoc 400
OleSavedClientDoc 401
OleSavedServerDoc 402
OleSaveToStream 402
OleSetBounds 403
OleSetColorScheme 404
OleSetDatac...... 405
OleSetHostNames 406
OleSetLinkUpdateOptions 407
OleSetTargetDevice 408
OleUnblockServer 409
OleUnlockServer 410
OleUpdateooo0. 411
OpenDriver................ oot 411
PrintDlgl 412
QueryAbortl 415
QuerySendMessage 415
RedrawWindow 416
RegCloseKey 419
RegCreateKey 420
RegDeleteKey 422
RegEnumKey 423
RegOpenKey 424
RegQueryValue 425
RegSetValue 426
ReplaceTexto... 427
ResetDC..........cooiiiiiiiit, 430
ScaleViewportExtEx 431
ScaleWindowExtEx 432
ScrollWindowEx 432

Windows APl Guide

SendDriverMessage 435

SetAbortProc...................... 435
SetBitmapDimensionEx 436
SetBoundsRect 437
SetMetaFileBitsBetter 438
SetSelectorBase 439
SetSelectorLimit 439
SetViewportExtEx 439
SetViewportOrgEx................. 440
SetWinDebuglnfo 442
SetWindowExtEx 443
SetWindowOrgEx 444
SetWindowPlacement 444
SetWindowsHookEx 445
ShellExecute 448
ShellProcccoiiiiii ... 451
SpoolFile, 452
StackTraceCSIPFirst 453
StackTraceFirst 454
StackTraceNext 455
StartDoc ..., 456
StartPagel 457
SubtractRect 457
SysMsgProc.............oiil 458
SystemHeapInfo................... 459
SystemParametersInfo 460
TaskFindHandle 466
TaskFirst 467
TaskGetCSIP 468
TaskNextcooviiia... 468
TaskSetCSIP 469
TaskSwitch 470
TerminateApp 470
TimerCount....................... 471
TimerProc ...t 472
UnAllocDiskSpace 473
UnAllocFileHandles 473
UndeleteFile 474
Table of Contents

UnhookWindowsHookEx 474
VerFindFile 475
VerlnstallFile 478
VerLanguageName 482
VerQueryValue 484
WindowProc.................... .. 487
WNetAddConnection 488
WNetCancelConnection 489
WNetGetConnection 489
WordBreakProc 490
Chapter 5 Data types 493
Chapter 6 Messages 503
CB_ADDSTRING 503
CB_DELETESTRING 504
CB_FINDSTRINGEXACT 505
CB_GETDROPPEDCONTROLRECT 505
CB_GETDROPPEDSTATE 506
CB_GETEXTENDEDUI 507
CB_GETITEMHEIGHT 507
CB_SETEXTENDEDUI 508
CB_SETITEMHEIGHT 509
EM_GETFIRSTVISIBLELINE 510
EM_GETPASSWORDCHAR........ 510
EM_GETWORDBREAKPROC 511
EM_SETREADONLY 511
EM_SETWORDBREAKPROC 512
LB_FINDSTRINGEXACT 513
LB_GETCARETINDEX 514
LB_SETCARETINDEX 514
STM_GETICON 515
STM_SETICON 515
WM_CHOOSEFONT_GETLOG-
FONT ... i 516
WM_COMMNOTIFY 516
WM DDE ACK................... 517
Posting 519
Receiving..................... 519

vii

WM_DDE_ADVISE................ 520 CBN_SELENDOK 538

POSHIG v oveeeeneenennnn 520 LBN SELCANCELovvovnn. .. 538
Receiving 521
WM _DDE_DATA'evevnenn... 5p1 Chapter7 Structures 539
PoSng .o 500 ABC oo 539
Recolving .. oo 500 CBT CREATEWND 540
WM DDE EXECUTE 503 CBTACTIVATESTRUCT 540
POSHIG e v oveeeeeeenennns 524 CHOOSECOLOR 541
Receiving 524 CHOOSEFONTo0nn. 544
WM DDE INITIATE oo sou CLASSENTRY .+ .evooooneoeoni 551
Sending ..o oo 55 COMSTAT oo 552
Receiving 526 CONVCONTEXT 553
WM DDE POKE oo 506 CONVINFO ..o 554
FOSHOE oo 507 CPLINEO .o 557
Receiving .. oo oo 507 CTLINFO .\ voeoone 558
WM DDE REQUEST oo 507 CTLSTYLE .+ vv oo 559
POSting . m oo 508 CTLTYPE oo 561
Receiving ..o 508 DDEACK .o+ o oo 562
WM DDE TERMINATE oo 508 DDEADVISE .. .vvoveneoneonen 563
PoSting ..o 58 DDEDATA oo 564
- 520 DDEPOKE ..o v 565
WM DDE UNADVISE oo 529 DEBUGHOOKINFOo\ v, 566
Posting 529 DEVNAMESc.oviiiiiinns 567
Receiving ..o 530 DOCINFO ..o oo oo 568
WM_DROPFILESo'ovonvnn.. 530 DRIVERINFOSTRUCT 569
WM PALETTEISCHANGING 530 DRVCONFIGINFO ... oo oovveo 569
WM POWER 51 EVENTMSG ..o 570
WM QUEUESYNG oo 530 FINDREPLACE ..o 571
WM SYSTEMERROR oo 530 FIXED oo 575
WM _USER ..oovooneneoe 533 FMS_GETDRIVEINFO 576
WM WINDOWPOSCHANGED ... 534 FMS_GETFILESEL, 577
WM WINDOWPOSCHANGING . 534 EMS_LOAD . .voovoeoee 578
Notification messages 536 GLOBALENTRY 579
BN HILITE 536 GLOBALINFO ...\ oovoe i 582
BN PAINT oo 536 GLYPHMETRICS 583
BN UNHILITE . .+ v oo 536 HARDWAREHOOKSTRUCT 584
CBN_CLOSEUP ...\ v 537 HELPWININFO 584
CBN SELENDCANCEL oo 537 HSZPAIR ..o 585

viii Windows API Guide

KERNINGPAIR 586

LOCALENTRYcovnn... 587
LOCALINFO 590
MAT2 ..o 591
MEMMANINFO 592
METAHEADER 593
METARECORD 594
MINMAXINFO 595
MODULEENTRY 596
MONCBSTRUCT 597
MONCONVSTRUCT 598
MONERRSTRUCT 599
MONHSZSTRUCT 600
MONLINKSTRUCT 602
MONMSGSTRUCT 603
MOUSEHOOKSTRUCT 604
NCCALCSIZE_ PARAMS 605
NEWCPLINFO 606
NEWTEXTMETRIC 607
NFYLOADSEGo. ... 612
NFYLOGERROR 613
NFYLOGPARAMERROR 614
NEYRIPcoiieiiiiiiii 615
NFYSTARTDLL 616
OLECLIENTcooo ... 617
OLECLIENTVTBL 617

Parameters 618

ReturnValue 619

Comments 620
OLEOBJECTcoivin.t. 620
OLEOBJECTVTBL 621

Parameters 624

Return Value 624

Commentsvn.. 624

Parameters 624

Return Value 625

Comments 625

Parameters 625

Table of Contents

Return Value 625
Comments 625
Parameters 626
ReturnValue 626
Parameters 626
ReturnValue 626
Comments 627
Parameters 627
ReturnValue 627
Comments 627
SeeAlso 627
Parameters 627
ReturnValue 628
Parameters 628
ReturnValue 628
Commentscoooevvunn.. 629
OLESERVER 629
OLESERVERDOC 630
OLESERVERDOCVTBL 630
Parameters..................... 631
ReturnValue 631
Parameters 631
ReturnValue 632
Comments 632
Parameters 632
Return Value 633
Parameters 633
Return Value 633
Parameters 633
ReturnValue 634
Comments 634
Parameters 634
Return Value 634
Parameters 635
ReturnValue 635
Comments 635
Parameters 636
ReturnValue 636

Commentscovun.. 636 SEGINFO ..., 673

OLESERVERVTBL 636 SIZE .. 675
Parameters 637 STACKTRACEENTRY 676
ReturnValue 637 SYSHEAPINFO 677
Commentscovvvevennnn 637 TASKENTRYcovviv.t. 678
Parameters 638 TIMERINFO 679
ReturnValue 638 TTPOLYCURVE 680
Commentsc...... 638 TTPOLYGONHEADER 681
Parameters 639 VS_FIXEDFILEINFO............... 682
ReturnValue 639 WINDEBUGINFO 686
Commentscov.nn. 639 WINDOWPLACEMENT 690
Parameters 640 WINDOWPOS ...t 692
ReturnValue 640
Comments 640 Chapter 8 Macros 695
Parameters 641 DECLARE_HANDLE 695
Return Value 641 DECLARE_HANDLE32 695
Comments 641 FIELDOFFSETccovvi... 696
Parameters 641 GetBValue 696
Return Valueo 641 GetGValue 697
Comments 641 GetRValue 697
Parameters 642 MAKELP ... 697
Return Value 642 MAKELPARAM .. 698
Comments 642 MAKELRESULT 698

OLESTREAMccuvnennn... 643 OFFSETOFc.ooevevinin, 699

OLESTREAMVTBL . o+ ..o\ 643 SELECTOROFccvvvivnnnn.. 699
Parameters 644 Chapter 9 Printer escapes 701
ReturnValue 644 MOUSETRAILS ..., 701
Comments 644 POSTSCRIPT_D ATA .. 702
Parameters 644 POSTSCRIPT_IGNORE 702
Return Value -......ooovvnen 645 SETALLJUSTVALUES 703
Comments 645

OLETARGETDEVICE 645 Chapter 10 Dynamic Data

OPENFILENAME 646 Exchange transactions 705

OUTLINETEXTMETRIC 655 XTYP_ADVDATAcoviinnne. 705

PANOSEviviiiieaienens 659 XTYP_ADVREQ 706

POINTEX ...t 664 XTYP_ADVSTART 707

PRINTDLGooveeeeaninnnns, 664 XTYP_ADVSTOP 708

RASTERIZER_STATUS 673 XTYP_CONNECToeo 708

Windows API Guide

XTYP_CONNECT_CONFIRM 709

XTYP_DISCONNECT 710
XTYP_ERROR 711
XTYP_EXECUTE 711
XTYP_MONITOR 712
XTYP POKEcooviiiiiann. 713
XTYP_REGISTER 714
XTYP_REQUEST 715
XTYP_UNREGISTER 715
XTYP_WILDCONNECT 716
XTYP_XACT COMPLETE.......... 717
Chapter 11 Common dialog

box messages 719
COLOROKSTRINGevvvennnnnn. 719
FILEOKSTRING 720
FINDMSGSTRING 721
HELPMSGSTRING 721
LBSELCHSTRING 722
SETRGBSTRING 723
SHAREVISTRING 723
Index 725

Table of Contents

Common dialog box library

Common dialog boxes make it easier for you to develop
applications for the Microsoft Windows operating system. A
common dialog box is a dialog box that an application displays
by calling a single function rather than by creating a dialog box
procedure and a resource file containing a dialog box template.
The dynamic-link library COMMDLG.DLL provides a default
procedure and template for each type of common dialog box.
Each default dialog box procedure processes messages and
notifications for a common dialog box and its controls. A default
dialog box template defines the appearance of a common dialog
box and its controls.

In addition to simplifying the development of Windows
applications, a common dialog box assists users by providing a
standard set of controls for performing certain operations. As
Windows developers begin using the common dialog boxes in
their applications, users will find that after they master using a
common dialog box in one application, they can easily perform
the same operations in other applications.

This chapter describes the various common dialog boxes and
includes sample code to help you use common dialog boxes in
your Windows applications.

Chapter 1, Common dialog box library 1

Following are the types of common dialog boxes in the order in
which they are presented in this chapter:

Name

Description

Color

Font

Open

Save As

Print

Print Setup

Find

Replace

Displays available colors, from which the user can select
one; displays controls that let the user define a custom
color.

Displays lists of fonts, point sizes, and colors that
correspond to available fonts; after the user selects a font,
the dialog box displays sample text rendered with that
font.

Displays a list of filenames matching any specified
extensions, directories, and drives. By selecting one of the
listed filenames, the user indicates which file an
application should open.

Displays a list of filenames matching any specified
extensions, directories, and drives. By selecting one of the
listed filenames, the user indicates which file an
application should save.

Displays information about the installed printer and its
configuration. By altering and selecting controls in this
dialog box, the user specifies how output should be
printed and starts the printing process.

Displays the current list of available printers. The user
can select a printer from this list. This common dialog box
also provides options for setting the paper orientation,
size, and source (when the printer driver supports these
options). In addition to being called directly, the Print
Setup dialog can be opened from within the Print dialog.
Displays an edit control in which the user can type a
string for which the application should search. The user
can specify the direction of the search, whether the
application should match the case of the specified string,
and whether the string to match is an entire word.
Displays two edit controls in which the user can type
strings: the first string identifies a word or value that the
application should replace, and the second string
identifies the replacement word or value.

Windows API Guide

Applications that use the common dialog boxes should specify at
least 8K for the stack size, as shown in the following example:

NAME cd

EXETYPEWNINDOWS

STUB 'WINSTUB.EXE'

CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024

STACKSIZE8192

EXPORTS
FILEOPENHOOKPROC @1

Using Color dialog boxes

The Color dialog box contains controls that make it possible for a
user to select and create colors.

Following is a Color dialog box.

Basic Colors:

Custom Colors:

0 [b et [F55]
§al: _G_reen:
ColorSglid | . Blue: @

The Basic Colors control displays up to 48 colors. The actual
number of colors displayed is determined by the display driver.
For example, a VGA driver displays 48 colors, and a monochrome

Chapter 1, Common dialog box library 3

Color models
used by the Color
dialog box

RGB color model

display driver displays only 16. With the Basic Colors control, the
user can select a displayed color.

To display the Custom Colors control, the user clicks the Define
Custom Colors button. The Custom Colors control displays
custom colors. The user can select one of the 16 rectangles in this
control and then create a new color by using one of the following
methods:

® Specifying red, green, and blue (RGB) values by using the Red,
Green, and Blue edit controls, and then choosing the Add to
Custom Colors button to display the new color in the selected
rectangle.

® Moving the cursor in the color spectrum control (at the
upper-right of the dialog box) to select hue and saturation
values; moving the cursor in the luminosity control (the
rectangle to the right of the spectrum control); and then
choosing the Add to Custom Colors button to display the new
color in the selected rectangle.

® Specifying hue, saturation, and luminosity (HSL) values by
using the Hue, Sat, and Lum edit controls and then choosing
the Add to Custom Colors button to display the new color in
the selected rectangle.

The Color | Solid control displays the dithered and solid colors
that correspond to the user’s selection. (A dithered color is a color
created by combining one or more pure or solid colors.) The
Flags member of the CHOOSECOLOR structure contains a flag
bit that, when set, displays a Help button.

An application can display the Color dialog box in one of two
ways: fully open or partially open. When the Color dialog box is
displayed partially open, the user cannot change the custom
colors.

The Color dialog box uses two models for specifying colors: the
RGB model and the HSL model. Regardless of the model used,
internal storage is accomplished by use of the RGB model.

The RGB model is used to designate colors for displays and other
devices that emit light. Valid red, green, and blue values are in
the range 0 through 255, with 0 indicating the minimum intensity

Windows APl Guide

and 255 indicating the maximum intensity. The following
illustration shows how the primary colors red, green, and blue
can be combined to produce four additional colors. (With display
devices, the color black results when the red, green, and blue
values are set to 0—that is, with display technology, black is the
absence of all colors.)

YELLOW

MAGENTA

Following are eight colors and their associated RGB values:

Color RGB values
Red 255,0,0
Green 0,255,0
Blue 0,0, 255
Cyan 0, 255, 255
Magenta 255, 0,255
Yellow 255, 255, 0
White 255, 255, 255
Black 0,0,0

Windows stores internal colors as 32-bit RGB values. The
high-order byte of the high-order word is reserved; the low-order
byte of the high-order word specifies the intensity of the blue
component; the high-order byte of the low-order word specifies
the intensity of the green component; and the low-order byte of
the low-order word specifies the intensity of the red component.

Chapter 1, Common dialog box library

HSL colormodel The Color dialog box provides controls for specifying HSL values.
The following illustration shows the color spectrum control and
the vertical luminosity control that appear in the Color dialog box
and shows the ranges of values the user can specify with these

controls.
240 — — — 240
Saturation Luminosity
0 — ——10

0 Hue 239

In the Color dialog box, the saturation and luminosity values
must be in the range 0 through 240 and the hue value must be in
the range 0 through 239.

Converting HSL values The dialog box procedure provided in COMMDLG.DLL for the
to RGB values Color dialog box contains code that converts HSL values to the
corresponding RGB values. Following are several colors with
their associated HSL and RGB values:

Color HSL values RGB values
Red (0, 240, 120) (255,0,0)
Yellow (40, 240, 120) (255, 255, 0)
Green (80, 240, 120) (0, 255, 0)
Cyan (120, 240, 120) (0, 255, 255)
Blue (160, 240, 120) (0, 0,255)
Magenta (200, 240, 120 (255, 0, 255)
White (0, 0,240) (255, 255, 255)
Black (0,0,0) (0,0,0)

Windows APl Guide

Using the Color
diclog boxto Anapplication can display the Color dialog box so that a user can
displav basi select one color from a list of basic screen colors. This section
ISPIAY OCSIC gescribes how you can provide code and structures in your
colors application that make this possible.

Initializing the Before you display the Color dialog box you need to initialize a
CHOOSECOLOR CHOOSECOLOR structure. This structure should be global or
structure declared as a static variable. The members of this structure
contain information about such items as the following:
B Structure size
0 Which window owns the dialog box
8 Whether the application is customizing the common dialog box

8 The hook function and custom dialog box template to use for a
customized version of the Color dialog box

o RGB values for the selected basic color

If your application does not customize the dialog box and you
want the user to be able to select a single color from the basic
colors, you should initialize the CHOOSECOLOR structure in the
following manner:

/* Color variables */

CHOOSECOLOR cc;

COLORREF clr;

COLORREF aclrCust(16];

int i;

/* Set the custom color controls to white. */

for (1 =0; 1 <16; i++)
aclrCust[i] = RGB(255, 255, 255);

/* Initialize clr to black. */

clr = RGB(0, O, 0);

/* Set all structure fields to zero. */

memset (&cc, 0, sizeof (CHOOSECOLOR)) ;
/*Initializethenecessary CHOOSECOLORmembers. */
cc.lStructSize = sizeof (CHOOSECOLOR) ;

cc.hwndOwner = hwnd;

cc.rgbResult = clr;
cc.lpCustColors = aclrCust;

Chapter 1, Common dialog box library 7

cc.Flags = CC_PREVENTFULLOPEN;
if (ChooseColor (&cc))

. /* Use cc.rgbResult to select the user-requested color. */

In the previous example, the array to which the IpCustColors
member points contains 16 doubleword RGB values that specify
the color white, and the CC_PREVENTFULLOPEN flag is set in
the Flags member to disable the Define Custom Colors button
and prevent the user from selecting a custom color.

Cadling the After you initialize the structure, you should call the
ChooseColor function ChooseColor function. If the function is successful and the user
chooses the OK button to close the dialog box, the rgbResult
member contains the RGB values for the basic color that the user
selected.

Using the Color
diolog boxto An applicatio; caln (tiispla}tr the C;)lor lsl}izjllog li'ox sg that' t:he 11llser
. can create and select a custom color. This section describes how
dISp|Oy Cusfom you can provide code and structures in your application that
COIOrsS make this possible.

Initializing the Before you display the Color dialog box, you need to initialize a
CHOOSECOLOR CHOOSECOLOR structure. This structure should be global or
stfructure declared as a static variable. The members of this structure
contain information about such items as the following:

B Structure size
® Which window owns the dialog box
B Whether the application is customizing the common dialog box

B The hook function and custom dialog box template to use for a
customized version of the Color dialog box

8 RGB values for the custom color control

Windows AP Guide

Cdlling the
ChooseColor function

Chapter 1, Common dialog box library

If your application does not customize the dialog box and you
want the user to be able to create and select custom colors, you
should initialize the CHOOSECOLOR structure in the following
manner:

/* Color Variables */

CHOOSECOLOR chsclr;
DWORD dwCustClrs[16] = { RGB(255, 255, 255), RGB(239, 239, 239),

RGB(223, 223, 223), RGB(207, 207, 207),
RGB(191, 191, 191), RGB(175, 175, 175),
RGB(159, 159, 159), RGB(143, 143, 143),
RGB(127, 127, 127), RGB(111, 111, 111),
RGB(95, 95, 95), RGB(79, 79, 79),
RGB(63, 63, 63), RGB(47, 47, 47),
RGB (31, 31, 31), RGB(15, 15, 15)
}i

BOOL fSetColor = FALSE;

int i;

chsclr.1StructSize = sizeof (CHOOSECOLOR) ;

chsclr.hwndOwner = hwnd;
chsclr.hInstance = NULL;
chsclr.rgbResult = OL;

chsclr.lpCustColors = (LPDWORD) dwCustClrs;
chsclr.Flags = CC_FULLOPEN;
chsclr.lCustbData = OL;

chsclr.lpfnHook = (FARPROC) NULL;
chsclr.lpTemplateName = (LPSTR)NULL;

In the previous example, the array to which IpCustColors points
contains sixteen 32-bit RGB values that specify 16 scales of gray,
and the CC_FULLOPEN flag is set in the Flags member to
display the complete Color dialog box.

After you initialize the structure, you should call the
ChooseColor function as shown in the following code fragment:

if (fSetColor = ChooseColor (&chsclr))

. /*Usechsclr.lpCustColorsto select user specifiedcolors*/

If the function is successful and the user chooses the OK button to
close the dialog box, the IpCustColors member points to an array
that contains the RGB values for the custom colors requested by
the application’s user.

Applications can exercise more control over custom colors by
creating a new message identifier for the string defined by the
COLOROKSTRING constant. The application creates the new
message identifier by calling the RegisterWindowMessage

10

function and passing this constant as the single parameter. After
calling RegisterWindowMessage, the application receives a
message immediately prior to the dismissal of the dialog box. The
[Param parameter of this message contains a pointer to the
CHOOSECOLOR structure. The application can use the
IpCustColors member of this structure to check the current color.
If the application returns a nonzero value when it processes this
message, the dialog box is not dismissed.

Similarly, applications can create a new message identifier for the
string defined by the SETRGBSTRING constant. The application’s
hook function can use the message identifier returned by calling
RegisterWindowMessage with the SETRGBSTRING constant to
set a color in the dialog box. For example, the following line of
code sets the color selection to blue:

SendMessage (hwhndDlg, wSetRGBMsg, 0, (LPARAM) RGB (0, 0, 255)) ;

In this example, wSetRGBMsg is the message identifier returned
by the RegisterWindowMessage function. The [Param parameter
of the SendMessage function is set to the RGB values of the
desired color. The wParam parameter is not used.

The application can specify any valid RGB values in this call to
SendMessage. If the RGB values match one of the basic colors,
the system selects the basic color and updates the spectrum and
luminosity controls. If the RGB values do not match one of the
basic colors, the system updates the spectrum and luminosity
controls, but the basic color selection remains unchanged.

Note that if the Color dialog box is not fully open and the
application sends RGB values that do not match one of the basic
colors, the system does not update the dialog box. Updates are
unnecessary because the spectrum and luminosity controls are
not visible when the dialog box is only partially open.

For more information about processing registered window
messages, see “Using Find and Replace dialog boxes.”

Windows API Guide

Using Font dialog boxes

The Font dialog box contains controls that make it possible for a
user to select a font, a font style (such as bold, italic, or regular), a
point size, and an effect (such as underline, strikeout, or a text
color).

Following is a Font dialog box.

i fy
e
&i
i

MODERN
MS SANS SERIF

O Undetline
Color:

Effects Sample
| Strikeout
AaBbYyZz

Displaying the
Font dIClIOg box in The Font dialog box appears after you initialize the members in a
. . CHOOSEFONT structure and call the ChooseFont function. This
your OppIICOTIOﬂ structure should be global or declared as a static variable. The
members of the CHOOSEFONT structure contain information
about such items as the following:

8 The attributes of the font that initially is to appear in the dialog
box.

g The attributes of the font that the user selected.
o The point size of the font that the user selected.

8 Whether the list of fonts corresponds to a printer, a screen, or
both.

8 Whether the available fonts listed are TrueType only.
@ Whether the Effects box should appear in the dialog box.

8 Whether dialog box messages should be processed by an
application-supplied hook function.

Chapter 1, Common dialog box library 11

® Whether the point sizes of the selectable fonts should be
limited to a specified range.

8 Whether the dialog box should display only
what-you-see-is-what-you-get (WYSIWIG) fonts. (These fonts
are resident on both the screen and the printer.)

® The color that the ChooseFont function should use to render
text in the Sample box the first time the application displays
the dialog box.

B The color that the user selected for text output.

To display the Font dialog box, an application should perform the
following steps:

1. If the application requires printer fonts, retrieve a
device-context handle for the printer and use this handle to
set the hDC member of the CHOOSEFONT structure. (If the
Font dialog box displays only screen fonts, this member
should be set to NULL.)

2. Set the appropriate flags in the Flags member of the
CHOOSEFONT structure. This setting must include
CF_SCREENFONTS, CF_PRINTERFONTS, or CF_BOTH.

3. Set the rgbColors member of the CHOOSEFONT structure if
the default color (black) is not appropriate.

4. Set the nFontType member of the CHOOSEFONT structure
using the appropriate constant.

5. Set the nSizeMin and nSizeMax members of the
CHOOSEFONT structure if the CF_LIMITSIZE value is
specified in the Flags member.

6. Call the ChooseFont function.

The following example initializes the CHOOSEFONT structure
and calls the ChooseFont function:

LOGFONT1£;
CHOOSEFONTcE;

/* Set all structure fields to zero. */
memset (&cf, 0, sizeof (CHOOSEFONT)) ;
cf.lStructSize = sizeof (CHOOSEFONT) ;
cf.hwndOwner = hwnd;

cf.lplLogFont = &1f;

cf.Flags = CF_SCREENFONTS | CF_EFFECTS;
cf.rgbColors = RGB(0, 255, 255); /* light blue */

Windows APl Guide

cf.nFontType = SCREEN FONTTYPE;

ChooseFont (&cf) ;

When the user closes the Font dialog box by choosing the OK
button, the ChooseFont function returns information about the
selected font in the LOGFONT structure to which the IpLogFont
member points. An application can use this LOGFONT structure
to select the font that will be used to render text. The following
example selects a font by using the LOGFONT structure and
renders a string of text:

hdc = GetDC (hwnd) ;
hFont = CreateFontIndirect (cf.lpLogFont);
hFontOld = SelectObject (hde, hFont);
TextOut (hdc, 50, 150,
“AaBbCcDdEeF £GgHhI 1JJKkL1MMNNOOPPQQRr SsTtUUVVWWXxYYyZz"”, 52);
SelectObject (hdc, hFontOld);
DeleteObject (hFont) ;
ReleaseDC (hwnd, hdc);

An application can also use the
WM_CHOOSEFONT_GETLOGFONT message to retrieve the
current LOGFONT structure for the Font dialog box before the
user closes the dialog box. :

Using Open and Save As dialog boxes

Displaying the
Open didlog
box in your
application

The Open dialog box and the Save As dialog box are similar in
appearance. Each contains controls that make it possible for the
user to specify the location and name of a file or set of files. In the
case of the Open dialog box, the user selects the file or files to be
opened; in the case of the Save As dialog box, the user selects the
file or files to be saved.

The Open dialog box appears after you initialize the members of
an OPENFILENAME structure and call the GetOpenFileName
function.

Chapter 1, Common dialog box library 13

14

Following is an Open dialog box.

File Name:

Directories:
c:\windows

denxcode. wri B = e\

hw.wii_ B windows
€3 system
unischd.wri U Bead Only
unitool.wri
List Files of Type: Drives:
Wirite Files(*.WRI) @ c: g

Before the call to GetOpenFileName, structure members contain
such data as the name of the directory and the filter that are to
appear in the dialog box. (A filter is a filename extension. The
common dialog box code uses the extension to filter appropriate
filenames from a directory.) After the call, structure members
contain such data as the name of the selected file and the number
of characters in that filename.

To display an Open dialog box, an application should perform
the following steps:

1. Store the valid filters in a character array.
2. Set the IpstrFilter member to point to this array.

3. Set the nFilterindex member to the value of the index that
identifies the default filter.

4. Set the IpstrFile member to point to an array that contains the
initial filename and receives the selected filename.

5. Set the nMaxFile member to the value that specifies the length
of the filename array.

6. Set the IpstrFileTitle member to point to a buffer that receives
the title of the selected file.

7. Set the nMaxFileTitle member to specify the length of the
buffer.

8. Set the IpstrinitialDir member to point to a string that
specifies the initial directory. (If this member does not point
to a valid string, it must be set to 0 or point to a string that is
set to NULL.)

Windows APl Guide

9. Set the IpstrTitle member to point to a string specifying the
name that should appear in the title bar of the dialog box. (If
this pointer is NULL, the title will be Open.)

10. Initialize the IpstrDefExt member to point to the default
extension. (This extension can be 0, 1, 2, or 3 characters long.)

11. Call the GetOpenFileName function.

The following example initializes an OPENFILENAME structure,
calls the GetOpenFileName function, and opens the file by using
the IpstrFile member of the structure. The OPENFILENAME
structure should be global or declared as a static variable.

OPENFILENAME ofn;

char szDirName [256];

char szFile([256], szFileTitle[256];

UINT i, cbString;

char chReplace; /* string separator for szFilter */
char szFilter[256];

HFILE hf;

/* Get the systemdirectory name, and store in szDirName. */

GetSystemDirectory (szDirName, sizeof (szDirName));
szFile[0]="\0";

if ((cbsString = LoadString (hinst, IDS_FILTERSTRING,
szFilter, sizeof (szFilter))) == 0) {
ErrorHandler() ;
return OL;
}

chReplace = szFilter[cbString - 1}; /* retrieve wildcard */

for (1 = 0; szFilter[i] != "\0’; i++) {
if (szFilter[i] == chReplace)
szFilter[i] = '\0’;

}

/* Set all structure members to zero. */
memset (&ofn, 0, sizeof (OPENFILENAME));

ofn.lStructSize = sizeof (OPENFILENAME) ;
ofn.hwndOwner = hwnd;

ofn.lpstrFilter = szFilter;
ofn.nFilterIndex = 1;

ofn.lpstrFile = szFile;

ofn.nMaxFile = sizeof(szFile);
ofn.lpstrFileTitle = szFileTitle;
ofn.nMaxFileTitle = sizeof (szFileTitle);
ofn.lpstrInitialDir = szDirName;
ofn.Flags = OFN_SHOWHELP | OFN_PATHMUSTEXIST |
OFN_FILEMUSTEXIST;

Chapter 1, Common dialog box library 15

Displaying the
Save As didlog
box in your
application

if(GetOpenFileName (&ofn)){
hf = lopen(ofn.lpstrFile, OF READ);

. /* Perform file operations. */

}
else
ErrorHandler () ;

The string referred to by the IDS_FILTERSTRING constant in the
preceding example is defined as follows in the resource-definition
file:

STRINGTABLE
BEGIN

IDS_FILTERSTRING “Write Files(*.WRI) [*.wri|Word Files (*.DOC) |*.doc|”
END

The vertical bars in this string are used as wildcards. After using
the LoadString function to retrieve the string, the wildcards are
replaced with NULL. The wildcard can be any unique character
and must be included as the last character in the string.
Initializing strings in this manner guarantees that the parts of the
string are contiguous in memory and that the string is terminated
with two null characters.

Applications that can open files over a network can create a new
message identifier for the string defined by the SHAREVISTRING
constant. The application creates the new message identifier by
calling the RegisterWindowMessage function and passing this
constant as the single parameter. After calling
RegisterWindowMessage, the application is notified whenever a
sharing violation occurs during a call to the OpenFile function.
For more information about processing registered window
messages, see “Using Find and Replace dialog boxes.”

The Save As dialog box appears after you initialize the members
of an OPENFILENAME structure and call the GetSaveFileName
function.

Windows APl Guide

Following is a Save As dialog box.

File Name: Directories:

I“’V-W'i c:\windows
denrcode wn [
::::;":)::’ £ windows
past2 vt € system
mybstwent
Y. WI
usiachd.wi
uniteol wit

Save File as Type: Drives:

Wiite Files(*.WRI) §§ c: @

Before the call to GetSaveFileName, structure members contain
such data as the name of the initial directory and a filter string.
After the call, structure members contain such data as the name
of the file to be saved and the number of characters in that
filename.

The following example initializes an OPENFILENAME structure,
calls GetSaveFileName function, and saves the file. The
OPENFILENAME structure should be global or declared as a
static variable.

OPENFILENAME>fnN;

char szDirName[256];

char szFile[256]), szFileTitle[256];

UINT 1, cbString;

char chReplace; /* string separator for szFilter */
char szFilter([256];

HFILEhE;

/%
* Retrieve the system directory name, and store it in
* szDirName.

*/
GetSystemDirectory (szDirName, sizeof (szDirName));

if ((cbString = LoadString(hinst, IDS_FILTERSTRING,
szFilter, sizeof(szFilter))) == 0) {
ErrorHandler () ;
return 0;

}

chReplace = szFilter[cbString - 1]; /* retrieve wildcard */

for (i = 0; szFilter[i] != "\0'; i++) {
if (szFilter[i] == chReplace)
szFilter([i] = '\0’;

Chapter 1, Common dialog box library

17

Monitoring list box

18

controls in an
Open or Save As
dialog box

/* Set all structure members to zero. */
memset (&0fn, 0, sizeof (OPENFILENAME));
/*Initialize the OPENFILENAME members. */
szFile[0]) = "\0’;

ofn.lStructSize = sizeof (OPENFILENAME) ;
ofn.hwndOwner = hwnd;

ofn.lpstrFilter = szFilter;

ofn.lpstrFile = szFile;

ofn.nMaxFile = sizeof(szFile);
ofn.lpstrFileTitle = szFileTitle;
ofn.nMaxFileTitle = sizeof (szFileTitle);
ofn.lpstrInitialbir = szDirName;

ofn.Flags = OFN_SHOWHELP | OFN_OVERWRITEPROMPT;

if(GetSaveFileName (&ofn)){
. /* Perform file operations. */

}
else
ErrorHandler () ;

The string referred to by the IDS_FILTERSTRING constant in the
preceding example is defined in the resource-definition file. It is
used in exactly the same way as the IDS_FILTERSTRING
constant discussed in “Displaying the Open dialog box in your
application.”

An application can monitor list box selections in order to process
and display data in custom controls. For example, an application
can use a custom control to display the total length, in bytes, of all
of the files selected in the File Name box. One method the
application can use to obtain this value is to recompute the total
count of bytes each time the user selects a file or cancels the
selection of a file. A faster method is for the application to use the
LBSELCHSTRING message to identify a new selection and add
the corresponding file length to the value that appears in the
custom control. (Note that in this example, the custom control is a
standard Windows control that you identify in a resource file
template for one of the common dialog boxes.)

An application registers the selection-change message with the
RegisterWindowMessage function. Once the application registers
the message, it uses this function’s return value to identify

Windows APl Guide

Monitoring
flenamesin an
Open or Save As
dialog box

messages from the dialog box. The message is processed in the
application-supplied hook function for the common dialog box.
The wParam parameter of each message identifies the list box in
which the selection occurred. The low-order word of the [Param
parameter identifies the list box item. The high-order word of the
IParam parameter is one of the following values:

Value Meaning

CD_LBSELCHANGE Specifies that the item identified by the
low-order word of [Param was the item in a
single-selection list box.

CD_LBSELSUB Specifies that the item identified by the
low-order word of IParam is no longer
selected in a multiple-selection list box.

CD_LBSELADD Specifies that the item identified by the
low-order word of [Param was selected from a
multiple-selection list box.

CD_LBSELNOITEMS Specifies that no items exist in a
multiple-selection list box.

For an example that registers a common dialog box message, see
“Using Find and Replace dialog boxes.”

Applications can alter the normal processing of an Open or Save
As dialog box by monitoring which filename the user types and
by performing other, unique operations. For example, one
application could prevent the user from closing the dialog box if
the selected filename is prohibited; another application could
make it possible for the user to select multiple filenames.

To monitor filenames, an application should register the
FILEOKSTRING message. An application registers this message
by calling the RegisterWindowMessage function and passing the
message name as its single parameter. After the message is
registered, the dialog box procedure in COMMDLG.DLL uses it
to signal that the user has selected a filename and chosen the OK
button and that the dialog box has checked the filename and is
ready to return. The dialog box procedure signals these actions by
sending the message to the application’s hook function. After
receiving the message, the hook function should return a value to
the dialog box procedure that called it. If the hook function did
not process the message, it should return 0; if the hook function
did process the message and the dialog box should close, the

Chapter 1, Common dialog box library 19

hook function should return 0; if the hook function did process
the message but the dialog box should not close, the hook
function should return 1. (All other return values are reserved.)

Using Print and Print Setup dialog boxes

20

A Print dialog box contains controls that let a user configure a
printer for a particular print job. The user can make such
selections as print quality, page range, and number of copies (if
the printer supports multiple copies).

Following is a Print dialog box.

Printer: Default Printer (Diconix 150 Plus)

Print Range

Qan

Print Quality: |320 dpi x 96 dpi & Copies: E]

O Print to File Coflate Lopies

Choosing the Setup button in the Print dialog box displays the
following Print Setup dialog box for a PostScript printer.

[currently Diconix 150 Plus on LPT1:)
O Specific Printer:
[Diconix 150 Plus on LPT1:

[Orientation Paper

v @ Portrait Size: Letter 8 1/2x 11 in
Al 6 Lantispe || souee

The Print Setup dialog box provides controls that make it possible
for the user to reconfigure the selected printer.

Windows API Guide

Device drivers
and the Print The Print dialog box differs from other common dialog boxes in
; that part of its dialog box procedure resides in COMMDLG.DLL
lelOg box and part in a printer driver. A printer driver is a program that
configures a printer, converts graphics device interface (GDI)
commands to low-level printer commands, and stores commands
for a particular print job in a printer’s queue.

A printer driver exports a function called ExtDeviceMode, which
displays a dialog box and its controls. In previous versions of
Windows, an application called the LoadLibrary function to load
a device driver and the GetProcAddress function to obtain the
address of the ExtDeviceMode function. This is no longer
necessary with the Windows common dialog box interface.
Instead of calling LoadLibrary and GetProcAddress, a Windows
application can call a single function, PrintDIg, to display the
Print dialog box and begin a print job. The code for PrintDig
resides in COMMDLG.DLL. The dialog box that appears when an
application calls PrintDIg differs slightly from the dialog box that
appears when the application calls directly into the device driver.
The functionality is very similar in spite of the different
appearance.

Displaying a Print
diCIlOQ box forthe Todisplay a Print dialog box for the default printer, an
; application must initialize a PRINTDLG structure and then call
default printer ¢ printbig function.

The members of the PRINTDLG structure can contain information
about such items as the following:

B The printer device context

8 Values that should appear in the dialog box controls

B The hook function and custom dialog box template to use for a
customized version of the Print dialog box or Print Setup
dialog box

An application can display a Print dialog box for the currently
installed printer by performing the following steps:

1. Setting the PD_RETURNDC flag in the Flags member of the
PRINTDLG structure. (This flag should only be set if the
application requires a device-context handle.)

Chapter 1, Common dialog box library 21

2. Initializing the IStructSize, hDevMode, and hDevNames
members.

3. Calling the PrintDIg function and passing a pointer to the
PRINTDLG structure just initialized.

Setting the PD_RETURNDC flag causes PrintDIg to display the
Print dialog box and return a handle identifying a printer device
context in the hDC member of the PRINTDLG structure. (The
application passes the device-context handle as the first
parameter to the GDI functions that render output on the printer.)

The following example initializes the members of the PRINTDLG
structure and calls the PrintDIlg function prior to printing output.
This structure should be global or declared as a static variable.

PRINTDLGpd;

/* Set all structure members to zero. */

memset (§pd, 0, sizeof (PRINTDLG));
/*Initializethenecessary PRINTDLG structuremembers. */

pd.lStructSize = sizeof (PRINTDIG) ;
pd.hwndOwner = hwnd;
pd.Flags = PD_RETURNDC;

/* Print a test page if successful. */

if (PrintDlg(&pd) != 0) {
Escape (pd.hDC, STARTDOC, 8, “Test-Doc”, NULL);

/* Print text and rectangle. */

TextOut (pd.hDC, 50, 50, “Common Dialog Test Page”, 23);
Rectangle (pd.hDC, 50, 90, 625, 105);
Escape (pd.hDC, NEWFRAME, 0, NULL, NULL);
Escape (pd.hDC, ENDDOC, 0, NULL, NULL);
DeleteDC (pd.hDC) ;
if (pd.hDevMode != NULL)
GlobalFree (pd.hDevMode) ;
if (pd.hDevNames != NULL)
GlobalFree (pd.hDevNames) ;
}
else
ErrorHandler() ;

22 Windows API Guide

Using Find and Replace dialog boxes

The Find dialog box and the Replace dialog box are similar in
appearance. You can use the Find dialog box to add string-search
capabilities to your application and use the Replace dialog box to
add both string-search and string-substitution capabilities.

Displaying the
Find dlalog box The Find dialog box contains controls that make it possible for a
user to specify the following:
The string that the application should find

B8 Whether the string specifies a complete word or part of a word

B8 Whether the application should match the case of the specified
string

B The direction in which the application should search
(preceding or following the current cursor location)

B Whether the application should resume the search, searching
for the next occurrence of the string

Following is a Find dialog box.

Find What: [this | 1

[Match Whole Word Only Direction
X @ up O Down :

To display the Find dialog box, you need to initialize a
FINDREPLACE structure and call the FindText function.
Members of the FINDREPLACE structure contain information
about such items as the following;:

B Which window owns the dialog box
o How the application should perform the search

O A character buffer that is to receive the string

Chapter 1, Common dialog box library 23

24

To initialize the FINDREPLACE structure, you need to perform
the following tasks:

1.
2.

10.

Set the IStructSize member by using the sizeof operator.

Set the hwndOwner member by using the handle that
identifies the owner window of the dialog box.

If you are customizing the Find dialog box, set the hinstance
member to identify the instance of the module that contains
your custom dialog box template.

Set the Flags member to indicate the selection state of the
dialog box options. (For example, setting the
FR_NOUPDOWN flag disables the Up and Down buttons,
setting the FR_NOWHOLEWORD flag disables the Match
Whole Word Only check box, and setting the
FR_NOMATCHCASE flag disables the Match Case check
box).

If you are supplying a custom dialog box template or hook
function, set additional flags in the Flags member.

Set the IpstrFindWhat member to point to the buffer that will
receive the string to be found.

Set the wFindWhatLen member to specify the size, in bytes, of
the buffer to which IpstrFindWhat points.

Set the ICustData member with any custom data your
application may need to access.

If your application customizes the Find dialog box, set the
IpfnHook member to point to your hook function.

If your application uses a custom dialog box template, set the
IpTemplateName member to point to the string that identifies
the template.

Windows API Guide

The following example initializes the FINDREPLACE structure
and then calls the FindText function. This structure should be
global or declared as a static variable.

FINDREPLACEfr;

/* Set all structure fields to zero. */
memset (&fr, 0, sizeof (FINDREPLACE));
fr.1StructSize = sizeof (FINDREPLACE);
fr . hwndOwner = hwnd;

fr.lpstrFindWhat = szFindWhat;
fr.wFindwhatLen = sizeof (szFindWhat) ;

hDlg = FindText (&fr);

break;

Displaying
the Replace The Replace dialog box is similar to the Find dialog box.
dialoa box However, the Replace dialog box has no Direction box and has
g three additional controls that make it possible for the user to
specify the following:

@ The replacement string

8 Whether the application should replace the occurrence of the
string that is currently highlighted

B8 Whether the application should replace all occurrences of the
string

Following is a Replace dialog box.

Find What: [test] &

Replace With: Ile:t2 [

DL
O Match Case

To display the Replace dialog box, you need to initialize a
FINDREPLACE structure and call the ReplaceText function.

Chapter 1, Common dialog box library ' 25

Processing dialog
box messages for
a Find or Replace

26

dialog box

The Find and Replace dialog boxes differ from the other common
dialogs in two respects: First, they are modeless; and second, their
respective dialog box procedures send messages to the
application that calls the FindText or ReplaceText function. These
messages contain data specified by the user in the dialog box
controls, such as the direction in which the application should
search for a string, whether the application should match the case
of the specified string, and whether the application should match
the entire string.

To process messages from a Find or Replace dialog box, an
application must register the dialog box’s unique message,
FINDMSGSTRING.

The application registers this message with the
RegisterWindowMessage function. Once the application registers
the message, it uses the function’s return value to identify
messages from the Find or Replace dialog box. The following
example registers the message with the RegisterWindowMessage
function:

UINT uFindReplaceMsg;
/* Register theFindReplacemessage. */

uFindReplaceMsg = RegisterWindowMessage (FINDMSGSTRING) ;

After the application registers this message, it can process
messages for the Find or Replace dialog box by using the
RegisterWindowMessage return value. The following example
processes messages for the Find dialog box and then calls its own
SearchFile function to locate the string of text. If the user is
closing the dialog box (that is, if the Flags member of
FINDREPLACE is FR_DIALOGTERM), the handle should be
invalidated and the procedure should return zero.

LRESULT CALLBACKMainWndProc (HWND hwnd, UINTmsg, WPARAMwParam,
LPARAM lParam)

{
FINDREPLACE FAR* lpfr;

if (msg == uFindReplaceMsg) {
lpfr = (FINDREPLACE FAR*) lParam;
SearchFile ((BOOL) (lpfr->Flags & FR DOWN),
(BOOL) (lpfr->Flags & FR MATCHCASE));
return 0;

Windows APl Guide

Customizing common dialog boxes

Appropriate and
inappropriate
customizations

A custom common dialog box is a common dialog box that has
been altered to suit a particular Windows application. The
customization may be complex and include the hiding of original
controls, the addition of new controls, or a change in the size of
the original dialog box; or it may be simple, such as the alteration
of a single existing control.

Developers who need to customize a common dialog box must
provide a special hook function and, in most cases, a custom
dialog box template. Customizations of this kind require a
significant amount of additional code—displaying a customized
common dialog box is not as simple as initializing the members of
a structure and calling a single function.

Applications that subclass controls in any of the common dialog
boxes must do so while processing the WM_INITDIALOG
message in the application’s hook function. This allows the
application to receive the control-specific messages first, because
it will have subclassed the control after the common dialog box
has installed its subclassing procedures. (The previous hook
function should be called for all messages that are not handled by
the application’s subclass function, as is standard for subclassing.)

An application cannot subclass a control by defining a local class
to override a specific control type. The reason is that the data
segment would not be correctly initialized when the class was
called—the data segment would be the common dialog box’s data
segment, not the application’s data segment.

From the user’s perspective, the chief benefit of the common
dialog box is its consistent appearance and functionality from
application to application. Therefore, it becomes important that a
developer only customize a common dialog box when it is
absolutely necessary for an application. Otherwise, the consistent
appearance and simple coding interface are lost. Appropriate
customizations leave intact as many of the original controls as
possible. Increasing the size of the dialog box or adding new
controls in available space that already appears in the dialog box
would be an appropriate customization. Hiding original controls

Chapter 1, Common dialog box library 27

28

Hook functions
and custom
diclog box
tfemplates

Hook function

or otherwise changing the intended functionality of the original
controls would be an inappropriate customization.

Each common dialog box uses the dialog box procedure and
dialog box template provided for it in COMMDLG.DLL. The
dialog box procedure processes messages and notifications for
the common dialog box and its controls. The dialog box template
defines the appearance of the dialog box—its dimensions, its
location, and the dimensions and locations of controls that appear
within it.

In addition to the provided dialog box procedure and dialog box
template, a custom dialog box requires a hook function that you
provide and, usually, a custom version of the dialog box template.

The dialog box procedure provided in COMMDLG.DLL for a
common dialog box calls the application’s hook function if the
application sets the appropriate flag and pointer in the structure
for that common dialog box. The structure for each common
dialog box contains a Flags member that specifies whether the
application supplies a hook function and contains an IpfnHook
member that points to the hook function if one exists. If the
application sets the Flags member to indicate that a hook
function exists, it must also set the IpfnHook member. The
following example sets the Flags and IpfnHook members of an
OPENFILENAME structure to support an application’s hook
function:

#defineSTRICT
#include <windows.h> /* required for all Windows applications */
#include <commdlg.h>
#include <string.h>
#include “header.h” /* specific to this program */
OPENFILENAME ofn;
/* Get the system directory name, and store in szDirName. */
GetSystemDirectory ((LPSTR) szDirName, 255);
/* Initialize the OPENFILENAME members. */
szFile[0] = '\0’;
ofn.1StructSize = sizeof (OPENFILENAME) ;

ofn.hwndOwner = hwnd;
ofn.hInstance = hInst;

Windows API Guide

ofn.lpstrFilter = szFilter{0];
ofn.lpstrCustomFilter = NULL;

ofn.nMaxCustFilter = 0L;

ofn.nFilterIndex = 1L;

ofn.lpstrFile = szFile;

ofn.nMaxFile = sizeof (szFile);
ofn.lpstrFileTitle = szFileTitle;
ofn.nMaxFileTitle = sizeof (szFileTitle);
ofn.lpstrInitialDir = szDirName;

ofn.lpstrTitle = NULL;

ofn.Flags = OFN_ENABLEHOOK | OFN ENABLETEMPLATE;
ofn.nFileOffset = 0;

ofn.nFileExtension = 0;

ofn.lpstrDefExt = NULL;

ofn.lpfnHook = MakeProcInstance ((FARPRCC) FileOpenHookProc, hlnst);
ofn.lpTemplateName = “FileOpen”;

In the previous example, the MakeProcInstance function is called
to create a procedure-instance address for the hook function. This
address is assigned to the ipfnHook member of the
OPENFILENAME structure. If the hook function is part of a
dynamic-link library (rather than an application), the procedure
address is obtained by calling the GetProcAddress function
(instead of MakeProcinstance).

The hook function processes any messages or notifications that
the custom dialog box requires. With the exception of one
message (WM_INITDIALOG), the hook function receives
messages and notifications before the dialog box procedure
provided in COMMDLG.DLL receives them. In the case of
WM_INITDIALOG, the hook function receives the message after
the dialog box procedure and should process it. When the hook
function finishes processing a message, it returns a value that
indicates whether the dialog box procedure provided in
COMMDLG.DLL should also process the message. If the dialog
box procedure should process the message, the return value is
FALSE,; if the dialog box procedure should ignore the message,
the return value is TRUE.

To process the message from the OK button after the dialog box
procedure processes it, an application must post a message to
itself when the OK message is received. When the application
receives the message it has posted, the common dialog box
procedure will have finished processing messages for the dialog
box. This technique is particularly useful when working with the
Find and Replace dialog boxes, because the Flags member of the
FINDREPLACE structure does not reflect changes to the dialog
box until after the messages have been processed by
COMMDLG.DLL.

Chapter 1, Common dialog box library 29

30

The following example shows a hook function for a custom Open
dialog box:

UINTCALLBACKFileOpenHookProc (HWNDhdlg, UINTmsg, WPARAM
wParam, LPARAM lParam)
{
switch (msg) {
case WM _INITDIALOCG:
return TRUE;

case WM COMMAND:
/* Use IsDlgButtonChecked to set 1lCustData. */
if (wParam == IDOK) {
/* Set backup flag. */

ofn.lCustData =
(DWORD) IsDlgButtonChecked (hdlg, ID CUSTCHX);
}

return FALSE; /* Allow standard processing. */
}

/* Allow standard processing. */

return FALSE;
}

This hook function tests a custom check box when the user
chooses the OK button. If the check box was selected, the hook
function sets the ICustData member of the OPENFILENAME
structure to 1; otherwise, it sets the ICustData member to 0.

A hook function should never call the EndDialog function.
Instead, if a hook function contains code that abnormally
terminates a common dialog box, this code should pass the
IDABORT value to the dialog box procedure by using the
PostMessage function as shown in the following example:

PostMessage (hD1g,WM_ COMMAND, IDABORT, (LONG)FALSE) ;

When a hook function posts the IDABORT value, the common
dialog box function returns the value contained in the low word
of the IParam parameter. For example, if the hook function for
GetOpenFileName called the PostMessage function with
(LONG) 100 as the last parameter, GetOpenFileName would
return 100.

Windows APl Guide

A hook function must be exported in an application’s
module-definition (.DEF) file as shown in the following example:

NAME cd

EXETYPE WINDOWS

STUB 'WINSTUB.EXE’

CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024

STACKSIZE8192

EXPORTS
FILEOPENHOOKPROC @1

Customizing a dialog The dialog box template provided in COMMDLG.DLL for each
boxtemplate common dialog box contains the data that the dialog box

procedure uses to display that common dialog box. Most
applications that customize a common dialog box also need to
create a custom dialog box template to use instead of the dialog
box template in COMMDLG.DLL. (A custom dialog box template
is not required for all custom dialog boxes. For instance, a
template would not be necessary if an application changed a
dialog box in a relatively minor way and only in an unusual
situation.)

A developer should create a custom dialog box template by
modifying the appropriate dialog box template in
COMMDLG.DLL. Following are the template filenames and the
names of their corresponding common dialog boxes:

Template filename Corresponding dialog box
COLOR.DLG Color

FILEOPEN.DLG Open (single selection)
FILEOPEN.DLG Open (multiple selection)
FINDTEXT.DLG Find

FINDTEXT.DLG Replace

FONT.DLG Font

PRNSETUP.DLG Print

PRNSETUPDLG Print Setup

Chapter 1, Common dialog box library 31

32

The following excerpt is from a custom dialog box template
created for an Open dialog box:

CONTROL “&Backup File”, ID_CUSTCEX, “button”,
BS_AUTOCHECKBOX | WS_CHILD | WS_TABSTOP | WS_GROUP,
208, 86, 50, 12
END

This entry supports the addition of a new Backup File check box
immediately below the existing Read Only check box.

The custom template should be added to the application’s
resource file.

Displaying
the customn After your application creates the hook function and the dialog
dicloa box ox template, it should set the members of the structure for the
g common dialog box being customized and call the appropriate
function to display the custom dialog box.

The following example calls the GetOpenFileName function and
creates a backup file if the user selected the custom Backup File
check box in the custom Open dialog box:

/* Open the file and create a backup. */
if(GetOpenFileName (&ofn)){
hf = lopen(ofn.lpstrFile, OF READWRITE);
/* Create the backup file. */
if (ofn.lCustData) {
/* Process files with extension. */
if (ofn.nFileExtension) {

for (i=0; i<(int)ofn.nFileExtension; i++)
szChar[i] = *ofn.lpstrFile++;

}/*endif */
/* Process files without extension. */
else {

1=0;

while (*ofn.lpstrFile!="\0’)
szChar[i++] = *ofn.lpstrFile++;

Windows AP! Guide

szChar([i]='.";
}/*end else*/

pszNewPAFN = lstrcat (szChar, “BAK”);
/* Create the backup file. */

hfBackup = _lcreat (pszNewPAFN, 0);

/* Copy contents of original file to the backup file.

while ((cBufLngth=_lread(hf, cBufl, 256)) == 256)

_lwrite(hfBackup, cBufl, cBuflngth);
_lwrite(hfBackup, cBufl, cBuflLngth);
_lclose(hfBackup) ;

} /*endif GetOpenFileName*/

/* File operations begin here. */

} /* endif (GetOpenFileName) */

The following is the custom Open dialog box. The new Backup
File check box appears in the lower-right corner.

Directories:

c:\windows
3270 txt =L
networks.txt £> windows
printers. txt b
readme.txt 0 system
sysini.txt
sysini2. txt
sysini3.txt
winini. txt

List Files of Type: Diives:

Wiite Files(*.TXT) .

Chapter 1, Common dialog box library

*/

33

Supporting help for the common dialog boxes

An application can display a Help button in any of the common
dialog boxes by setting the appropriate flag in the Flags member
of the structure for that common dialog box. Following are the
structures for the common dialog boxes and the Help flag that
corresponds to each structure:

Structure Flag value
OPENFILENAME OFN_SHOWHELP
CHOOSECOLOR CC_SHOWHELP
FINDREPLACE FR_SHOWHELP
CHOOSEFONT CF_SHOWHELP
PRINTDLG PD_SHOWHELP

If an application displays the Help button, it must process the
user’s request for Help. This can be done either in one of the
application’s window procedures or in a hook function.

If the application processes the request for Help in one of the
application’s window procedures, it must first create a new
message identifier for the string defined by the
HELPMSGSTRING constant. The application creates the new
message identifier by calling the RegisterWindowMessage
function and passing this constant as the single parameter. (For
more information about processing registered window messages,
see “Using Find and Replace dialog boxes.”) In addition to
creating a new message identifier, the application must set the
hwndOwner member of the appropriate structure for the
common dialog box so that this member contains the handle of
the dialog box’s owner window. After the message identifier is
created and the hwndOwner member is set, the dialog box
procedure notifies the window procedure of the owner window
whenever the user chooses the Help button.

The following example processes a user’s request for Help in the
window procedure of its owner window. The if statement should
be in the default: section of the switch statement that processes
messages.

34 Windows API Guide

Error detection

MyHelpMsg = RegisterWindowMessage (HELPMSGSTRING) ;

if (message == MyHelpMsg)
WinHelp (hWnd, “appfile.hlp”, HELP_CONTEXT, ID_MY CONTEXT);

If the application processes the request for Help in a hook
function, it should test for the following condition in the
WM_COMMAND message:

wParam == pshHelp

When this condition is true, the hook function should call the
WinHelp function as shown in the preceding example. (To process
Help in a hook function, you must include the header file
DLGS.H in the source file that contains the hook-function code.)

Whenever a common dialog box function fails, an application can
call the CommDIgExtendedError function to find out the cause of
the failure. The CommbDIgExtendedError function returns an
error value that identifies the cause of the most recent error.

Six constants are defined in the CDERR.H header file that
identify the ranges of error values for categories of errors
returned by CommbDIgExtendedError. Following are these
constants in ascending order by value range:

Constant Meaning

CDERR_GENERALCODES General error codes for common
dialog boxes. These errors are in
the range 0x0000 through OxOFFF.

PDERR_PRINTERCODES Error codes for the Print common
dialog box. These errors are in the
range 0x1000 through Ox1FFE.

CFERR_CHOOSEFONTCODES Error codes for the Font common
dialog box. These errors are in the
range 0x2000 through 0x2FFF.

FNERR_FILENAMECODES Error codes for the Open and
Save As common dialog boxes.

These errors are in the range
0x3000 through 0x3FFF.

Chapter 1, Common dialog box library 35

36

FRERR_FINDREPLACECODES

CCERR_CHOOSECOLORCODES

Error codes for the Find and
Replace common dialog boxes.
These errors are in the range
0x4000 through 0x4FFE.

Error codes for the Color
common dialog box. These errors
are in the range 0x5000 through
Ox5FFF.

Windows API Guide

2

Dynamic Data Exchange
Management Library

This chapter describes how to use the Dynamic Data Exchange
Management Library (DDEML). The DDEML is a dynamic-link
library (DLL) that applications running with the Microsoft
Windows operating system can use to share data.

The following topics are related to the information in this chapter:

Atoms

8 Memory management

Clipboard

8 Dynamic-link libraries

Obiject linking and embedding (OLE)

Dynamic data exchange (DDE) is a form of interprocess
communication that uses shared memory to exchange data
between applications. Applications can use DDE for one-time
data transfers and for ongoing exchanges in which the
applications send updates to one another as new data becomes
available.

Dynamic data exchange differs from the clipboard data-transfer
mechanism that is also part of the Windows operating system.
One difference is that the clipboard is almost always used as a
one-time response to a specific action by the user—such as
choosing the Paste command from a menu. Although DDE may

Chapter 2, Dynamic Data Exchange Management Library

37

Basic concepts

also be initiated by a user, it typically continues without the
user’s further involvement.

The DDEML provides an application programming interface
(API) that simplifies the task of adding DDE capability to a
Windows application. Instead of sending, posting, and processing
DDE messages directly, an application uses the functions
provided by the DDEML to manage DDE conversations. (A DDE
conversation is the interaction between client and server
applications.) The DDEML also provides a facility for managing
the strings and data that are shared among DDE applications.
Instead of using atoms and pointers to shared memory objects,
DDE applications create and exchange string handles, which
identify strings, and data handles, which identify global memory
objects. DDEML provides a service that makes it possible for a
server application to register the service names that it supports.
The names are broadcast to other applications in the system,
which can then use the names to connect to the server. The
DDEML also ensures compatibility among DDE applications by
forcing them to implement the DDE protocol in a consistent
manner.

Existing applications that use the message-based DDE protocol
are fully compatible with those that use the DDEML. That is, an
application that uses message-based DDE can establish
conversations and perform transactions with applications that use
the DDEML. Because of the many advantages of the DDEML,
new applications should use it rather than the DDE messages.

The DDEML can run on systems that have Microsoft Windows
version 3.0 or later installed. The DDEML does not support real
mode. To use the API elements of the DDE management library,
you must include the DDEML.H header file in your source files,
link with DDEML.LIB, and ensure that DDEML.DLL resides in
the system’s path.

38

The concepts in this section are key to understanding DDE and
the DDEML.

Windows APl Guide

Client and server
inferaction

Transactions and
the DDE callback
function

Dynamic data exchange always takes place between a client
application and a server application. The client initiates the
exchange by establishing a conversation with the server so that it
can send transactions to the server. (A transaction is a request for
data or services.) The server responds to these transactions by
providing data or services to the client. A server can have many
clients at the same time, and a client can request data from
multiple servers. Also, an application can be both a client and a
server. A client terminates a conversation when it no longer needs
a server’s data or services.

For example, a graphics application might contain a bar graph
that represents a corporation’s quarterly profits, and the data for
the bar graph might be contained in a spreadsheet application. To
obtain the latest profit figures, the graphics application (the client)
establishes a conversation with the spreadsheet application (the
server). The graphics application then sends a transaction to the
spreadsheet application, requesting the latest profit figures.

The DDEML notifies an application of DDE activity that affects
the application by sending transactions to the application’s DDE
callback function. A transaction is similar to a message—it is a
named constant accompanied by other parameters that contain
additional information about the transaction.

The DDEML passes a transaction to an application-defined DDE
callback function, which carries out the appropriate action
depending on the type of the transaction. For example, when a
client application attempts to establish a conversation with a
server application, the client calls the DdeConnect function. This
causes the DDEML to send an XTYP_CONNECT transaction to
the server’s DDE callback function. The callback function can
allow the conversation by returning TRUE to the DDEML, or it
can deny the conversation by returning FALSE.

For a detailed discussion of transactions, see “Transaction
management.”

Chapter 2, Dynamic Data Exchange Management Library 39

40

Service names,
fopic names, and
item names

System topic

A DDE server uses a three-level hierarchy—service name (called
“application name” in previous DDE documentation), topic
name, and item name—to uniquely identify a unit of data that the
server can exchange during a conversation. A service name is a
string that a server application responds to when a client attempts
to establish a conversation with the server. A client must specify
this service name to be able to establish a conversation with the
server. Although a server can respond to many service names,
most servers respond to only one name.

A topic name is a string that identifies a logical data context. For
servers that operate on file-based documents, topic names are
typically filenames; for other servers, they are other
application-specific strings. A client must specify a topic name
along with a server’s service name when it attempts to establish a
conversation with a server.

An item name is a string that identifies a unit of data that a server
can pass to a client during a transaction. For example, an item
name might identify an integer, a string, several paragraphs of
text, or a bitmap.

To a client, these names are the keys that make it possible for the
client to establish a conversation with a server and to receive data
from the server.

The System topic provides a context for information that may be
of general interest to any DDE client. Server applications are
encouraged to support the System topic at all times. (The System
topic is defined in the DDEML header file as SZDDESYS_TOPIC.)

To find out which servers are present and the kinds of
information they can provide, a client can request a conversation
on the System topic with the service name set to NULL when the
client application starts. Such wildcard conversations should be
kept to a minimum, because they are costly in terms of system
performance.

For more information about initiating DDE conversations, see
“Conversation management.”

Windows APl Guide

A server should support the following item names within the
System topic and any other item names that may be useful to a

client:
Item Description
SZDDE_ITEM_ITEMLIST Alist of the items that are supported

under a non-System topic. (This list
may vary from moment to moment
and from topic to topic.)
SZDDESYS_ITEM_FORMATS Alist of clipboard format numbers
that the server can render. This list
should be ordered with the most
descriptive formats first. A server
may not be able to render all items in
all formats within this list. Ata
minimum, a server should support
the CF_TEXT clipboard format for
item names associated with the

System topic.
SZDDESYS_ITEM_HELP General help information.
SZDDESYS_ITEM_RTNMSG Supporting detail for the most

recently used WM_DDE_ACK
message. This is useful when more
than 8 bits of application-specific
return data are required.

SZDDESYS _ITEM_STATUS An indication of the current status of
the server. Typically, this item
supports only the CF_TEXT format
and contains the Ready or Busy
string.

SZDDESYS_ITEM_SYSITEMS Alist of the items supported under
the System topic by this server.

SZDDESYS_ITEM_TOPICS Alist of the topics supported by the
server at the current time. (This list
may vary from moment to moment.)

These item names are string constants defined in the DDEML
header files. To obtain string handles for these strings, an
application must use the DDEML string-management functions,
just as it would for any other string in a DDEML application. For
more information about managing strings, see “String
management.”

Chapter 2, Dynamic Data Exchange Management Library 41

Initialization

42

The DDEML requires that Windows be running; otherwise, the
system cannot load the DDEML dynamic-link library. Before
calling any DDEML function, an application should call the
GetWinFlags function, checking the return value for the
WF_PMODE flag. If this flag is returned, the application can call
DDEML functions.

Before calling any other DDEML function, an application must
call the Ddelnitialize function. The Ddelnitialize function obtains
an instance identifier for the application, registers the
application’s DDE callback function with the DDEML, and
specifies the transaction filter flags for the callback function.

The DDEML uses instance identifiers so that it can support
applications that allow multiple DDEML instances. Each instance
of an application must pass its instance identifier as the idInst
parameter to any other DDEML function that requires it. An
application that uses multiple DDEML instances should assign a
different DDE callback function to each instance. This makes it
possible for the application to identify each instance within its
callback function.

The purpose for multiple DDEML instances is to support DLLs
using the DDEML. It is not recommended that an application
have multiple DDE instances.

Transaction filters optimize system performance by preventing
the DDEML from passing unwanted transactions to the
application’s DDE callback function. An application sets the
transaction filters when it calls the Ddelnitialize function. An
application should specify a transaction filter flag for each type of
transaction that it does not process in its callback function. An
application can change its transaction filters with a subsequent
call to the Ddelnitialize function.

For more information about transactions, see “Transaction
management.”

Windows APl Guide

The following example shows how to initialize an application to

use the DDEML:
DWORD idInst = OL; /* instance identifier */
HANDLE hInst; /* instance handle */

FARPROC lpDdeProc; /* procedure instance address */

lpDdeProc = MakeProcInstance ((FARPROC) DdeCallback, hInst):

if (DdelInitialize (&idInst, /* receives instance identifier */
(PENCALLBACK) lpDdeProc, /* address of callback function */
CBF_FAIL EXECUTES | /* filter XTYP_EXECUTE transactions */
CBF_FAIL POKES, oL) ; /* filter XTYP_POKE transactions */

return FALSE;

This example obtains a procedure-instance address for the
callback function named DdeCallback and then passes the
address to the DDEML. The CBF_FAIL_EXECUTES and
CBF_FAIL_POKES filters prevent the DDEML from passing
XTYP_EXECUTE or XTYP_POKE transactions to the callback
function.

An application should call the DdeUninitialize function when it
no longer needs to use the DDEML. This function terminates any
conversations currently open for the application and frees the
DDEML resources that the system allocated for the application.

The DDEML may have difficulty terminating a conversation. This
occurs when the other partner in a conversation fails to terminate
its end of the conversation. In this case, the system enters a modal
loop while it waits for any conversations to be terminated. A
system-defined timeout period is associated with this loop. If the
timeout period expires before the conversations have been
terminated, a message box appears that gives the user the choice
of waiting for another timeout period (Retry), waiting indefinitely
(Ignore), or exiting the modal loop (Abort). An application should
call DdeUninitialize after it has become invisible to the user and
after its message loop has terminated.

Callback function

An application that uses the DDEML must provide a callback
function that processes the DDE events that affect the application.
The DDEML notifies an application of such events by sending
transactions to the application’s DDE callback function. The
transactions that a callback function receives depend on the

Chapter 2, Dynamic Data Exchange Management Library 43

callback-filter flags that the application specified in the
Ddelnitialize function and on whether the application is a client, a
server, or both. The following example shows the general
structure of a callback function for a typical client application:

HDDEDATAEXPENTRYDdeCallback (wType, wEFmt, hConv, hsz1,
hsz2, hData, dwDatal, dwDataZ2)

WORD wType; /* transaction type */
WORD wFmt; /* clipboard format */
HCONV hConv; /* handle of the conversation */
HSZ hszl; /* handle of a string */
HSZ hsz2; /* handle of a string */
HDDEDATA hData; /* handle of a global memory object */
DWORD dwDatal; /* transaction-specific data */
DWORD dwData2; /* transaction-specific data */

{
switch (wType) {
case XTYP_REGISTER:
case XTYP_UNREGISTER:

return (HDDEDATA) NULL;

case XTYP_ADVDATA:

return (HDDEDATA) DDE FACK;

case XTYP_ XACT COMPLETE:

return (HDDEDATA) NULL;

case XTYP_DISCONNECT:

.

return (HDDEDATA) NULL;

default:
return (HDDEDATA) NULL;

The wType parameter specifies the transaction type sent to the
callback function by the DDEML. The values of the remaining
parameters depend on the transaction type. The transaction types
and the events that generate them are described in the following
sections of this chapter. For detailed information about each
transaction type, see “Transaction management.”

Windows API Guide

String management

Many DDEML functions require access to strings in order to carry
out a DDE task. For example, a client must specify a service name
and a topic name when it calls the DdeConnect function to
request a conversation with a server. An application specifies a
string by passing a string handle rather than a pointer in a
DDEML function. A string handle is a doubleword value,
assigned by the system, that identifies a string.

An application can obtain a string handle for a particular string
by calling the DdeCreateStringHandle function. This function
registers the string with the system and returns a string handle to
the application. The application can pass the handle to DDEML
functions that need to access the string. The following example
obtains string handles for the System topic string and the
service-name string:

HSZhszServName;

HSZhszSysTopic;

hszServNamebdeCreateStringHandle (
idInst, /* instance identifier */
“MyServer”, /* string to register */
CP_WINANSI) ; /* code page *x/

hszSysTopicbdeCreateStringHandle (

idInst, /* instance identifier */
SZDDESYS_TOPIC, /* System topic */
CP_WINANSI) ; /* code page */

The idInst parameter in the preceding example specifies the
instance identifier obtained by the Ddelnitialize function.

An application’s DDE callback function receives one or more
string handles during most DDE transactions. For example, a
server receives two string handles during the XTYP_REQUEST
transaction: One identifies a string specifying a topic name; the
other identifies a string specifying an item name. An application
can obtain the length of the string that corresponds to a string
handle and copy the string to an application-defined buffer by
calling the DdeQueryString function, as the following example
demonstrates:

DWORD idInst;
DWORD cb;

HSZ hszServ;
PSTR pszServName;

Chapter 2, Dynamic Data Exchange Management Library 45

46

cb = DdeQueryString(idInst, hszServ, (LPSTR) NULL, OL,
CP_WINANSI) +1;

pszServName = (PSTR) LocalAlloc(LPTR, (WORD) cb);
DdeQueryString (idInst, hszServ, pszServName, cb, CP_WINANSI);

An instance-specific string handle is not mappable from string
handle to string to string handle again. For instance, in the
following example, the DdeQueryString function creates a string
from a string handle and then DdeCreateStringHandle creates a
string handle from that string, but the two handles are not the
same:

DWORD cb;
HSZ hszInst, hszNew;
PSZ pszlInst;

DdeQueryString (idInst, hszInst, pszInst, cb, CP_WINANSI);
hszNew = DdeCreateStringHandle (idInst, pszInst, CP_WINANSI) ;
/* hszNew != hszInst ! */

A string handle that is passed to an application’s DDE callback
function becomes invalid when the callback function returns. An
application can save a string handle for use after the callback
function returns by using the DdeKeepStringHandle function.

When an application calls DdeCreateStringHandle, the system
enters the specified string into a systemwide string table and

generates a handle that it uses to access the string. The system
also maintains a usage count for each string in the string table.

When an application calls the DdeCreateStringHandle function
and specifies a string that already exists in the table, the system
increments the usage count rather than adding another
occurrence of the string. (An application can also increment the
usage count by using the DdeKeepStringHandle function.) When
an application calls the DdeFreeStringHandle function, the
system decrements the usage count.

A string is removed from the table when its usage count equals
zero. Because more than one application can obtain the handle of
a particular string, an application should not free a string handle
more times than it has created or kept the handle. Otherwise, the
application could cause the string to be removed from the table,
denying other applications access to the string.

Windows API Guide

Name service

The DDEML string-management functions are based on the
Windows atom manager and are subject to the same size
restrictions as atoms.

Service-name
registration

The DDEML makes it possible for a server application to register
the service names that it supports and to prevent the DDEML
from sending XTYP_CONNECT transactions for unsupported
service names to the server’s DDE callback function. The
remaining topics in this section describe this service.

By registering its service names with the DDEML, a server
informs other DDE applications in the system thata new server is
available. A server registers a service name by calling the
DdeNameService function, specifying a string handle that
identifies the name. As a result, the DDEML sends an
XTYP_REGISTER transaction to the callback function of each
DDEML application in the system (except those that specified the
CBF_SKIP_REGISTRATIONS filter flag in the Ddelnitialize
function). The XTYP_REGISTER transaction passes two string
handles to a callback function: The first identifies the string
specifying the base service name; the second identifies the string
specifying the instance-specific service. A client typically uses the
base service name in a list of available servers, so that the user can
select a server from the list. The client uses the instance-specific
service name to establish a conversation with a specific instance
of a server application if more than one instance is running.

A server can use the DdeNameService function to unregister a
service name. This causes the DDEML to send
XTYP_UNREGISTER transactions to the other DDE applications
in the system, informing them that they can no longer use the
name to establish conversations.

A server should call the DdeNameService function to register its
service names soon after calling the Ddelnitialize function. A
server should unregister its service names just before calling the
DdeUninitialize function.

Chapter 2, Dynamic Data Exchange Management Library 47

Service-name

filter Besides registering service names, the DdeNameService function

makes it possible for a server to turn its service-name filter on or
off. When a server turns off its service-name filter, the DDEML
sends the XTYP_CONNECT transaction to the server’'s DDE
callback function whenever any client calls the DdeConnect
function, regardless of the service name specified in the function.
When a server turns on its service-name filter, the DDEML sends
the XTYP_CONNECT transaction to the server only when the
DdeConnect function specifies a service name that the server has
specified in a call to the DdeNameService function.

By default, the service-name filter is on when an application calls
Ddelnitialize. This prevents the DDEML from sending the
XTYP_CONNECT transaction to a server before the server has
created the string handles that it needs. A server can turn off its
service-name filter by specifying the DNS_FILTEROFF flag in a
call to the DdeNameService function. The DNS_FILTERON flag
turns on the filter.

Conversation management

48

Single
conversations

A conversation between a client and a server is always
established at the request of the client. When a conversation is
established, each partner receives a handle that identifies the
conversation. The partners use this handle in other DDEML
functions to send transactions and manage the conversation.

A client can request a conversation with a single server, or it can
request multiple conversations with one or more servers. The
remaining topics in this section describe how an application
establishes conversations and explain how an application can
obtain information about conversations that are already
established.

A client application requests a single conversation with a server
by calling the DdeConnect function, specifying string handles
that identify the strings specifying the service name of the server
and the topic name of interest. The DDEML responds by sending

Windows APl Guide

the XTYP_CONNECT transaction to the DDE callback function of
each server application that either has registered a service name
that matches the one specified in the DdeConnect function or has
turned service-name filtering off by calling the DdeNameService
function. A server can also filter the XTYP_CONNECT
transactions by specifying the CBF_FAIL_CONNECTIONS filter
flag in the Ddelnitialize function. During the XTYP_CONNECT
transaction, the DDEML passes the service name and the topic
name to the server. The server should examine the names and
return TRUE if it supports the service/topic name pair or FALSE
if it does not.

If no server returns TRUE from the XTYP_CONNECT
transaction, the client receives NULL from the DdeConnect
function and no conversation is established. If a server does
return TRUE, a conversation is established and the client receives
a conversation handle—a doubleword value that identifies the
conversation. The client uses the handle in subsequent DDEML
calls to obtain data from the server. The server receives the
XTYP_CONNECT_CONFIRM transaction (unless the server
specified the CBF_FAIL_CONFIRMS filter flag). This transaction
passes the conversation handle to the server.

The following example requests a conversation on the System
topic with a server that recognizes the service name MyServer.
The hszServName and hszSysTopic parameters are previously
created string handles.

HCONV hConv;

HWND hwndParent;
HSZ hszServName;
HSZ hszSysTopic;

hConv = DdeConnect (

idInst, /* instance identifier */
hszServName, /* service-name string handle x/
hszSysTopic, /* System-topic string handle *x/
(PCONVCONTEXT) NULL); /* reserved—must be NULL */

if (hConv == NULL) {
MessageBox (hwndParent, “MyServer is unavailable.”,
(LPSTR) NULL, MB OK);
return FALSE;
}

The DdeConnect function in the preceding example causes the
DDE callback function of the MyServer application to receive an
XTYP_CONNECT transaction.

Chapter 2, Dynamic Data Exchange Management Library

49

50

In the following example, the server responds to the
XTYP_CONNECT transaction by comparing the topic-name
string handle that the DDEML passed to the server with each
element in the array of topic-name string handles that the server
supports. If the server finds a match, it establishes the
conversation.

#defineCTOPICS 5

HSZ hszl; /* string handle passed by DDEML */
HSZ ahszTopics [CTOPICS]; /* array of supported topics */
int i; /* loop counter */

. /* Use switch statement to examine transaction types. */

case XTYP_CONNECT:
for (1 = 0; 1 < CTOPICS; i++) {
if (hszl == ahszTopics{i})
return TRUE; /* establish a conversation */

}

return FALSE; /* topic not supported; deny conversation */

. /* Process other transaction types. */

If the server returns TRUE in response to the XTYP_CONNECT
transaction, the DDEML sends an XTYP_CONNECT_CONFIRM
transaction to the server’s DDE callback function. The server can
obtain the handle for the conversation by processing this
transaction.

A client can establish a wildcard conversation by specifying
NULL for the service-name string handle, the topic-name string
handle, or both in a call to the DdeConnect function. When at
least one of the string handles is NULL, the DDEML sends the
XTYP_WILDCONNECT transaction to the callback functions of
all DDE applications (except those that filter the
XTYP_WILDCONNECT transaction). Each server application
should respond by returning a data handle that identifies a
null-terminated array of HSZPAIR structures. If the server
application has not called the DdeNameService function to
register its service names and filtering is on, the server does not
receive XTYP_WILDCONNECT transactions. For more
information about data handles, see “Data management.”

Windows API Guide

The array should contain one structure for each service/topic
name pair that matches the pair specified by the client. The
DDEML selects one of the pairs to establish a conversation and
returns to the client a handle that identifies the conversation. The
DDEML sends the XTYP_CONNECT_CONFIRM transaction to
the server (unless the server filters this transaction). The
following example shows a typical server response to the
XTYP_WILDCONNECT transaction:

#define CTOPICS 2

UINT type;

UINT fmt;

HSZPAIR ahp[(CTOPICS + 1)];
HSZ ahszTopicList [CTOPICS];
HSZ hszServ, hszTopic;
WORD i, 3;

if (type == XTYP_WILDCONNECT) {

/*
* Scan the topic list, and create array of HSZPAIR
* structures.

*/

j=0;
for (1 = 0; i < CTOPICS; i++) {
if (hszTopic == (HSZ) NULL ||
hszTopic == ahszTopicList[i]) {
ahp(j] .hszSvc = hszServ;
ahp[j++] .hszTopic = ahszTopicList[i];

}

/*
* End the list with an HSZPAIR structure that contains NULL
* string handles as its members.

*/

ahp[jl .hszSve = NULL;
ahp[j++] .hszTopic = NULL;

/%
* Return a handle to a global memory object containing the
* HSZPAIR structures.

*/
return DdeCreateDataHandle (
idInst, /* instance identifier */
&ahp, /* points to HSZPAIR array */
sizeof (HSZ) * j, /* length of the array */
0, /* start at the beginning */
NULL, /* no item-name string */
fmt, /* return the same format */
0); /* let the system own it */

Chapter 2, Dynamic Data Exchange Management Library 51

52

Multiple
conversations

Either the client or the server can terminate a conversation at any
time by calling the DdeDisconnect function. This causes the
callback function of the partner in the conversation to receive the
XTYP_DISCONNECT transaction (unless the partner specified
the CBF_SKIP_DISCONNECTS filter flag). Typically, an
application responds to the XTYP_DISCONNECT transaction by
using the DdeQueryConvinfo function to obtain information
about the conversation that terminated. After the callback
function returns from processing the XTYP_DISCONNECT
transaction, the conversation handle is no longer valid.

A client application that receives an XTYP_DISCONNECT
transaction in its DDE callback function can attempt to reestablish
the conversation by calling the DdeReconnect function. The
client must call DdeReconnect from within its DDE callback
function.

A client application can use the DdeConnectList function to
determine whether any servers of interest are available in the
system. A client specifies a service name and topic name when it
calls the DdeConnectList function, causing the DDEML to
broadcast the XTYP_WILDCONNECT transaction to the DDE
callback functions of all servers that match the service name
(except those that filter the transaction). A server’s callback
function should return a data handle that identifies a
null-terminated array of HSZPAIR structures. The array should
contain one structure for each service/topic name pair that
matches the pair specified by the client. The DDEML establishes a
conversation for each HSZPAIR structure filled by the server and
returns a conversation-list handle to the client. The server
receives the conversation handle by way of the
XTYP_CONNECT_CONFIRM transaction (unless the server
filters this transaction).

A client can specify NULL for the service name, topic name, or
both when it calls the DdeConnectList function. If the service
name is NULL, all servers in the system that support the specified
topic name respond. A conversation is established with each
responding server, including multiple instances of the same
server. If the topic name is NULL, a conversation is established
on each topic recognized by each server that matches the service
name.

Windows API Guide

A client can use the DdeQueryNextServer and
DdeQueryConvinfo functions to identify the servers that respond
to the DdeConnectList function. The DdeQueryNextServer
function returns the next conversation handle in a conversation
list; the DdeQueryConvinfo function fills a CONVINFO structure
with information about the conversation. The client can keep the
conversation handles that it needs and discard the rest from the
conversation list.

The following example uses the DdeConnectList function to
establish conversations with all servers that support the System
topic and then uses the DdeQueryNextServer and
DdeQueryConvinfo functions to obtain the servers’ service-name
string handles and store them in a buffer:

HCONVLIST hconvList; /* conversation list */
DWORD idInst; /* instance identifier *x/
HSZ hszSystem; /* System topic x/
HCONV hconv = NULL; /* conversation handle *x/
CONVINFO ci; /* holds conversation data */
UINT cConv = 0; /* count of conv. handles */
HSZ *pHsz, *aHsz; /* point to string handles */

/* Connect to all servers that support the Systemtopic. */
hconvList=DdeConnectList (idInst, NULL, hszSystem, NULL, NULL) ;
/* Count the number of handles in the conversation list. */
while ((hconv=DdeQueryNextServer (hconvList, hconv)) !=NULL) cConv++;
/* Allocate a buffer for the string handles. */

hconv =NULL;
aHsz = (HSZ *) LocalAlloc(LMEM_FIXED, cConv * sizeof (HSZ)) ;

/* Copy the string handles to the buffer. */

pHsz = aHsz;

while { (hconv=DdeQueryNextServer (hconvList, hconv)) !=NULL) {
DdeQueryConvInfo (hconv, QIP SYNC, (PCONVINFO) &ci);

DdeKeepStringHandle (idInst, ci.hszSvcPartner);
*pHsz++ = ci.hszSvcPartner;

. /* Use the handles; converse with servers. */
/* Free the memory, and terminate conversations. */

LocalFree ((HANDLEAHsZ) ;
DdeDisconnectList (hconvList);

Chapter 2, Dynamic Data Exchange Management Library

53

An application can terminate an individual conversation in a
conversation list by calling the DdeDisconnect function. An
application can terminate all conversations in a conversation list
by calling the DdeDisconnectList function. Both functions cause
the DDEML to send XTYP_DISCONNECT transactions to each
partner’s DDE callback function. The DdeDisconnectList function
sends a XTYP_DISCONNECT transaction for each conversation
handle in the list.

A client can use the DdeConnectList function to enumerate the
conversation handles in a conversation list by passing an existing
conversation-list handle to the DdeConnectList function. The
enumeration process removes the handles of terminated
conversations from the list.

If the DdeConnectList function specifies an existing
conversation-list handle and a service name or topic name that is
different from those used to create the existing conversation list,
the function creates a new conversation list that contains the
handles of any new conversations and the handles from the
existing list.

The DdeConnectList function attempts to prevent duplicate
conversations in a conversation list. A duplicate conversation is a
second conversation with the same server on the same service
name and topic name. Two such conversations would have
different handles, yet they would be duplicate conversations.

Data management

Because DDE uses global memory to pass data from one
application to another, the DDEML provides a set of functions
that DDE applications can use to create and manage global
memory objects.

All transactions that involve the exchange of data require the
application supplying the data to create a local buffer containing
the data and then to call the DdeCreateDataHandle function. This
function allocates a global memory object, copies the data from
the buffer to the memory object, and returns a data handle of the
application. A data handle is a doubleword value that the
DDEML uses to provide access to data in the global memory

54 Windows APl Guide

object. To share the data in a global memory object, an application
passes the data handle to the DDEML, and the DDEML passes
the handle to the DDE callback function of the application that is
receiving the data transaction.

The following example shows how to create a global memory
object and obtain a handle of the object. During the
XTYP_ADVREQ transaction, the callback function converts the
current time to an ASCII string, copies the string to a local buffer,
then creates a global memory object that contains the string. The
callback function returns the handle of the global memory object
to the DDEML, which passes the handle to the client application.

typedef struct { /* tm */
int hour;
int minute;
int second;

} TIME;

TIMEtmTime;
HSZhszTime;
HSZhszNow;
HDDEDATAEXPENTRYDdeProc (wType, wFmt, hConv, hszl, hsz2,
hData, dwDatal, dwData?2)
WORDwType;
WORDWFmt ;
HCONVhConv;
HSZhszl;
HSZhsz2;
HDDEDATZhData;
DWORDdwDatal;
DWORDdwDataz2;
{
char szBuf[32];

switch (wType) {

case XTYP_ADVREQ:
if ((hszl = hszTime && hsz2 == hszNow)
&& (WE == CF_TEXT)) {

/* Copy formatted time string to buffer. */

itoa (tmTime.hour, szBuf, 10);
strcat (szBuf, “:”);
if (tmTime.minute < 10)
strcat (szBuf, “0");
itoa(tmTime.minute, &szBuf[strlen(szBuf)], 10);
' strcat (szBuf, ”:");
if (tmTime.second < 10)
strcat (szBuf, “0");
itoa (tmTime.second, &szBuf(strlen(szBuf)], 10);
szBuf [strlen(szBuf)] = "\0’;

/* Create global object, and return data handle. */

Chapter 2, Dynamic Data Exchange Management Library 85

return (DdeCreateDataHandle(

idInst, /* instance identifier */
(LPBYTE) szBuf, /* source buffer */
strlen(szBuf) + 1, /* size of global cbject */
0L, /* offset from beginning */
hszNow, /* item-name string */
CF_TEXT, /* clipboard format */
0)); /* no creation flags *x/

} else
return (HDDEDATA) NULL;

. /* Process other transaction types. */

}
}

The receiving application obtains a pointer to the global memory
object by passing the data handle to the DdeAccessData function.
The pointer returned by DdeAccessData provides read-only
access. The application should use the pointer to review the data
and then call the DdeUnaccessData function to invalidate the
pointer. The application can copy the data to a local buffer by
using the DdeGetData function.

The following example obtains a pointer to the global memory
object identified by the hData parameter, copies the contents to a
local buffer, and then invalidates the pointer:

HDDEDATA hbData;

LPBYTE lpszAdviseData;
DWORD cbDatalen;
DWORD 1i;

char szData[32];

case XTYP_ ADVDATA:

lpszAdviseData = DdeAccessData (hData, &cbDatalen);
for (i1 = 0; i < cbDhatalen; i++)
szData[i] = *1lpszAdviseDatat+;
DdeUnaccessData (hData) ;
return (HDDEDATA) TRUE;

Usually, when an application that created a data handle passes
that handle to the DDEML, the handle becomes invalid in the
creating application. This is fine if the application needs to share
data with just a single application. If an application needs to share
the same data with multiple applications, however, the creating
application should specify the HDATA_APPOWNED flag in
DdeCreateDataHandle. Doing so gives ownership of the memory
object to the creating application and prevents the DDEML from
invalidating the data handle. When the creating application

Windows API Guide

finishes using a memory object it owns, it should free the object
by calling the DdeFreeDataHandle function.

If an application has not yet passed the handle of a global
memory object to the DDEML, the application can add data to the
object or overwrite data in the object by using the DdeAddData
function. Typically, an application uses DdeAddData to fill an
uninitialized global memory object. After an application passes a
data handle to the DDEML, the global memory object identified
by the handle cannot be changed; it can only be freed.

The DDEML data-management functions can handle huge
memory objects. A DDEML application should check the size of a
global memory object and allocate a huge buffer of the
appropriate size before copying the object.

Transaction management

Request
fransaction

After a client has established a conversation with a server, the
client can send transactions to obtain data and services from the
server. The remaining topics in this section describe the types of
transactions that clients can use to interact with a server.

A client application can use the XTYP_REQUEST transaction to
request a data item from a server application. The client calls the
DdeClientTransaction function, specifying XTYP_REQUEST as
the transaction type and specifying the data item the application
needs.

The DDEML passes the XTYP_REQUEST transaction to the
server, specifying the topic name, item name, and data format
requested by the client. If the server supports the requested topic,
item, and data format, the server should return a data handle that
identifies the current value of the item. The DDEML passes this
handle to the client as the return value from the
DdeClientTransaction function. The server should return NULL
if it does not support the topic, item, or format requested.

Chapter 2, Dynamic Data Exchange Management Library

57

The DdeClientTransaction function uses the IpdwResult parameter
to return a transaction status flag to the client. If the server does
not process the XTYP_REQUEST transaction,
DdeClientTransaction returns NULL, and IpdwResult points to the
DDE_FNOTPROCESSED or DDE_FBUSY flag. If the
DDE_FNOTPROCESSED flag is returned, the client has no way
to determine why the server did not process the transaction.

If a server does not support the XTYP_REQUEST transaction, it
should specify the CBF_FAIL_REQUESTS filter flag in the
Ddelnitialize function. This prevents the DDEML from sending
this transaction to the server.

Poke transaction
A client can send unsolicited data to a server by using the
DdeClientTransaction function to send an XTYP_POKE
transaction to a server’s callback function.

The client application first creates a buffer that contains the data
to send to the server and then passes a pointer to the buffer as a
parameter to the DdeClientTransaction function. Alternatively,
the client can use the DdeCreateDataHandle function to obtain a
data handle that identifies the data and then pass the handle to
DdeClientTransaction. In either case, the client also specifies the
topic name, item name, and data format when it calls
DdeClientTransaction.

The DDEML passes the XTYP_POKE transaction to the server,
specifying the topic name, item name, and data format that the
client requested. To accept the data item and format, the server
should return DDE_FACK. To reject the data, the server should
return DDE_FNOTPROCESSED. If the server is too busy to
accept the data, the server should return DDE_FBUSY.

When the DdeClientTransaction function returns, the client can
use the IpdwResult parameter to access the transaction status flag.
If the flag is DDE_FBUSY, the client should send the transaction
again later.

If a server does not support the XTYP_POKE transaction, it
should specify the CBF_FAIL_POKES filter flag in the
Ddelnitialize function. This prevents the DDEML from sending
this transaction to the server.

Windows APl Guide

Advise

tfransaction A clientapplication can use the DDEML to establish one or more
links to items in a server application. When such a link is
established, the server sends periodic updates about the linked
item to the client (typically, whenever the value of the item
associated with the server application changes). This establishes
an advise loop between the two applications that remains in place
until the client ends it.

There are two kinds of advise loops: “hot” and “warm.” In a hot
advise loop, the server immediately sends a data handle that
identifies the changed value. In a warm advise loop, the server
notifies the client that the value of the item has changed but does
not send the data handle until the client requests it.

A client can request a hot advise loop with a server by specifying
the XTYP_ADVSTART transaction type in a call to the
DdeClientTransaction function. To request a warm advise loop,
the client must combine the XTYPF_NODATA flag with the
XTYP_ADVSTART transaction type. In either event, the DDEML
passes the XTYP_ADVSTART transaction to the server’s DDE
callback function. The server’s DDE callback function should
examine the parameters that accompany the XTYP_ADVSTART
transaction (including the requested format, topic name, and item
name) and then return TRUE to allow the advise loop or FALSE
to deny it.

After an advise loop is established, the server application should
call the DdePostAdvise function whenever the value of the item
associated with the requested item name changes. This results in
an XTYP_ADVREQ transaction being sent to the server’s own
DDE callback function. The server’s DDE callback function
should return a data handle that identifies the new value of the
data item. The DDEML then notifies the client that the specified
item has changed by sending the XTYP_ADVDATA transaction
to the client’s DDE callback function.

If the client requested a hot advise loop, the DDEML passes the
data handle for the changed item to the client during the
XTYP_ADVDATA transaction. Otherwise, the client can send an
XTYP_REQUEST transaction to obtain the data handle.

It is possible for a server to send updates faster than a client can
process the new data. This can be a problem for a client that must
perform long processing operations on the data. In this case, the

Chapter 2, Dynamic Data Exchange Management Library 59

60

Execute
tfransaction

client should specify the XTYPF_ACKREQ flag when it requests
an advise loop. This causes the server to wait for the client to
acknowledge that it has received and processed a data item
before the server sends the next data item. Advise loops that are
established with the XTYPF_ACKREQ flag are more robust with
fast servers but may occasionally miss updates. Advise loops
established without the XTYPF_ACKREQ flag are guaranteed not
to miss updates as long as the client keeps up with the server.

A client can end an advise loop by specifying the
XTYP_ADVSTOP transaction type in a call to the
DdeClientTransaction function.

If a server does not support advise loops, it should specify the
CBF_FAIL_ADVISES filter flag in the Ddelnitialize function. This
prevents the DDEML from sending the XTYP_ADVSTART and
XTYP_ADVSTOP transactions to the server.

A client can use the XTYP_EXECUTE transaction to cause a
server to execute a command or series of commands.

To execute a server command, the client first creates a buffer that
contains a command string for the server to execute and then
passes either a pointer to the buffer or a data handle identifying
the buffer when it calls the DdeClientTransaction function. Other
required parameters include the conversation handle, the
item-name string handle, the format specification, and the
XTYP_EXECUTE transaction type. When an application creates a
data handle for passing execute data, the application must specify
NULL for the hszltem parameter of the DdeCreateDataHandle
function.

The DDEML passes the XTYP_EXECUTE transaction to the
server’s DDE callback function specifying the format name,
conversation handle, topic name, and data handle identifying the
command string. If the server supports the command, it should
use the DdeAccessData function to obtain a pointer to the
command string, execute the command, and then return
DDE_FACK. If the server does not support the command or
cannot complete the transaction, it should return
DDE_FNOTPROCESSED. The server should return DDE_FBUSY
if it is too busy to complete the transaction.

Windows API Guide

Synchronous and
asynchronous
fransactions

When the DdeClientTransaction function returns, the client can
use the IpdwResult parameter to access the transaction status flag.
If the flag is DDE_FBUSY, the client should send the transaction
again later.

If a server does not support the XTYP_EXECUTE transaction, it
should specify the CBF_FAIL_EXECUTES filter flag in the
Ddelnitialize function. Doing so prevents the DDEML from
sending this transaction to the server.

A client can send either synchronous or asynchronous
transactions. In a synchronous transaction, the client specifies a
timeout value that indicates the maximum amount of time to wait
for the server to process the transaction. The
DdeClientTransaction function does not return until the server
processes the transaction, the transaction fails, or the timeout
value expires. The client specifies the timeout value when it calls
DdeClientTransaction.

During a synchronous transaction, the client enters a modal loop
while waiting for the transaction to be processed. The client can
still process user input but cannot send another synchronous
transaction until the DdeClientTransaction function returns.

A client sends an asynchronous transaction by specifying the
TIMEOUT_ASYNC flag in the DdeClientTransaction function.
The function returns after the transaction is begun, passing a
transaction identifier to the client. When the server finishes
processing the asynchronous transaction, the DDEML sends an
XTYP_XACT COMPLETE transaction to the client. One of the
parameters that the DDEML passes to the client during the
XTYP_XACT_COMPLETE transaction is the transaction
identifier. By comparing this transaction identifier with the
identifier returned by the DdeClientTransaction function, the
client identifies which asynchronous transaction the server has
finished processing.

A client can use the DdeSetUserHandle function as an aid to
processing an asynchronous transaction. This function makes it
possible for a client to associate an application-defined
doubleword value with a conversation handle and transaction
identifier. The client can use the DdeQueryConvinfo function
during the XTYP_XACT_COMPLETE transaction to obtain the

Chapter 2, Dynamic Data Exchange Management Library 61

62

Transaction
control

application-defined doubleword value. This saves an application
from having to maintain a list of active transaction identifiers.

If a server does not process an asynchronous transaction in a
timely manner, the client can abandon the transaction by calling
the DdeAbandonTransaction function. The DDEML releases all
resources associated with the transaction and discards the results
of the transaction when the server finishes processing it.

The asynchronous transaction method is provided for
applications that must send a high volume of DDE transactions
while simultaneously performing a substantial amount of
processing, such as calculations. The asynchronous method is
also useful in applications that need to stop processing DDE
transactions temporarily so they can complete other tasks without
interruption. In most other situations, an application should use
the synchronous method.

Synchronous transactions are simpler to maintain and faster than
asynchronous transactions. However, only one synchronous
transaction can be performed at a time, whereas many
asynchronous transactions can be performed simultaneously.
With synchronous transactions, a slow server can cause a client to
remain idle while waiting for a response. Also, synchronous
transactions cause the client to enter a modal loop that could
bypass message filtering in the application’s own message loop.

An application can suspend transactions to its DDE callback
function—either those transactions associated with a specific
conversation handle or all transactions regardless of the
conversation handle. This is useful when an application receives a
transaction that requires lengthy processing. In this case, an
application can return CBR_BLOCK to suspend future
transactions associated with that transaction’s conversation
handle, leaving the application free to process other
conversations.

When processing is complete, the application calls the
DdeEnableCallback function to resume transactions associated
with the suspended conversation. Calling DdeEnableCallback
causes the DDEML to resend the transaction that resulted in the
application suspending the conversation. Therefore, the
application should store the result of the transaction in such a

Windows API Guide

Transaction

classes

way that it can obtain and return the result without reprocessing
the transaction.

An application can suspend all transactions associated with a
specific conversa-tion handle by specifying the handle and the
EC_DISABLE flag in a call to the DdeEnableCallback function. By
specifying a NULL handle, an application can suspend all
transactions for all conversations.

When a conversation is suspended, the DDEML saves
transactions for the conversation in a transaction queue. When
the application reenables the conversation, the DDEML removes
the saved transactions from the queue, passing each transaction
to the appropriate callback function. Even though the capacity of
the transaction queue is large, an application should reenable a
suspended conversation as soon as possible to avoid losing
transactions.

An application can resume usual transaction processing by
specifying the EC_ENABLEALL flag in the DdeEnableCallback
function. For a more controlled resumption of transaction
processing, the application can specify the EC_ ENABLEONE flag.
This removes one transaction from the transaction queue and
passes it to the appropriate callback function; after the single
transaction is processed, any conversations are again disabled.

The DDEML has four classes of transactions. Each class is
identified by a constant that begins with the XCLASS_ prefix. The
classes are defined in the DDEML header file. The class constant
is combined with the transaction-type constant and is passed to
the DDE callback function of the receiving application.

A transaction’s class determines the return value that a callback
function is expected to return if it processes the transaction. The
following table shows the return values and transaction types
associated with each of the four transaction classes:

Class

Return value Transaction

XCLASS_BOOL

XCLASS_DATA

TRUE or FALSE XTYP_ADVSTART
XTYP_CONNECT

A data handle, CBR_BLOCK, or =~ XTYP_ADVREQ XTYP_REQUEST
NULL XTYP_WILDCONNECT

Chapter 2, Dynamic Dafa Exchange Management Library 63

Class

Return value

Transaction

XCLASS_FLAGS

XCLASS_NOTIFICATION

A transaction flag: DDE_FACK,
DDE_FBUSY, or
DDE_FNOTPROCESSED

None

XTYP_ADVDATA
XTYP_EXECUTE XTYP_POKE

XTYP_ADVSTOP
XTYP_CONNECT_CONFIRM
XTYP_DISCONNECT
XTYP_ERROR XTYP_REGISTER
XTYP_UNREGISTER
XTYP_XACT_COMPLETE

Transaction
summary

The following list shows each DDE transaction type, the receiver
of each type, and a description of the activity that causes the
DDEML to generate each type:

Transaction type

Receiver

Cause

XTYP_ADVDATA

XTYP_ADVREQ

XTYP_ADVSTART

XTYP_ADVSTOP

XTYP_CONNECT

Client

Server

Server

Server

Server

A server responded to an
XTYP_ADVREQ
transaction by returning
a data handle.

A server called the
DdePostAdvise
function, indicating that
the value of a data item
in an advise loop had
changed.

A client specified the
XTYP_ADVSTART
transaction type in a call
to the DdeClient-
Transaction function.

A client specified the
XTYP_ADVSTOP
transaction type in a call
to the DdeClient-
Transaction function.

A client called the
DdeConnect function,
specifying a service
name and topic name
supported by the server.

Windows APl Guide

Transaction type

Receiver

Cause

XTYP_CONNECT_CONFIRM

XTYP_DISCONNECT

XTYP_ERROR

XTYP_EXECUTE

XTYP_MONITOR

XTYP_POKE

XTYP_REGISTER

XTYP_REQUEST

XTYP_UNREGISTER

Server

Client/
Server

Client/
Server

Server

DDE
monitoring
application

Server

Client/

Server

Server

Client/
Server

Chapter 2, Dynamic Data Exchange Management Library

The server returned
TRUE in response to an
XTYP_CONNECT or
XTYP_WILDCONNECT
transaction.
Avpartnerina
conversation called the
DdeDisconnect function,
causing both partners to
receive this transaction.
A critical error has
occurred. The DDEML
may not have sufficient
resources to continue.

A client specified the
XTYP_EXECUTE
transaction type in a call
to the DdeClient-
Transaction function.

A DDE event occurred in
the system. For more
information about DDE
monitoring applications,
see “Monitoring
applications.”

A client specified the
XTYP_POKE transaction
type in a call to the
DdeClientTransaction
function.

A server application
used the DdeName-
Service function to
register a service name.
A client specified the
XTYP_REQUEST
transaction type in a call
to the DdeClient-
Transaction function.
A server application
used the DdeName-
Service function to
unregister a service
name.

65

Error detection

Transaction type Receiver Cause

XTYP_WILDCONNECT Server A client called the
DdeConnect or
DdeConnectList
function, specifying
NULL for the service
name, the topic name, or
both.

XTYP_XACT_COMPLETE Client An asynchronous
transaction, sent when
the client specified the
TIMEOUT_ASYNC flag
in a call to the
DdeClientTransaction
function, has
concluded.

Whenever a DDEML function fails, an application can call the
DdeGetLastError function to determine the cause of the failure.
The DdeGetLastError function returns an error value that
specifies the cause of the most recent error.

Monitoring applications

66

Microsoft Windows DDESpy (DDESPY.EXE) monitors DDE
activity in the system. You can use DDESpy as a tool for
debugging your DDE applications.

You can use the API elements of the DDEML to create your own
DDE monitoring applications. Like any DDEML application, a
DDE monitoring application contains a DDE callback function.
The DDEML notifies a monitoring application’s DDE callback
function whenever a DDE event occurs, passing information
about the event to the callback function. The application typically
displays the information in a window or writes it to a file.

To receive notifications from the DDEML, an application must
have registered itself as a DDE monitor by specifying the

Windows APl Guide

APPCLASS MONITOR flag in a call to the Ddelnitialize function.
In this same call, the application can specify one or more monitor
flags to indicate the types of events of which the DDEML is to
notify the application’s callback function. The following table
describes each of the monitor flags an application can specify:

Flag

Meaning

MF_CALLBACKS

MF_CONV
MF_ERRORS

MF_HSZ_INFO

MEF_LINKS
MF_POSTMSGS

MF_SENDMSGS

Notifies the callback function whenever a
transaction is sent to any DDE callback function
in the system.

Notifies the callback function whenever a
conversation is established or terminated.
Notifies the callback function whenever a
DDEML error occurs.

Notifies the callback function whenever a
DDEML application creates, frees, or increments
the use count of a string handle or whenever a
string handle is freed as a result of a call to the
DdeUninitialize function.

Notifies the callback function whenever an
advise loop is started or ended.

Notifies the callback function whenever the
system or an application posts a DDE message.
Notifies the callback function whenever the
system or an application sends a DDE message.

The following example shows how to register a DDE monitoring
application so that its DDE callback function receives notifications

of all DDE events:

DWORD idInst;

PFNCALLBACK lpDdeProc;

hInst = hInstance;

1pDdeProc = (PFNCALLBACK) MakeProcInstance (

(FARPROC) DDECallback, /* points to callback function *x/
hInstance); /* instance handle */
if(DdeInitialize (
(LPDWORD) &idInst, /* instance identifier */
lpDdeProc, /* points to callback function */
APPCLASS MONITOR | /* this is a monitoring application */
MF_CALLBACKS | /* monitor callback functions */
MF_CONV | /* monitor conversation data */
MF_ERRCRS | /* monitor DDEML errors */
MF_HSZ INFO | /* monitor data-handle activity */
MF_LINKS | /* monitor advise loops */
MF_POSTMSGS | /* monitor posted DDE messages */
MF_SENDMSGS, /* monitor sent DDE messages */
oL)) /* reserved */

return FALSE;

Chapter 2, Dynamic Data Exchange Management Library 67

The DDEML informs a monitoring application of a DDE event by
sending an XTYP_MONITOR transaction to the application’s
DDE callback function. During this transaction, the DDEML
passes a monitor flag that specifies the type of DDE event that has
occurred and a handle of a global memory object that contains
detailed information about the event. The DDEML provides a set
of structures that the application can use to extract the
information from the memory object. There is a corresponding
structure for each type of DDE event. The following table
describes each of these structures.

Structure Description

MONCBSTRUCT Contains information about a transaction.
MONCONVSTRUCT Contains information about a conversation.
MONERRSTRUCT Contains information about the latest DDE error.

MONLINKSTRUCT Contains information about an advise loop.
MONHSZSTRUCT Contains information about a string handle.

MONMSGSTRUCT Contains information about a DDE message that
was sent or posted.

The following example shows the DDE callback function of a
DDE monitoring application that formats information about each
string handle event and then displays the information in a
window. The function uses the MONHSZSTRUCT structure to
extract the information from the global memory object.

HDDEDATA CALLBACK DDECallback (wType, wkmt, hConv, hszl, hsz2,
hData, dwDatal, dwData2)
WORD wType:
WORD wFmt;
HCONV hConv;
HSZ hszl;
HSZ hsz2;
HDDEDATA hData;
DWORD dwDatal;
DWORD dwData2;
{
LPVOID lpData;
char *szAction;
char buf[256];
DWORD cb;

switch (wType) {
case XTYP MONITOR:

/* Obtain a pointer of the global memory object. */
if (lpData = DdeAccessData (hData, &cb)) {

/* Examine the monitor flag. */

Windows API Guide

switch (dwData2) {
case MF_HSZ INFO:

#definePHSZS ((MONHSZSTRUCTFAR*) lpData)

* The global memory object contains
* string-handle data. Use the MONHSZSTRUCT
* structure to access the data.

*/
switch (PHSZS->fsAction) {

/*
* Examine the action flags to determine
* the action performed on the handle.
*/

case MH CREATE:
szAction = “Created”;
break;

case MH KEEP:
szAction = “Incremented”;
break;

case MH DELETE:
szAction = “Deleted”;
break;

case MH_CLEANUP:
szAction = “Cleaned up”;
break;

default:

DdeUnaccessData (hData) ;
return ((HDDEDATA) O0);

/* Write formatted output to a buffer. */
wsprintf (buf,
“Handle %s, Task: %x, Hsz: %1x(%s)”,
(LPSTR) szAction, PHSZS->hTask, PHSZS->hsz,
(LPSTR) PHSZS->str);

. /* Display text in window or write to file. */

break;

#undefPHSZS
. /* Process other MF_* flags. */

default:
break;

Chapter 2, Dynamic Data Exchange Management Library 69

70

}

/* Free the global memory cbject. */

DdeUnaccessData (hData) ;
break;

default:
break;

}
return ((HDDEDATA) 0);

Windows APl Guide

3

Object linking and
embedding libraries

This chapter describes the implementation of object linking and
embedding (OLE) for applications that run with the Microsoft
Windows operating system. The chapter also describes how an
application can use linked and embedded objects to create
compound documents. The following topics are related to the
information in this chapter:

Dynamic data exchange (DDE)
Clipboard

Registration database

a

Dynamic-link libraries
8 Multiple document interface

This chapter does not go into detail about the recommended user
interface for applications that use linked and embedded objects.

Basics of object linking and embedding

This section explains some basic OLE concepts and compares
OLE functionality to that of the Dynamic Data Exchange
Management Library (DDEML).

Chapter 3, Object linking and embedding libraries 71

72

Compound
documents

An application that uses OLE can cooperate with other OLE
applications to produce a document containing different kinds of
data, all of which can be easily manipulated by the user. The user
editing such a document is able to improve the document by
using the best features of many different applications. An
application that implements OLE gives its users the ability to
move away from an application-centered view of computing and
toward a document-centered view. In application-centered
computing, the tool used to complete a task is often a single
application; whereas, in document-centered computing, a user
can combine the advantages of many tools to complete a job.

A document that uses linked and embedded objects can contain
many kinds of data in many different formats; such a document is
called a compound document. A compound document uses the
facilities of different OLE applications to manipulate the different
kinds of data it displays. Any kind of data format can be
incorporated into a compound document; with little or no extra
code, OLE applications can even support data formats that have
not yet been invented. The user working with a compound
document does not need to know which data formats are
compatible with one another or how to find and start any
applications that created the data. Whenever a user chooses to
work with part of a compound document, the application
responsible for that part of the document starts automatically.

For example, a compound document could be a brochure that
included text, charts, ranges of cells in a spreadsheet, and
illustrations. The information could be embedded in the
document, or the document could contain links to certain
information instead of containing the information itself. The user
working with the brochure could automatically switch between
the applications that produced its components.

The following illustration shows the relationships between a
compound document and its linked and embedded objects.

Windows APl Guide

—| Chart _Server Cutor —| Clipboard
Copy
e Y
K
D abc.doc | 0
® To Clipboard
Paste,
Paste Link, or
Paste Special | [=] ciient Copy
L’ | —| File Manager
Paste, [abe.doc
Paste Link,
Insert Object or Paste D xyz.doc
|« Special
: % abc.doc
—|Insert Object D -

Select xyz.doc fggo;nd

table object I

from list.

Update or Exit
0K —| Table Server

Linked and
embedded
objects

An object is any data that can be presented in a compound
document and manipulated by a user. Anything from a single cell
in a spreadsheet to an entire document can be an object. When an
object is incorporated into a document, it maintains an association
with the application that produced it. That association can be a
link, or the object can be embedded in the file.

If the object is linked, the document provides only minimal
storage for the data to which the object is linked, and the object
can be updated automatically whenever the data in the original
application changes. For example, if a range of spreadsheet cells
were linked to information in a text file, the data would be stored

Chapter 3, Object linking and embedding libraries 73

74

Packages

Verbs

in some other file and only a link to the data would be saved with
the text file.

If an object is embedded, all the data associated with it is saved as
part of the file in which it is embedded. If a range of spreadsheet
cells were embedded in a text file, the data in the cells would be
saved with the text file, including any necessary formulas; the
name of the server for the spreadsheet cells would be saved along
with this data. The user could select this embedded object while
working with the text file, and the spreadsheet application would
be started automatically for editing those cells. The presentation
and the behavior of the data is the same for a linked and an
embedded object.

A package is a type of OLE object that encapsulates another
object, a file, or a command line inside a graphic representation
(such as an icon or bitmap). When the user double-clicks the
graphic object, the OLE libraries activate the object inside the
package. The package itself is always an embedded object, not a
link. The contents of a package can be an embedded object, a link,
or even a file dropped from Windows File Manager.

Packages are useful for presenting compact token views of large
files or OLE objects. An application could also use a package as it
would use a hyperlink—that is, to connect information in
different documents.

Windows version 3.1 includes the application Microsoft
Windows Object Packager (PACKAGER.EXE). With Packager, a
user can associate a file or data selection with an icon or graphic.

The types of actions a user can perform on an object are called
verbs. Two typical verbs for an object are Play and Edit.

The nature of an object determines its behavior when a user
works with it. The most typical use for some objects, such as voice
annotations and animated scripts, is to play them. For example, a
user could play an animated script by double-clicking it. In this
case, Play is the primary verb for the object.

For other objects, the most typical use is to edit them. In the case
of text produced by a word processor, for example, the primary
verb could be Edit.

Windows API Guide

The client application typically specifies the primary verb when
the user double-clicks an object. However, the server application
determines the meaning of that verb. A user can invoke an
object’s subsidiary verbs by using the Class Name Object
command or the Links dialog box. For more information about
these topics, see “Client user interface.”

The action taken when a user double-clicks a package is that of
the primary verb of the object inside the package. The secondary
verb for a packaged object is Edit Package; when the user chooses
this verb, Packager starts. The user can use Packager to gain
access to the secondary verb for the object inside the package.

Many objects support only one verb—for example, an object
created by a text editor might support only Edit. If an object
supports only one verb, that verb is used no matter what the
client application specifies. For more information about verbs, see
“Registration.”

Benefits of object
lin klng and OLE offers the following benefits:

embeddlng B An application can specialize in performing one job very well.
For example, a drawing application that implements OLE does
not need any text-editing tools; a user could put text into the
drawing and edit that text by using any text editor that
supports OLE.

O An application is automatically extensible for future data
formats, because the content of an object does not matter to the
containing document.

B A user can concentrate on the task instead of on any software
required to complete the task.

A file can be more compact, because linking to objects allows a
file to use an object without having to store that object’s data.

@ A document can be printed or transmitted without using the
application that originally produced the document.

o Linked objects in a file can be updated dynamically.

Future implementations of this protocol could take advantage of
a wide variety of object types. For example, the user of a
voice-recorder application could dictate a comment, package the
comment as an object with a visual representation, and embed the

Chapter 3, Object linking and embedding libraries 75

76

Choosing
between OLE
and the DDEML

graphic as an object in a text file. When a user double-clicked the
graphic for this object (a pair of lips, perhaps), the voice-recorder
application would play the recorded comment. Linked and
embedded objects also lend themselves to implementations such
as animated drawings, executable macro scripts, hypertext, and
annotations.

Applications can exchange data by using either OLE or the
DDEML. Unless an application has a strong requirement for
managing multiple items in a single conversation with another
application, the application should use OLE instead of the
DDEML.

Both OLE and the DDEML are message-based systems supported
by dynamic-link libraries. Developers are encouraged to use these
libraries rather than using the underlying message-based
protocols. For more information about the message-based OLE
protocol, see “Direct use of Dynamic Data Exchange.”

Unlike OLE, the DDEML supports multiple items per
conversation. With OLE, a client needing links to several objects
in a document must establish a separate conversation for each
object.

OLE offers the following advantages that the DDEML does not:

Advantage Description

Extensibility to future The OLE libraries may be updated in future

enhancements releases to support new data formats, link
tracking, editing without exiting the client
application, and other enhancements that will
not be immediately available to applications

that use the DDEML.
Persistent embedding and The OLE libraries do most of the work of
linking of objects activating objects when an embedded

document is reopened, by reestablishing the
conversation between a client and server. In
contrast, establishing a DDE link (DDE advise
loop) is the responsibility of either the user (if
the link is not persistent) or of the application
(if the link is persistent).

Windows API Guide

Advantage

Description

Rendering of common
data formats

Server rendering of
specialized data formats

Activating embedded
and linked objects

Creating objects and links
from the clipboard

Creating objects and
links from files

The OLE libraries assume the burden of
rendering common data formats on a display
context. DDE applications, however, must do
this work themselves.

The OLE libraries facilitate the rendering of
specialized data formats in the client’s
display context. (The server application or
object handler actually performs the
rendering.) The client application has to do
very little work to render the embedded or
linked data in its display context. Such
rendering of embedded or linked data is
beyond the scope of the DDEML alone.

The OLE libraries support activating a server
to edit a linked or embedded object or to
render data. Activating servers for data
rendering and editing is beyond the scope of
the DDEML.

The OLE libraries do most of the work when
an application is using the clipboard to copy
and paste links or exchange objects. In
contrast, DDE applications must call the
Windows clipboard functions directly to
perform such operations.

The OLE libraries provide direct support for
using files to exchange data. No DDE
protocol is defined for this purpose.

The OLE libraries use DDE messages instead of the DDEML,
because the libraries were written before the DDEML was

available.

Using OLE for standard ~ Although most of the OLE application programming interface
DDE operations (API) was designed for linked and embedded objects, it can also
be applied to standard DDE items. In particular, an application
can use the OLE API to perform the following DDE tasks:

8 [nitializing conversations based on application and topic

names or wildcards.

Requesting data for named items in negotiated formats from a

server.

B Establishing an advise loop—that is, requesting that a DDE
server notify the client of changes to the values of specified

Chapfter 3, Object linking and embedding libraries

77

78

items and, optionally, that the server send the data when the
change occurs.

B Sending data from a server to a client.
® Poking data from a client to a server.

® Sending a DDE command. (This is supported by the
OleExecute function.)

An OLE client application receives a pointer to an OLEOBJECT
structure; this structure includes class name, document name,
and item name information. These names correspond exactly to
DDE counterparts, as follows:

OLE name DDE name

Class name Service name (formerly called “application name”)
Document name Topic name

Item name Item name

The client can use the OleCreateFromFile function to make an
object and specify all three names. If the client application needs
multiple items from the same topic, it must have an OLEOBJECT
structure for each item, which causes a DDE conversation to be
created for each item.

The client library maps OLE functions that work on the
OLEOBJECT structure to DDE messages as follows:

OLE function DDE message
OleExecute WM_DDE_EXECUTE
OleRequestData WM_DDE_REQUEST
OleSetData WM_DDE_POKE

Some functions (such as OleActivate) are too complicated for this
one-to-one mapping of function to DDE message. For these
functions, the DDE message depends on the circumstance.

If a client application needs to duplicate the functionality of
WM_DDE_ADVISE with OLE, the client must create the link with
olerender_format for the renderopt parameter, specify the
required format, and use the OleGetData function to retrieve the
value when the callback function receives the OLE_CHANGED
notification. If more than one item or format is required, the client
must create an OLEOBJECT structure for each item/format pair.
Although this method creates a conversation for each advise

Windows APl Guide

transaction, it may be inefficient if the client needs to create many
such conversations.

A server application can make itself accessible to DDE by calling
the OleRegisterServer function to make the System topic
available and the OleRegisterServerDoc function to make other
topics available. When a client connects and asks for an item, the
server library calls the GetObject function in the server’s
OLESERVERDOCVTBL structure, followed by other
server-implemented functions that are appropriate to the client’s
request. (Usually, the library calls the GetData function in the
server’s OLEOBJECTVTBL structure.) As long as the object
allocated by the call to GetObject has not been released, the
server should send a notification when the item has changed, so
that the OLE libraries can send data to clients that have sent
WM_DDE_ADVISE.

Using both OLE Some applications may need features supported only by OLE and
and the DDEML may also need to use the DDEML to support simultaneous links
for many items that are updated frequently. Client applications of
this kind can use the OLE libraries to initiate conversations with
OLE servers and the DDEML to initiate conversations with DDE
servers.

Server applications that need to support both OLE and the
DDEML must use different service names (DDE application
names) for OLE and DDE conversations; otherwise, the OLE and
DDEML libraries cannot determine which library should respond
when an initiation request is received. Typically, the application
changes the service name for the OLE conversation in this case,
because other applications and the user must use the service
name for the DDE conversation, but the OLE service name is
hidden.

Data transfer in object linking and embedding

This section gives a brief overview of how applications share
information under OLE. Details of the implementation are given
in later sections of this chapter.

Chapter 3, Object linking and embedding libraries 79

80

Client
applications

Server
applications

Object handlers

Applications use three dynamic-link libraries (DLLs),
OLECLI.DLL, OLESVR.DLL, and SHELL.DLL, to implement
object linking and embedding. Object linking and embedding is
supported by OLECLL.DLL and OLESVR.DLL. The registration
database is supported by SHELL.DLL.

An OLE client application can accept, display, and store OLE
objects. The objects themselves can contain any kind of data. A
client application typically identifies an object by using a
distinctive border or other visual cue.

An OLE server is any application that can edit an object when the
OLE libraries inform it that the user of a client application has
selected the object. (Some servers can perform operations on an
object other than editing.) When the user double-clicks an object
in a client application, the server associated with that object starts
and the user works with the object inside the server application.
When the server starts, its window is typically sized so that only
the object is visible. If the user double-clicks a linked object, the
entire linked file is loaded and the linked portion of the file is
selected. For embedded objects, the user chooses the Update
command from the File menu to save changes to the object and
chooses Exit when finished.

Many applications are capable of acting as both clients and
servers for linked and embedded objects.

Some OLE server applications implement an additional kind of
OLE library called an object handler. Object handlers are
dynamic-link libraries that act as intermediaries between client
and server applications. Typically, an object handler is supplied
by the developers of a server application as a way of improving
performance. For example, an object handler could be used to
redraw a changed object if the presentation data for that object
could not be rendered by the client library.

Windows API Guide

Communication
between OLE
libraries

Clipboard
conventions

Client applications use functions from the OLE API to inform the
client library, OLECLIL.DLL, that a user wants to perform an
operation on an object. The client library uses DDE messages to
communicate with the server library, OLESVR.DLL. The server
library is responsible for starting and stopping the server
application, directing the interaction with the server’s callback
functions, and maintaining communication with the client library.

When a server application modifies an embedded object, the
server notifies the server library of changes. The server library
then notifies the client library, and the client library calls back to
the client application, informing it that the changes have
occurred. Typically, the client application then forces a repaint of
the embedded object in the document file. If the server changes a
linked object, the server library notifies the client library that the
object has changed and should be redrawn.

When first embedding or linking an object, OLE client and server
applications typically exchange data by using the clipboard.
When a server application puts an object on the clipboard, it
represents the object with data formats, such as Native data,
OwnerLink data, ObjectLink data, and a presentation format. The
order in which these formats are put on the clipboard is very
important, because the order determines the type of object. For
example, if the first format is Native and the second is
OwnerLink, client applications can use the data to create an
embedded object. If the first format is OwnerLink, however, the
data describes a linked object.

Native data completely defines an object for a particular server.
The data can be meaningful only to the server application. The
client application provides storage for Native data, in the case of
embedded objects.

OwnerLink data identifies the owner of a linked or embedded
object.

Presentation formats allow the client library to display the object
in a document. CF_METAFILEPICT, CF_DIB, and CF_BITMAP
are typical presentation formats. Native data can be used as a
presentation format, typically when an object handler has been

Chapter 3, Object linking and embedding libraries 81

82

defined for that class of data. Native data cannot be used twice in
the definition of an object, however; if the server puts Native and
OwnerLink data on the clipboard to describe an embedded
object, it cannot use Native data as a presentation format for that
object. The ability of object handlers to use Native data as the
presentation data accounts for the significance of the order of the
formats: the order is the only way to distinguish between an
embedded object and a link that uses Native data for its
presentation.

ObjectLink data identifies a linked object’s class and document
and the item that is the source for the linked object. (If the item
name specified in the ObjectLink format is NULL, the link refers
to the entire server document.)

The following table describes the contents of the ObjectLink,
OwnerLink, and Native clipboard formats:

Format name Contents

ObjectLink Null-terminated string for class name,
null-terminated string for document name, string
for item name with two terminating null characters.

OwnerLink Null-terminated string for class name,
null-terminated string for document name, string
for item name with two terminating null characters.

Native Stream of bytes interpreted only by the server
application or object-handler library. This format
can be unique to the server application and must
allow the server to load and work with the object.

Although the ObjectLink and OwnerLink formats contain the
same information, the OLE libraries use them differently. The
libraries use OwnerLink format to identify the owner of an object
(which can be different from the source of the object) and
ObjectLink format to identify the source of the data for an object.

The class name in the ObjectLink or OwnerLink format is a
unique name for a class of objects that a server supports. Server
applications register the class name or names they support in the
registration database. (For example, the class name used by
Windows Paintbrush™ is PBrush.) An application can use the
class name to look up information about a server in the
registration database. (For more information about registration,
see “Registration.”) The document name is typically a fully
qualified path that identifies the file containing a document. The

Windows APl Guide

item name uniquely identifies the part of a document that is
defined as an object. Item names are assigned by server
applications; an item name can be any string that the server uses
to identify part of a document. Items names cannot contain the
forward-slash (/) character.

Data in OwnerLink or ObjectLink format could look like the
following example:

MicrosoftExcel
Worksheet\Oc:\directry\docname.x1s\0OR1C1:R5C3\0\0

The order in which various data formats are put on the clipboard
depends on the type of data being copied to the clipboard and the
capabilities of the server application. The following table shows
the order of clipboard data formats for four different types of data
selections. An object does not necessarily use all of the formats
listed for it.

Source selection Clipboard contents, in order

Embedded object Native
OwnerLink
Picture or other presentation format (optional)
ObjectLink (included only if the server also
supports
links)
Linked object OwnerLink
Picture or other presentation format (optional; for
linked objects, this can be Native data)
ObjectLink
Pictorial data Application-specific formats
Native
OwnerLink
Picture
ObjectLink
Structured data Structured data formats (if selection is structured
data only)
Native
OwnerLink
Picture, text, and so on
ObjectLink

Before copying data for an embedded or linked object to the
clipboard, a server puts descriptions of the data formats on the
clipboard. These data formats are listed in order of their level of
description, from most descriptive to least. (For example,

Chapter 3, Object linking and embedding libraries 83

84

Microsoft Word would put rich-text format (RTF) onto the
clipboard first, then the CF_TEXT clipboard format.)

When a user chooses the Paste command, the client application
queries the formats on the clipboard and uses the first format that
is compatible with the destination for the object. Because server
applications put data onto the clipboard in order of their fidelity
of description, the first acceptable format found by a client
application is the best format for it to use. If the client application
finds an acceptable format prior to the Native format, it
incorporates the data into the target document without making it
an embedded object. (For example, a Microsoft Word document
would not make an embedded object from clipboard data that
was in RTF format. Similarly, structured data or a structured
document would be embedded into a drawing application but
would be converted into the destination document’s native data
type if the destination were a worksheet or structured document.)
If the client application cannot accept any of the data formats
prior to Native and OwnerLink, it uses the Native and
OwnerLink formats to make an embedded object and then finds
an appropriate presentation format. The destination application
may require different formats depending on where the selection
is to be placed in the destination document; for example, pasting
into a picture frame and pasting into a stream of text could
require different formats.

When a user chooses the Paste Link command from the Edit
menu, the client application looks for the ObjectLink format on
the clipboard and ignores the Native and OwnerLink formats.
The ObjectLink format identifies the source class, document, and
object. If the application finds the ObjectLink format and a useful
presentation format, it uses them to make an OLE link to the
source document for the object. If the ObjectLink format is not
available, the client application may look for the Link format and
create a DDE link. This type of link does not support the OLE
protocol.

When an application that does not support OLE copies from an
OLE item on the clipboard, it ignores the Native, OwnerLink and
ObjectLink formats; the behavior of the copying application does
not change.

Windows APl Guide

Registration

Registration database

The registration database supports linked and embedded objects
by providing a systemwide source of information about whether
server applications support the OLE protocol, the names of the
executable files for these applications, the verbs for classes of
objects, and whether an object-handler library exists for a given
class of object.

When a server application is installed, it registers itself as an OLE
server with the registration database. (This database is supported
by the dynamic-link library SHELL.DLL.) To register itself as an
OLE server, a server application records in the database that it
supports one or more OLE protocols. The only protocols
supported by version 1.x of the Microsoft OLE libraries are
StdFileEditing and StdExecute. StdFileEditing is the current
protocol for linked and embedded objects. StdExecute is used
only by applications that support the OleExecute function. (A
third name, Static, describes a picture than cannot be edited by
using standard OLE techniques.)

When a client activates a linked or embedded object, the client
library finds the command line for the server in the database,
appends the /Embedding or /Embedding filename command-line
option, and uses the new command line to start the server.
Starting the server with either of these options differs from the
user starting it directly. Either a slash (/) or a hyphen (-) can
precede the word Embedding. For details about how a server
reacts when it is started with these options, see “Opening and
closing objects.”

The entries in the registration database are used whenever an
application or library needs information about an OLE server. For
example, client applications that support the Insert Object
command refer to the database in order to list the OLE server
applications that could provide a new object. The client
application also uses the registration database to retrieve the
name of the server application for the Paste Special dialog box.

Applications typically add key and value pairs to the registration
database by using Microsoft Windows Registration Editor
(REGEDIT.EXE). Applications could also use the registration
functions to add this information to the database.

Chapter 3, Object linking and embedding libraries 85

86

The registration database stores keys and values as
null-terminated strings. Keys are hierarchically structured, with
the names of the components of the keys separated by backslash
characters (\). The class name and server path should be
registered for every class the server supports. (This class name
must be the same string as the server uses when it calls the
OleRegisterServer function.) If a class has an object-handler
library, it should be registered using the handler keyword. An
application should also register all the verbs its class or classes
support. (An application’s verbs must be sequential; for example,
if an object supports three verbs, the primary verb is 0 and the
other verbs must be 1 and 2.)

To be available for OLE transactions, a server should register the
key and value pairs shown in the following example when it is
installed. This example shows the form of key and value pairs as
they would be added to a database with Registration Editor.
Although the text string sometimes wraps to the next line in this
example, the lines should not include newline characters when
they are added to the database.

HKEY_CLASSES_ROOT \class name = readable version of class name

HKEY_CLASSES_ROOT\.ext = class name

HKEY_CLASSES_ROOT \class name\ protocol \StdFileEditing \server =
executable file name

HKEY_CLASSES_ROOT \class name\ protocol \StdFileEditing \handler =
dll name

HKEY_CLASSES_ROOT \class name \ protocol \StdFileEditing \verb\0 =
primary verb

HKEY_CLASSES_ROOT \class name\protocol\StdFileEditing \verb\1 =
secondary verb

Servers that support the OleExecute function also add the
following line to the database:

HKEY_CLASSES_ROOT \class name\ protocol\StdExecute\server =
executable file name

An ampersand (&) can be used in the verb specification to
indicate that the following character is an accelerator key. For
example, if a verb is specified as &Edit, the E key is an accelerator
key.

Windows API Guide

A server can register the entire path for its executable file, rather
than registering only the filename and arguments. Registering
only the filename fails if the application is installed in a directory
that is not mentioned in the PATH environment variable.
Usually, registering the path and filename is less ambiguous than
registering only the filename.

Servers can register data formats that they accept on calls to the
OleSetData function or that they can return when a client calls the
OleRequestData function. Clients can use this information to
initialize newly created objects (for example, from data selected in
the client) or when using the server as an engine (for example,
when sending data to a chart and getting a new picture back).
Client applications should not depend on the requested data
format, because the calls can be rejected by the server.

In the following example, format is the string name of the format
as passed to the RegisterClipboardFormat function or is one of
the system-defined clipboard formats (for example,
CF_METAFILEPICT):

HKEY_CLASSES_ROOT \class name\protocol \StdFileEditing
\SetDataFormats = format[,format]

HKEY_CLASSES ROOT\class name\protocol\StdFileEditing
\RequestDataFormats = format[,format]

For compatibility with earlier applications, the system
registration service also reads and writes registration information
in the [embedding] section of the WIN.INI initialization file.

In the following example, the keyword picture indicates that the
server can produce metafiles for use when rendering objects:

[embedding]
classname=comment,textual class name,path/arguments,picture

Version control Server applications should store version numbers in their Native
forservers data formats. New versions of servers that are intended to replace

old versions should be capable of dealing with data in Native
format that was created by older versions. It is sometimes
important to give the user the option of saving the data in the old
format, to support an environment with a mixture of new and old
versions, or to permit data to be read by other applications that
can interpret only the old format.

Chapter 3, Object linking and embedding libraries 87

88

Client user
interface

New and changed
commands

There can be only one application at a time (on one workstation)
registered as a server for a given class name. The class name
(which is stored with the Native data for objects) and the server
application are associated in the registration database when the
server application registers during installation.

If a new version of a server application allows the user to keep
the old version available, a new class name should be allocated
for the new server. A good way to do this is to append a version
number to the class name. This allows the user to easily
differentiate between the two versions when necessary. (The OLE
libraries do not check these numbers.)

When the new version of the server is installed, the user should
be given the option of either mapping the old objects to the new
server (registering the new server as the server for both class
names) or keeping them separate. When the user keeps them
separate, the user will be aware of two kinds of object (for
example, Graphl and Graph?2).

The user should be able to discard the old server version at a later
time by remapping the registration database, typically with the
help of the server setup program. To remap the database, the old
and new objects are given the same value for readable version of
class name (although their class names remain distinct). The OLE
client library removes duplicate names when it produces the list
in the Insert Object dialog box. When a client application
produces a list by enumerating the registration database, the
application must do this filtering itself.

When a user opens a document that contains a linked or
embedded object, the client application uses the OLE functions to
communicate with OLECLLDLL. This library assists the client
application with such tasks as loading and drawing objects,
updating objects (wWhen necessary), and interacting with server
applications.

An OLE client application typically implements the following
new or changed commands as part of its Edit menu. (Although
this user interface is not mandatory, it is recommended for
consistency with existing OLE applications.)

Windows APl Guide

Command Description

Copy Copies an object from a document to the clipboard.

Cut Removes an object from a document and places it
on the clipboard.

Paste Copies an object from the clipboard to a document.

Paste Link Inserts a link between a document and the file that

contains an object.

Class Name Object Makes it possible for the user to activate the verbs
for a linked or embedded object. The actual text
used instead of the Class Name placeholder
depends upon the selected object.

Links Makes it possible for the user to change link
updating options, update linked objects, cancel
links, repair broken links, and activate the verbs
associated with linked objects.

Insert Object Starts the server application chosen by the user
from a dialog box and embeds in a document the
object produced by the server. This command is
optional.

Paste Special Transfers an object from the clipboard to a
document or inserts a link to the object, using the
data format chosen by the user from a dialog box.
This command is optional.

In addition to the listed menu changes, client applications must
also implement changes to their Copy and Cut commands. When
a linked or embedded object is selected in the client application,
the application can use the OleCopyToClipboard function to
implement the Cut and Copy commands.

When the user chooses the Paste command, a client application
should insert the contents of the clipboard at the current position
in a document. If the clipboard contains an object, choosing this
command typically embeds the object in the document.

When the user chooses the Paste Link command, the client library
typically inserts a linked object at the current position in a
document. The object is displayed in the document, but the
Native data that defines that object is stored elsewhere.

If a user copies a linked object to the clipboard, other documents
can use this object to produce a link to the original data.

The Class Name Object command allows the user to choose one of
an object’s verbs. If the selection in the document is an embedded
object, the Class Name placeholder is typically replaced by the

Chapter 3, Object linking and embedding libraries 89

%0

class and name of the object; for example, if a user selects an
object that is a range of spreadsheet cells for Microsoft Excel, the
text of the command might be “Microsoft Excel Worksheet
Object.” If an object supports only one verb, the name of the verb
should precede the class name in the menu item; for example, if
the only verb for a text object is Edit, the text of the command
might be “Edit WPDocument Object.” When an object supports
more than one verb, choosing the Class Name Object command
brings up a cascading menu listing each of the verbs.

For more information about verbs, see “Verbs.”

Choosing the Links command brings up a Links dialog box,
which lists the selected links and their source documents and
gives the user the opportunity to change how the links are
updated, cancel the link, change the link, or activate the verbs for
the link. A user can use this dialog box to repair links to objects
that have been moved or renamed.

When the user chooses the Paste Special command, a client
application should bring up a dialog box listing the data formats
the client supports that are presently on the clipboard. The Paste
Special dialog box makes if possible for the user to override the
default behaviors of the Paste and Paste Link commands. For
example, if the first format on the clipboard can be edited by the
client application, the default behavior is for the client to copy the
data into the document without making it into an object. The user
could override this default behavior and create an object from
such data by using the Paste Special command.

When the user chooses the Insert Object command, a client
application should allow the user to insert an object of a specified
class at the current position in a document. For example, to insert
a range of spreadsheet cells in a text document, a user could
choose the Insert Object command and select “Microsoft Excel
Worksheet” from the dialog box. Selecting this item would start
Microsoft Excel. The user would use Microsoft Excel to create the
object to be embedded in the text document. When finished, the
user would quit Microsoft Excel; the range of spreadsheet cells
would automatically be embedded in the text document.

The Insert Object command is optional because a user could
achieve the same results without it, although the procedure is less
convenient. To use the same example as that shown in the
preceding paragraph, the user could leave the client application,

Windows API Guide

start Microsoft Excel, and use the Microsoft Excel Cut or Copy
command to transfer data to the clipboard. After returning to the
client application, the user could choose the Paste command to
move the data from the clipboard into the text document.

If the user chooses the Undo command after activating an object,
all the changes made since the object was last updated (or since
the object was activated, if it has not been updated) are discarded
and the object returns to its state prior to the update. The Undo
command closes the connection to the server.

Using packages A package is an embedded graphical object that contains another
object, which can be linked or embedded. For example, a user can
package a file in an icon and embed the icon in an OLE
document. Most of the packaging capabilities are provided by the
dynamic-link library SHELL.DLL.

A user can put a package into an OLE document in a number of
different ways:

B Copy a file from File Manager to the clipboard, and then
choose the Paste or Paste Link command from the Edit menu
in the client application.

B Drag a file from File Manager and drop it in the open window
for a document in a client application.

B Select Package from the list of objects in the Insert Object
dialog box. This starts Object Packager, with which the user
can associate a file or data selection with an icon or graphic.
Choosing Update and then Exit from Object Packager’s File
menu puts the package in the client document.

0 Run Packager directly, following the steps outlined in the
previous list item.

A user whose system does not include the Windows version 3.1
File Manager can follow these steps to create a package by using
Object Packager:

g Copy to the clipboard the data to be packaged.

8 Open Object Packager and paste the data into it. (At this point,
the user could modify the default icon, the default label
identifying the icon, or both.)

Chapter 3, Object linking and embedding libraries N

Server user
interface

Updating objects from
multiple-instance servers

92

® Choose Copy Package from the Object Packager Edit menu to
copy the package to the clipboard.

B Choose the Paste command from the Edit menu in the client
application to embed the package.

A server for linked and embedded objects is any application that
can be used to edit an object when the OLE libraries inform it that
the user of a client application has activated the object. (Some
servers can use verbs other than Edit to work with an object.)
Although client applications implement many changes to the user
interface to support OLE, the user interface does not change
significantly for server applications.

OLE servers typically implement changes to the following
commands in the Edit menu. (Although this user interface is not
mandatory, it is recommended for consistency with existing OLE
applications.)

Command Description

Cut Transfers data from the application to the clipboard,
deleting the data from the source document. A client
application can use this data to create an embedded
object.

Copy Transfers a copy of the data from the application to the
clipboard. A client application can use this data to create
an embedded object and may be able to establish a link
to the source document.

Some menu jtems change names or behave differently when a
server is started as part of activating an object from within a
compound document. The exact behavior of the server depends

on whether the server supports the multiple document interface
(MDD).

When an embedded object is edited or played by a multiple-
instance server—that is, a server that does not support the
multiple document interface (MDI), the Save command on the
File menu should change to Update. (This change does not occur
when a server starts for a linked object.) When the user chooses
the Update command, the object in the client is updated but the
focus remains with the server window. To close the server
window, the user chooses the Exit command.

Windows APl Guide

Updating objects from
single-instance servers

Object storage
formaits

When the user chooses the Save As, New, or Open command, the
application should display a warning message asking the user
whether to update the object in the compound document before
performing the action. The New and Open commands break the
link between the client and server applications. The Save As
command also breaks the link between the client and server if the
server was editing an embedded object.

The same rules for updating objects from multiple-instance
servers apply to single-instance (MDI) servers, with the following
differences:

@ When the focus in an MDI server changes from a window in
which an embedded object was activated to a window in
which a document that does not contain an embedded object is
being edited, the Update command should change back to
Save.

@ When the user chooses the New or Open command, the
window containing the embedded object remains open. (This
eliminates the need to prompt the user to update the object.)

The presentation data in linked or embedded objects can be
thought of as a presentation object. A presentation objects can be
standard, generic, or NULL. A standard presentation object is
used when the format is metatfile, bitmap, or device-independent
bitmap (DIB). The client library supports the presentation objects,
including drawing them. Neither client applications nor object
handlers can use the presentation objects; they are solely for the
use of the client library.

The following list gives the storage format for strings in OLE. The
items appear in the order listed.

Type Description

LONG Length of string, including terminating null character.
Variable = Null-terminated stream of bytes.

Chapter 3, Object linking and embedding libraries 93

94

The following list gives the storage format for the standard
presentation object used for linked and embedded objects. The
items appear in the order listed.

Type Description

LONG OLE version number.
LONG Format identifier. This value is 5.

Variable Class string. For standard presentation objects, this string is
METAFILEPICT, BITMAP, or DIB.

LONG Width of object, in MM_HIMETRIC units.
LONG Height of object, in MM_HIMETRIC units.
LONG Size of presentation data, in bytes.
Variable Presentation data.

The following list gives the storage format for the generic
presentation object used for linked and embedded objects.
Generic objects are used when the clipboard format is other than
metafile, bitmap, or DIB. The items appear in the order listed.

Type Description

LONG OLE version number.
LONG Format identifier. This value is 5.
Variable Class string.

LONG Clipboard format value. If this value exists, the next item in
storage is the size of the presentation data.

LONG Clipboard format name. This value exists only if the
clipboard format value is NULL.

LONG Size of presentation data, in bytes.
Variable Presentation data.

The following list gives the storage format for embedded objects.
The items appear in the order listed.

Type Description

LONG OLE version number.

LONG Format identifier. This value is 2.

Variable Class string.

Variable Topic string.

Variable Item string.

LONG Size of Native data, in bytes.

Variable Native data.

Variable Presentation object (standard, generic, or NULL).

Windows AP! Guide

The following list gives the storage format for linked objects. The
items appear in the order listed.

Type

Description

LONG
LONG
Variable
Variable
Variable
Variable
short
short
LONG
Variable

OLE version number.

Format identifier. This value is 1.
Class string.

Topic string.

Item string.

Network name string.

Network type

Network driver version number.
Link update options.

Presentation object (standard, generic, or NULL).

The following list gives the storage format for static objects. The
only difference between the format for static objects and the

format for standard presentation objects is the value of the format
identifier. The items appear in the order listed.

Type

Description

LONG
LONG
Variable

LONG
LONG
LONG
Variable

OLE version number.
Format identifier. This value is 3.

Class string. For static objects, this string is METAFILEPICT,

BITMAP, or DIB.

Width of object, in MM_HIMETRIC units.
Height of object, in MM_HIMETRIC units.
Size of presentation data, in bytes.
Presentation data.

Client applications

A client application uses a server application to activate and
render an object contained by a compound document. A client
application provides storage for embedded objects, such
contextual information as the target printer and page position,
and a means for the user to activate the object and the server
application associated with that object. Client applications also
provide ways of putting embedded and linked objects into a

document and taking them out again.

Chapter 3, Object linking and embedding libraries

95

96

Starting a client
application

Client applications must provide permanent storage for objects in
the compound document’s file. When an item being saved is an
embedded object, the client library stores the object’s Native data,
the presentation data for the object (for example, a metafile), and
the OwnerLink information. When the item being saved is a link
to another document, the client library stores the presentation
data and the ObjectLink format.

Client applications accommodate asynchronous operations by
defining a callback function to which the library sends
notifications about current operations. As long as the client
continues to dispatch messages, it can react to the notifications
being sent to the callback function and to input from the user. For
more information about asynchronous operations, see
“Asynchronous operations.”

When a client application starts, it should follow these steps:

1. Register the clipboard formats that it requires.

2. Allocate and initialize as many OLECLIENT structures as
required.

3. Allocate and initialize an OLESTREAM structure.

A client application can register the clipboard formats by calling
the RegisterClipboardFormat function for each format, specifying
such formats as Native, OwnerLink, ObjectLink, and any other
formats it requires.

A dlient application uses two structures to receive information
from the client library: OLECLIENT and OLESTREAM.

The OLECLIENT structure points to an OLECLIENTVTBL
structure, which in turn points to a callback function supplied by
the client application. The OLE libraries use this callback function
to notify the client of any changes to an object. The parameters for
the callback function are a pointer to the client structure, a pointer
to the relevant object, and a value giving the reason for the
notification. Typically, an application creates one OLECLIENT
structure for each OLEOBJECT structure. Having a separate
OLECLIENT structure for each object allows an application to take
object-specific action in response to the OLE_QUERY_PAINT
callback notification.

Windows APl Guide

The OLECLIENT structure can also point to data that describes
the state of an object. This data, when present, is supplied and
used only by the client application. The client application
allocates a separate OLECLIENT structure for each object and
stores state information about that object in the structure. Because
one argument to the callback function is a pointer to the
OLECLIENT structure, this is an efficient method of retrieving the
object’s state information when the callback function is called.

The OLESTREAM structure points to an OLESTREAMVTBL
structure, which is a table of pointers to client-supplied functions
for stream input and output. The client libraries use these
functions when loading and saving objects. A client can
customize functions for particular situations, and a client can
make such changes as varying the permanent storage for an
object; for example, a client could store an object in a database,
instead of in a file with the rest of the document.

The client application should create a pointer to the callback
function in the OLECLIENTVTBL structure and pointers to the
functions in the OLESTREAMVTBL structure by using the
MakeProclinstance function. Callback functions should be
exported in the module-definition file.

Opening a
compound To open a compound document, a client application should take
document the following steps:

1. Register the document with the client library.
2. Load the document data from a file.

3. For each object in the document, call the
OleLoadFromStream function.

4. List any objects with manual links so that the user can update
them. Automatically update any automatic links.

The OleRegisterClientDoc function registers a document with the
client library and returns a handle that is used in object-creation
functions and document-management functions. (This
registration does not involve the registration database.)

Chapter 3, Object linking and embedding libraries 97

Document
management

A client application should call the OleLoadFromStream function
for each object in the document that will be shown on the screen
or otherwise activated. (It is often not necessary to load every
object in a document immediately when the document is
opened.) Parameters for this function include a pointer to the
OLECLIENT structure, which is used to locate the client’s callback
function (and which is sometimes used by the client to store
private state information for the object), and a pointer to the
OLESTREAM structure. The library calls the Get function in the
OLESTREAMVTBL structure to load the object.

A client application should notify the library when it opens,
closes, saves, or renames a document, or causes a document to
revert to a previously saved state. A client application can use the
following functions to accomplish these tasks:

Function Description

OleRegisterClientDoc Registers an opened document with the
library.

OleRenameClientDoc Informs the library that a document has been
renamed.

OleRevertClientDoc Informs the library that a document has
reverted to a previously saved state.

OleRevokeClientDoc Informs the library that a document should
be closed or no longer exists.

OleSavedClientDoc Informs the library that a document has been
saved.

A client application should also maintain a persistent name for
each object. This name should be unique within the scope of the
client document and should be stored with the document. This
name is specified when the object is created and should persist
when the document is saved and reopened. When a client uses
the OleRename function to change the name of an object, the new
name must also be unique and must be stored with the document.

Windows API Guide

Saving a
document

Closing a
document

Asynchronous
operations

A client application should follow these steps to save a document:

1. Save the data for the document in the document’s file.

2. For each object in the document, call the OleSaveToStream
function.

3. When the library confirms that all objects have been saved,
call the OleSavedClientDoc function.

A client application can call the OleQuerySize function to
determine the size of the buffer required to store an object before
calling OleSaveToStream.

A client application should follow these steps to close a
document:

1. For each object in the document, call the OleRelease function.

2. Use either the OleRevertClientDoc or the OleSavedClientDoc
function to register the current state of the document with the
library.

3. When the library confirms that all objects have been closed,
call the OleRevokeClientDoc function.

When a client application calls a function that invokes a server
application, actions taken by the client and server can be
asynchronous. For example, the actions of updating a document
and closing a server are asynchronous. Whenever an
asynchronous operation begins, the client library returns

OLE _WAIT_FOR_RELEASE. When a client application receives
this notification, it must wait for the OLE_RELEASE notification
before it quits. If the client cannot take further action until the
asynchronous operation finishes, it should entera
message-dispatch loop and wait for OLE_RELEASE. Otherwise, it
should allow the main message loop to continue dispatching
messages so that processing can continue.

An application can run only one asynchronous operation at a
time for an object; each asynchronous operation must end with

Chapter 3, Object linking and embedding libraries 99

100

the OLE_RELEASE notification before the next one begins. The
client’s callback function must receive OLE_RELEASE for all
pending asynchronous operations before calling the
OleRevokeClientDoc function.

Some of the object-creation functions return
OLE_WAIT_FOR_RELEASE. The client application can continue
to work with the document while waiting for OLE_RELEASE, but
some functions (for example, OleActivate) cannot be called until
the asynchronous operation has been completed.

If an application calls a function for an object before receiving
OLE_RELEASE for that object, the function may return
OLE_BUSY. The server also returns OLE_BUSY when processing
a new request would interfere with the processing of a current
request from a client application or user. When a function returns
OLE_BUSY, the client application can display a message
reporting the busy condition at this point or it can enter a loop to
wait for the function to return OLE_OK. (The
OLE_QUERY_RETRY notification is also sent to the client’s
callback function when the server is busy; when the callback
function returns FALSE, the transaction with the server is ended.)
Note that if the server uses the OleBlockServer function to
postpone OLE activities, the OLE_QUERY_RETRY notification is
not sent to the client.

The following example shows a message-dispatch loop that
allows a client application to transact messages while waiting for

the OLE_RELEAGSE notification:

while ((olestat = OleQueryReleaseStatus (lpObject)) == OLE_BUSY) {
if (GetMessage (&msg, NULL, NULL, NULL)) {
TranslateMessage (&msg) ;
DispatchMessage (&msgq) ;
}
}
if (olestat == OLE_ERROR OBJECT) {

/* The lpObject parameter is invalid. */

}
else { /* if olestat == OLE OK */

. /* The object is released, or the server has terminated. */

Windows APl Guide

A server application could end unexpectedly while a client is
waiting for OLE_RELEAGSE. In this case, the client library
recovers properly only if the client uses the
OleQueryReleaseStatus function, as shown in the preceding
example.

The following table shows which OLE functions can return the
OLE_WAIT_FOR_RELEASE or OLE_BUSY value to a client

application:

Function OLE_BUSY OLE_WAIT_FOR_RELEASE
OleActivate Yes Yes
OleClose Yes Yes
OleCopyFromLink Yes Yes
OleCreate No Yes
OleCreateFromClip No Yes
OleCreateFromFile No Yes
OleCreateFromTemplate No Yes
OleCreateLinkFromClip No Yes
OleCreateLinkFromFile No Yes
OleDelete Yes Yes
OleExecute Yes Yes
OleLoadFromStream No Yes
OleObjectConvert Yes No
OleReconnect Yes Yes
OleRelease Yes Yes
OleRequestData Yes Yes
OleSetBounds Yes Yes
OleSetColorScheme Yes Yes
OleSetData Yes Yes
OleSetHostNames Yes Yes
OleSetLinkUpdateOptions Yes Yes
OleSetTargetDevice Yes Yes
OleUnlockServer No Yes
OleUpdate Yes Yes

Chapter 3, Object linking and embedding libraries 101

102

Displaying and
printing objects

Opening and
closing objects

When an object has been loaded and, if necessary, brought up to
date, the object can be displayed or printed with the container
document. To display an object, the client application should set
up the device context and bounding rectangle (ensuring that they
use the same mapping mode) and then call the OleDraw function.
The client application can use the OleQueryBounds function to
retrieve the size of the bounding rectangle on the target device.

An object handler can be used to draw an object. If an object
handler exists for an object, the call to the OleDraw function is
received and processed by the object handler. If there is no object
handler, the client library uses the object’s presentation data to
display or print the object.

If the presentation data for an object is a metafile, the library
periodically sends an OLE_QUERY_PAINT notification to the
client’s callback function while drawing the object. If the callback
function returns FALSE, the OleDraw function returns
immediately and the drawing is ended. A client could also use
the OLE_QUERY_PAINT notification to take some actions within
the callback function and then return TRUE to indicate that
drawing should continue. Any actions the client takes at this time
should not interfere with the drawing operation; for example, the
client should not scroll the window.

If the target device for an object changes (for example, when the
user changes printers), the client application should call the
OleSetTargetDevice function. The client should also call
OleSetTargetDevice whenever an object is created or loaded.

If the size of the presentation rectangle for the object changes (for

example, through action by the user) the client application should
call the OleSetBounds function. After calling OleSetBounds, the

client should call the OleUpdate function to update the object and
then OleDraw to redisplay it.

When the user requests the client application to activate an object,
the client should check whether the object is busy by calling the
OleQueryReleaseStatus function. If the object is busy, the client
should either refuse the request to open the object or enter a

Windows APl Guide

message-dispatch loop, waiting for the OLE_RELEASE
notification.

If the object to be activated is not busy, the client should call the
OleActivate function. The library notifies the client when the
server is open or when an error occurs.

The OleActivate function allows the client application to specify
whether to display the activated object in a window of the server
application. A client might hide the server window if an object is
updated automatically.

A client application can use the OleQueryOpen function to
determine whether a specified object is open. The OleClose
function allows the client to close an open object. Closing an
object terminates the connection with the server. To reestablish a
terminated connection between a linked object and an open
server, the client can use the OleReconnect function. To close an
open object and release it from memory, a client application can
call the OleRelease function.

The first time a client application activates a particular embedded
object, the client should call the OleSetHostNames function,
specifying the string the server window should display in its title
bar. This string should be the name of the client document
containing the object. The client does not need to call
OleSetHostNames every time an embedded object is activated,
because the library maintains a record of the specified names.

Deleting objects
To permanently delete an object from a document, the client
should call the OleDelete function. OleDelete closes the specified
object, if necessary, before deleting it.

Client Cut and

Copy commands A client application can copy an object to the clipboard by simply
opening the clipboard, calling the OleCopyToClipboard function,
and closing the clipboard again. If the client supports delayed
rendering, however, it should follow these steps to cut or copy an
object to the clipboard:

1. Open and empty the clipboard.

Chapter 3, Object linking and embedding libraries 103

2. Put the preferred data formats on the clipboard.

3. Call the OleEnumFormats function to retrieve the formats for
the object.

4. Call the SetClipboardData function to put the formats on the
clipboard, specifying NULL for the handle of the data.

If the call to the OleEnumFormats function retrieves the
ObjectLink format, the client should call SetClipboardData
with OwnerLink instead of ObjectLink format. (For more
information, see the following description of the
OleCopyToClipboard function.)

5. Put any additional presentation data formats on the clipboard.
6. Close the clipboard.

To support the Cut command on the Edit menu, an application
can call OleCopyToClipboard and then delete the object by using
the OleDelete function. (The client can put only one of the
selected objects on the clipboard, even when the user has selected
and cut or copied multiple objects. In this case, the client typically
puts the first object in the selection onto the clipboard.)

The OleCopyToClipboard function always copies OwnerLink
format, not ObjectLink format, to the clipboard. For embedded
objects, Native data always precedes the OwnerLink format. If a
linked object uses Native data, OwnerLink format always
precedes the Native data. If an application uses the OleGetData
function to retrieve data from a linked object that has been copied
by using OleCopyToClipboard, it should specify ObjectLink
format, not OwnerLink format, even if OwnerLink format was
put on the clipboard.

When an application that can act as both a client and server
copies a selection to the clipboard that contains one or more
objects, it should first allocate enough memory for the selection.
To discover how much memory is required for each object, the
application can call the OleQuerySize function. When memory
has been allocated, the application should call the
OleRegisterClientDoc function, specifying Clipboard for the
document name. (In this case, the handle returned by the call to
OleRegisterClientDoc identifies a document that is used only
during the copy operation.) To save each object to memory, the
application calls the OleClone function, calls the
OleSaveToStream function for the cloned object, and then calls

104 Windows APl Guide

Creating objects

Object-creation
functions

the OleRelease function to free the memory for the cloned object.
When the selection has been saved to the stream, the application
can call the SetClipboardData function. If SetClipboardData is
successful, the application should call the OleSavedClientDoc
function. The application then calls the OleRevokeClientDoc
function, specifying the handle retrieved by the call to

OleRegisterClientDoc.

For more information about the Cut and

Copy commands, see “Server Cut and Copy commands.”

A client application can put linked and embedded objects in a
document by pasting them from the clipboard, creating them
from a file, copying them from other objects, or by starting a
server application to create them directly.

Each of the following functions creates an embedded or linked
object in a specified document:

Function Description

OleClone Creates an exact copy of an object.

OleCopyFromLink Creates an embedded object that is a copy
of a linked object.

OleCreate Creates an embedded object of a specified

OleCreateFromClip

OleCreateFromFile

OleCreateFromTemplate
OleCreatelnvisible

OleCreateLinkFromClip

OleCreateLinkFromFile

OleObjectConvert

class.

Creates an object from the clipboard. This
function typically creates an embedded
object.

Creates an object by using the contents of a
file. This function typically creates an
embedded object.

Creates an embedded object by using
another object as a template.

Creates an object without displaying the
server application to the user.

Creates an object by using information on
the clipboard. This function typically
creates a linked object.

Creates an object by using the contents of a
file. This function typically creates a linked
object.

Creates an object that supports a specified
protocol by converting an existing object.

Chapter 3, Object linking and embedding libraries

105

106

Each of these functions requires a parameter that points to an
OLEOBJECT structure when the function returns. Server
applications often create an OLEOBJECT structure whenever an
object is created; OLEOBJECT points to functions that describe
how the server interacts with the object. Before the client library
gives the client application a pointer to this structure, the library
includes with the structure some internal information
corresponding to the OwnerLink or ObjectLink data. This internal
information allows the client library to identify the correct server
when an OLE function such as OleActivate passes it a pointer to
an OLEOBJECT structure. For more information about the
OLEOBJECT structure, see “Starting a server application.”

Each new object must have a name that is unique to the client
document. Although meaningful object names can be helpful,
some applications assign unique object names simply by
incrementing a counter for each new object. For more information
about object names, see “Document management.”

If a client application implements the Insert Object command, it
should use the registration database to find out what OLE servers
are available and then list those servers for the user. When the
user selects one of the servers and chooses the OK button, the
client can use the OleCreate function to create an object at the
current position.

The OleCopyFromLink, OleCreate, and OleCreateFromTemplate
functions always create an embedded object. The other
object-creation functions can create either an embedded object or
a linked object, depending on the order and type of available
data.

If a client application’s callback function receives the
OLE_RELEASE notification after the client calls the OleCreate or
OleCreateFromFile function, the client should respond by calling
the OleQueryReleaseError function. If OleQueryReleaseError
shows that there was an error when the object was created, the
client application should delete the object.

Whenever an object-creation function returns
OLE_WAIT_FOR_RELEASE, the calling application should either
wait for the OLE_RELEASE notification or notify the user that the
object cannot be created. For more information, see
“Asynchronous operations.”

Windows API Guide

If a client application accepts files dropped from File Manager, it
should respond to the WM_DROPFILES message by calling the
OleCreateFromFile function and specifying Packager for the
lIpszClass parameter.

Paste and Paste Link A client application should follow these steps to create an
commands embedded or linked object by pasting from the clipboard:

1. Call the OleQueryCreateFromClip function to determine
whether to enable the Paste command. If this function fails
when StdFileEditing is specified for the IpszProtocol
parameter, call it again, specifying Static.

2. Call the OleQueryLinkFromClip function to determine
whether to enable the Paste Link command.

o If the user chooses the Paste command, open the clipboard
and call the OleCreateFromClip function.

O If the user chooses Paste Link, open the clipboard and call
the OleCreateLinkFromClip function.

3. Close the clipboard.

4. (Call the OleQueryType function to determine the kind of
object created by the creation function. (Depending on the
order of clipboard data, OleCreateFromClip can sometimes
create a linked object and OleCreateLinkFromClip can
sometimes create an embedded object.)

The client application should put the pasted data or object into
the document at the current position. The client should select the
object so that the user can work with it immediately. If both the
OleQueryCreateFromClip and OleQueryLinkFromClip functions
fail but there is data on the clipboard that the client can interpret,
the client should enable the Paste command.

If the information on the clipboard is incomplete—for example, if
Native data is not accompanied by the OwnerLink format—the
Paste command should insert a static object into the document. (A
static object consists of the presentation data for an object; it
cannot be edited by using standard OLE techniques. Attempts to
open static objects fail and generate no notifications.)

If the client application implements the Paste Special command, it
should use the EnumClipboardFormats function to produce a list
of data formats on the clipboard. The client should also check the

Chapter 3, Object linking and embedding libraries 107

Undo command

108

registration database to find the full name of the server
application. The Paste Link button in the Paste Special dialog box
works in exactly the same way as the Paste Link command on the
Edit menu.

If the DDE Link format is available on the clipboard instead of
ObjectLink format, the client application should perform the

same link operation that it supported prior to the implementation
of OLE.

A client application can use the OleClone function to support the
Undo command. A cloned object is identical to the original except
for connections to the server application; the cloned object is not
automatically connected to the server. When the server is closed
and the object is updated, the saved copy of the object gives the
user the opportunity to undo all of the changes made in the
server. Support for the Undo command is provided by the client
application, because the server cannot maintain a record of the
prior states of objects.

The Undo command restores an object to its condition prior to the
last update from the server. To support this behavior, the client
application must clone the object when it is first activated and
then clone the updated object when an update occurs; the client
must maintain two clones of the object. The clone of the original
object must be maintained so that an updated object can be
restored if the user chooses the Undo command. The clone of the
updated object must be maintained to support the Undo
command if the updated object is updated again. Because the
data changes when the update occurs, the clone for supporting
the Undo command must be made before any updates occur.

Because the client application cannot distinguish between
different types of object activation, the client must clone an object
for verbs that do not edit the object, even though no updates can
occur in those cases.

Windows API Guide

Class Name
Object command

Links command

A client application can implement the Class Name Object
command by using the OleActivate function. OleActivate
includes a parameter that allows the client to specify the verb
chosen by the user.

When a user chooses the Links command, a dialog box appears
listing every linked object in the document. The selected links are
highlighted in the dialog box. The dialog box makes it possible
for the user to invoke the verbs for an object, select whether link
updating should be automatic or manual, update a link
immediately, cancel a link, and repair broken links.

The Links dialog box includes buttons that allow the user to
activate the primary and secondary verbs for an object. A client
application can implement these buttons by using the OleActivate
function.

A client application can use the OleGetLinkUpdateOptions and
OleSetLinkUpdateOptions functions to support the link-update
radio buttons in the Links dialog box. The following are the three
possible update options:

Option Description

oleupdate_always Update the linked object whenever possible. This
option supports the Automatic link-update radio
button in the Links dialog box.

oleupdate_onsave Update the linked object when the source
document is saved by the server.

oleupdate_oncall Update the linked object only on request from the
client application. This option supports the
Manual link-update radio button in the Links
dialog box.

These update options control when updates to the presentation of
an object occur. The contents of the source document are used to
update the presentation whenever the link is activated.

To support the Update Now button in the Links dialog box, an
application can call the OleUpdate function. When a user chooses
Update Now, the client application should update the links the
user selected.

Chapter 3, Object linking and embedding libraries 109

110

Closing a client
application

A user’s choosing the Cancel Link button in the Links dialog box
changes an object into a picture that an application cannot edit by
using standard OLE techniques. An application can implement
the Cancel Link button by using the OleObjectConvert function.

A client application should activate the Change Link button in the
Links dialog box only if all the selected links are to the same
source document. When the client has the correct information, it
can repair the link by using the OleGetData and OleSetData
functions. To retrieve the link information for an object, a client
can call the OleGetData function, specifying the ObjectLink
format. (The call to OleGetData fails if ObjectLink is specified and
the object is not a link.) A client can retrieve class information by
using OleGetData and specifying either the OwnerLink format
(for embedded objects) or the ObjectLink format (for linked
objects). The client can make it possible for the user to edit the
link information and store it in the object by using the OleSetData
function, specifying the ObjectLink format.

A client application should use the OleRelease function to
remove all objects from memory when it shuts down. If the
library returns the value OLE_WAIT_FOR_RELEASE instead of
OLE_OK, the client should not quit. The client can perform many
cleanup tasks while waiting for the OLE_RELEASE
notification—for example, it can close files, free memory, and
hide windows.

The OLE_RELEASE notification to the client’s callback function
indicates that an operation has finished in a server application,
but it does not identify the operation or indicate whether the
operation was successful. A client application can call the
OleQueryReleaseStatus function to determine whether an
operation has been completed for a specified object. The
OleQueryReleaseMethod function indicates the nature of the
operation that has finished for a specified object. To discover the
error value for the operation, the client can call the
OleQueryReleaseError function.

If a client owns the clipboard when it quits, it should make sure
that the data on the clipboard is complete and in the correct order.

Windows APl Guide

Server applications

An OLE server supplies functions that the server library calls
when a user works with an object. The server library,
OLESVR.DLL, uses DDE commands to communicate with the
client library. When the client application calls one of the
functions in the OLE AP], the client library informs the server
library and the server library routes the request to the
appropriate function in the server-supplied list of function

pointers.

In addition to the specialized functions that the server creates and
which are called by the server library, there are ten OLE functions
that allow a server to control the library’s ability to gain access to
the server and the documents and objects it controls:

Function

Description

OleBlockServer

OleRegisterServer

OleRegisterServerDoc
OleRenameServerDoc
OleRevertServerDoc

OleRevokeObject
OleRevokeServer

OleRevokeServerDoc
OleSavedServerDoc

OleUnblockServer

Queues requests to the server until the server
calls the OleUnblockServer function.
Registers the specified server with the library.
Information registered includes the class
name and instance and whether the server
supports single or multiple instances.
Registers a document with the server library.
Renames the specified document.

Restores a document to a previously saved
state, without closing the document.

Revokes access to the specified object.
Revokes access to the specified server, closing
any documents and ending communication
with client applications.

Revokes access to the specified document.
Informs the library that a document has been
saved. Calling this function is equivalent to
sending the OLE_SAVED notification.
Processes a request from a queue created

when the server application called the
OleBlockServer function.

The OleRevokeServer and OleRevokeServerDoc functions can
return OLE_ WAIT FOR_RELEASE. When a server application
receives this error value, it should take the same action as a client
application, dispatching messages until the server library calls the
corresponding Release function.

Chapter 3, Object linking and embedding libraries

111

Starting a server
opplica‘rion When a server application starts, it should follow these steps:

1. Register window classes and window procedures for the
main window, documents, and objects.

2. Initialize the function tables for the OLESERVERVTBL,
OLESERVERDOCVTBL, and OLEOBJECTVTBL structures.

3. Register the clipboard formats.
4. Allocate memory for the OLESERVER structure.

5. Register the server with the library by calling the
OleRegisterServer function.

6. Check for the [Embedding and /Embedding filename options
on the command line and act according to the following
guidelines. (Applications should also check for -Embedding
whenever they check for these options.)

® [f neither /Embedding nor /Embedding filename is present, call
the OleRegisterServerDoc function, specifying an untitled
document.

® [f the/Embedding option is present, do not register a
document or display a window. (In this case, the server takes
actions only in response to calls from the server library.)

® [f the /Embedding filename option is present, do not display a
window. Process the filename string and call the
OleRegisterServerDoc function.

The OLESERVERVTBL, OLESERVERDOCVTBL, and
OLEOBJECTVTBL structures are tables of function pointers. The
server library uses these structures to route requests from the
client application to the server. The server application should
create the function pointers in these structures by using the
MakeProclinstance function. The functions should also be
exported in the application’s module-definition file.

The OLESERVER structure contains a pointer to an
OLESERVERVTBL structure. The OLESERVERVTBL structure
contains pointers to functions that control such fundamental
server tasks as opening files, creating objects, and terminating
after an editing session. Several of the functions pointed to by the
OLESERVERVTBL structure cause the server to allocate and
initialize an OLESERVERDOC structure.

112 Windows API Guide

The OLESERVERDOC structure contains a pointer to an
OLESERVERDOCVTBL structure. The OLESERVERDOCVTBL
structure contains pointers to functions that control such tasks as
saving or closing documents or setting document dimensions.
The OLESERVERDOCVTBL structure also contains a function
that causes the server to allocate and initialize an OLEOBJECT
structure.

The OLEOBJECT structure contains a pointer to an
OLEOBJECTVTBL structure. The OLEOBJECTVTBL structure
contains pointers to functions that operate on objects. After the
server application creates an OLEOBJECT structure, the server
library gives information about the structure to the client library.
The client library then creates a parallel OLEOBJECT structure
(including internal information identifying the server application,
the document, and the item for the object) and passes a pointer to
that structure to the client application.

This hierarchy of structures—OLESERVER, OLESERVERDOC,
and OLEOBJECT—makes it possible for a server to open as many
documents as the library requests and for each document to
contain as many objects as necessary.

A server application can register the clipboard formats by calling
the RegisterClipboardFormat function for each format, specifying
Native, OwnerLink, ObjectLink, and any other formats it
requires.

When the server application starts, it creates an OLESERVER
structure and then registers it with the library by calling the
OleRegisterServer function. When this function returns, one of
its parameters points to a server handle. The library uses this
handle of refer to the server, and the server uses it in calls to the
server-specific OLE functions.

If an OLE server application is also a DDE server, the class name
specified in the call to the OleRegisterServer function cannot be
the same as the name of the executable file for the application.

When a client working with a compound document opens a
linked or embedded object for editing, the client library starts the
server using the /Embedding command-line option. The server
uses this option to determine whether the object has been opened
directly by a user or as part of an editing session for linked and
embedded objects. (If the object is a linked object, the /Embedding

Chapter 3, Object linking and embedding libraries 113

114

Opening a
document or
object

option is followed by a filename.) When a server is started for an
embedded object with the /Embedding option, the server should
not create a document or show a window. Instead, it should call
the OleRegisterServer function and then enter a
message-dispatch loop. (If the server is started with the
/Embedding filename option, it should also call the
OleRegisterServerDoc function.) The server then takes actions in
response to calls from the library. The server should not make
itself visible until the library calls the Show or DoVerb function in
the OLEOBJECTVTBL structure. (Server applications should
check for both -Embedding and /Embedding.)

By calling the OleBlockServer function, a server application can
cause requests from the client library to be saved in a queue.
When the server is ready for the server library to process the
requests, it can call the OleUnblockServer function. It is best to
use the OleUnblockServer function prior to the GetMessage
function in a message loop, so that all blocked requests are
unblocked before getting the next message. (Often a server
returns OLE_BUSY instead of calling OleBlockServer. Returning
OLE_BUSY has two advantages: It allows the client to decide
whether to retry the message or discontinue the operation, and it
allows the server to choose which requests to process.)

When an error occurs in a server-supplied function, the server
should return the OLESTATUS error value that best describes the
error. The OLE libraries use these error values to help determine
the appropriate behavior in error situations. However, the client
application does not necessarily receive the error values the
server returns; the OLE libraries may change error values before
passing them to the client application.

Whenever the server library calls the Open, Create,
CreateFromTemplate, or Edit function in the OLESERVERVTBL
structure, the server creates an OLESERVERDOC structure. If the
document is opened by a call from the server library, the server
application returns the OLESERVERDOC structure to the library.
If the document is opened directly by a user, however, the server
should call the OleRegisterServerDoc function to register the
document with the library. The library then uses the GetObject
function in the OLESERVERDOCVTBL structure to request the

Windows APl Guide

server to create an OLEOBJECT structure for each object
requested by the client application.

A new instance of the server application is typically started when
the client activates a linked or embedded object. This new
instance is unnecessary if the object is already open in an instance
of the server or if the server is a single-instance (MDD server that
is already open.

Whether the server library starts a new instance of a server to edit
an embedded or linked object depends upon the value specified
when the server calls the OleRegisterServer function.

Server Cut and
Copy commands A server application should follow these steps to cut or copy onto
the clipboard data that a client can then use to create an
embedded or linked object:

1. Open and empty the clipboard.

2. Put the data formats that describe the selection on the
clipboard, using the SetClipboardData function.

3. Close the clipboard.

If the server cuts data onto the clipboard, rather than copying it,
the server typically does not offer ObjectLink or Link formats,
because the source for the data has been removed from the
document.

The server should put data on the clipboard in the order given in
“Clipboard conventions.”

Typically, the server puts server-specific formats, Native format,
OwnerLink format, and presentation formats on the clipboard. If
it can support links, the server also puts ObjectLink format and,
when appropriate, Link format on the clipboard. The server must
provide a presentation format (CF_METAFILE, CF_BITMAP, or
CF_DIB) if the server does not have an object handler. Native
data can be used as a presentation format only if the server has an
object handler that can use the Native data.

If a user copies onto the clipboard a selection that includes an
embedded object or a link, the data formats the server should
copy depend upon whether the container document modifies the

Chapter 3, Object linking and embedding libraries 115

Update, Save As,
and New
commands

116

object or link. If the document does not modify the object or link,
the best formats are the Native and OwnerLink formats from the
original source of the object. If the document modifies the object
or link—for example, by recoloring it—the best formats are the
Native and OwnerLink formats from the container document.

If a server uses a metafile as the presentation format for an object,
the mapping mode for that metafile must be
MM_ANISOTROPIC. When a server application uses fonts in
these metafiles, it can improve performance by using TrueType
fonts. (Metafiles scale better when they use TrueType fonts.) To
use TrueType fonts exclusively, the server should set bit 2 (04h)
of the IpPitchAndFamily member of the LOGFONT structure.

The OLE libraries express the size of every object in
MM_HIMETRIC units. Neither the width nor height of an object
should exceed 32,767 MM_HIMETRIC units.

When a server is started as part of editing an object from within a
compound document, the server application should change the
Save command on the File menu to Update. When the user
chooses the Update command, the server should call the
OleSavedServerDoc function.

When the user chooses the Save As, New, or Open command in a
single-document server, the application should display a message
asking the user whether to update the object in the compound
document before performing the action. When the user chooses
the Save As command, the server should call the OleRename-
ServerDoc function. If the user responds to the message by
choosing to save changes in the object before renaming the
document, the server should call the OleSavedServerDoc
function before calling OleRenameServerDoc. For embedded
objects, choosing the Save As command causes the connection
with the client to be broken, because this command reassociates a
document in memory with the specified new file. For linked
objects, calling OleRenameServerDoc when the user chooses
Save As makes it possible for the client to associate the link with
the new file.

Most server applications maintain a “dirty” flag that records
whether changes have been made to each open document in an
instance. The following table shows the rules that apply to this

Windows APl Guide

flag when the server edits an embedded object. By following
these rules, a server can ensure that this flag is TRUE when the
document being edited in the server matches the embedded
object in the client and that, otherwise, this flag is FALSE.

Flag Condition

TRUE Library calls the Create function in the OLESERVERVTBL
structure.

TRUE Library calls the CreateFromTemplate function in
OLESERVERVTBL.

TRUE Document is changed in server.

FALSE Library calls the Edit function in OLESERVERVTBL.

FALSE Library calls the GetData function in OLEOBJECTVTBL with
the Native data format. (The flag should not change for any
other formats.)

A server following these rules displays the message asking
whether to update the object whenever it destroys a document
that was editing an embedded object and the “dirty” flag is TRUE.

In an MDI server application, the New and Open commands on
the File menu simply open a new window, and the connection
with the client application remains unchanged. The user can
continue to work with the server application after choosing one of
these commands, but when the user exits the server application,
the focus does not necessarily return to the client application.

Typically, a server can call the OleSavedServerDoc function
whenever an object needs to be updated in the client document,
including when the server closes the document. When the server
closes the document and the object should be updated, the server
sends the OLE_CLOSED notification. Client applications receive
the OLE_CLOSED notification for embedded objects but not for
linked objects, because the server library intercepts the
notification for linked objects.

Closing a server
oppliCOﬁon The server library calls the Exit function in the OLESERVERVTBL
structure when the server must quit. The server library calls the
Release function to inform the server that it is safe to quit; the
server does not necessarily stop when the library calls Release.

The server must exit when it is invisible and the library calls
Release. (The only exception is when an application supports

Chapter 3, Object linking and embedding libraries 117

118

multiple servers; in this case, an invisible server is sometimes not
revocable when the library calls Release.) If the server has no
open documents and it was started with the /Embedding option
(indicating that it was started by a client application), the server
should exit when the library calls the Release function. If the user
explicitly loads a document into a single-instance (MDI) server,
however, the server should not exit when the library calls
Release.

When the user closes a server that has edited an embedded object
without updating changes to the client application, the server
should display a message asking whether to save the changes. If
the user chooses to save the changes, the server should send the
OLE_CLOSED notification and call the OleRevokeServerDoc
function. (Because sending OLE_CLOSED prompts the server
library to send data to the client library, it is not necessary to send
OLE_CHANGED or OLE_SAVED. If the user chooses not to save
the changes, the server should simply call the OleRevoke-
ServerDoc function (without sending OLE_CLOSED).

A server can use the OleRevokeObject function to revoke a
client’s access to an object—for example, if the user destroys the
object. Similarly, the OleRevokeServerDoc function revokes a
client’s access to a document. (Because OleRevokeServerDoc
revokes a client’s access to all objects in a document, an
application that uses OleRevokeServerDoc does not need to call
the OleRevokeObject function for objects in that document.) To
terminate all conversations with client applications, the server can
call the OleRevokeServer function. These functions inform the
server library that the specified items are no longer available.

A server application can receive
OLE_WAIT_FOR_RELEASE—for example, the
OleRevokeServerDoc function can return this value. Although a
server can enter a message-dispatch loop and wait for the library
to call the server’s Release function, servers should never enter
message-dispatch loops inside any of the server-supplied
functions that are called by the server library.

The client application should not instruct the server to close the
document or exit when the server is editing a linked object, unless
the server is updating the link without displaying the object to the
user. Because a linked object exists independently of the client,
the user controls saving and closing the document by using the
server application.

Windows API Guide

Object handlers

If a server application owns the clipboard when it closes, it
should make sure that the data on the clipboard is complete and
in the correct order. For example, any Native data should be
accompanied by the OwnerLink format.

Implementing
object handlers

An application developer can use object handlers to introduce
customized features into implementations of linked and
embedded objects. When an object handler exists for a class of
object, the object handler supplants some or all of the
functionality that is usually provided by the client library and the
server application. The object handler can take specialized action
for any of the functions it intercepts. The object handler passes
functions that it does not take action on to the client library,
which then implements the default processing for that class.

An application might use an object handler to render Native data
as the presentation data for an object, instead of using metafiles or
bitmaps. Object handlers could also be used to implement special
behavior when an object is opened.

A server installing an object handler registers the handler with
the registration database, using the keyword handler. Whenever
a client application calls one of the object-creation functions, the
client library uses the class name specified for the object and the
handler keyword to search the registration database. If the library
finds an object handler, the client library loads the handler and
calls it to create the object. The handler can create an object for
which all of the creation functions and methods are defined by
the handler, or it can call default object-creation functions in the
client library.

The client library exports the object-creation OLE functions with
new names; in each case, the prefix “Ole” is changed to “Def” (for
“default”). Object handlers can import any of these functions and
use them when creating objects.

Chapter 3, Object linking and embedding libraries 119

120

Object handlers must import the following functions:

OLE function Name exported by client library
OleCreate DefCreate

OleCreateFromClip DefCreateFromClip
OleCreateFromFile DefCreateFromFile
OleCreateFromTemplate DefCreateFromTemplate
OleCreateLinkFromClip DefCreateLinkFromClip
OleCreateLinkFromFile DefCreateLinkFromFile
OleLoadFromStream DefL.oadFromStream

When an object handler defines a function that is to be called by
the client application, it should use the same name as the
corresponding OLE function the client calls, with the prefix “Ole”
replaced by “DI1”. For example, when an object handler uses the
DefCreate function exported by the client library, the handler
should use it inside a function named DlICreate. When the client
library finds an object handler for a class of object, it calls
handler-specific object-creation functions by specifying this “DIl”
prefix.

When the handler calls one of the default object-creation
functions, it receives a handle of an OLEOBJECT structure, which
in turn points to the OLEOBJECTVTBL structure containing the
current object-management functions. The object handler should
copy this OLEOBJECTVTBL structure and customize the
structure by replacing any function pointers in the structure with
pointers to functions of its own. (If the object handler saves the
pointers to the default functions, any of the replacement functions
can also call the default functions in the table of function
pointers.) When the object handler has finished customizing the
structure, it should replace the pointer to the old
OLEOBJECTVTBL structure with a pointer to the modified
OLEOBJECTVTBL structure.

When the client makes a call to a function in the client library, the
call is dispatched through the object handler’'s OLEOBJECTVTBL
structure. If the object handler has replaced the function pointer,
the call is routed to the function supplied by the handler.
Otherwise, the call is routed to the client library.

Each OLECLIENT, OLEOBJECT, OLESERVER,
OLESERVERDOC, or OLESTREAM structure contains a pointer
to a structure that contains a table of function pointers.

Windows APl Guide

(Structures containing tables of function pointers are identified
with the “VTBL” suffix.) Each of the structures containing a
pointer to a “VTBL” structure can also contain extra
instance-specific information. This information is meaningful
only to the application that supplies it and should not be used by
other applications; for example, an object handler should not
attempt to use any instance-specific information in an
OLECLIENT structure.

The object handler should use the “Def” and “DIll” renaming
conventions when it defines specialized functions. For example, if
an object handler modifies the Draw function from an object’s
OLEOBJECTVTBL structure, it should copy that Draw function to
a function named DefDraw and replace the Draw function with a
specialized function named DIiDraw. Inside the DIIDraw function,
the object handler can call DefDraw if the default drawing
operation is appropriate in a particular case.

The following example demonstrates this process of copying and
replacing pointers to functions. Functions with the “DIl” prefix
should be exported in the module-definition file.

/* Declare the DllDraw and DefDraw functions. */

OLESTATUSFARPASCALDI11Draw (LPOLEOBJECT, HDC, LPRECT, LPRECT, HDC) ;
OLESTATUS (FARPASCAL*DefDraw) (LPOLEOBJECT, HDC, LPRECT, LPRECT, HDC) ;

/* Copy the Draw function from OLEOBJECTVTBL to DefDraw. */
DefDraw = lpobj->lpvtbl->Draw;
/* Copy DllDraw to OLEOBJECTVTBL. */

*1lpobj->1lpvtbl->Draw = DllDraw;

OLESTATUSFARPASCALD11Draw (1pObject, hdc, 1pBounds, 1pWBounds,

hdcFormat)
LPOLEOBJECT lpObject;
HDC hdc;
LPRECT lpBounds;
LPRECT 1pWBounds;
HDC hdcFormat ;
{
/* Return DefDraw if Native data is not available. */
if ((*lpobj->lpvtbl->GetData) (lpobj, cfNative, &hData) != OLE_OK)

return (*DefDraw) (lpobj, hdc, lpBounds, lpWBounds, hdcFormat);

Chapter 3, Object linking and embedding libraries 121

Creating objects

in an object
handler

DefCreateFromClip and

122

DICreateFromClip

Most of the object-creation functions in the OLE API work in
exactly the same way when they are renamed and used by
object-handler DLLs. Two functions are somewhat different,
however: OleCreateFromClip and OleLoadFromStream.

When the client library calls the DilCreateFromClip function, the
library includes a parameter that is not specified in the original
call to the OleCreateFromClip function. This parameter, objtype,
specifies whether the object being created is an embedded object
or a link; its value can be either OT_LINK or OT_EMBEDDED.

The following syntax block shows the objtype parameter when an
object handler uses the DefCreateFromClip function. The
DiiCreateFromClip function has exactly the same syntax as
DefCreateFromClip.

OLESTATUS DefCreateFromClip (lpszProtocol, lpclient, lhclientdoc,
lpszObjname, lplpobject, renderopt, cfFormat, objtype);

LPSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpclient; /* address of client structure */
LHCLIENTDOC lhclientdoc; /* long handle of client document */
LPSTR lpszObjname; /* string for object name */
LPOLEOBJECT FAR * lplpobject; /* address of pointer to object */
OLEOPT_RENDER renderopt; /* rendering options */
OLECLIPFORMAT cfFormat; /* clipboard format */
LONG objtype: /* OT_LINKED or OT EMBEDDED */

If DliICreateFromClip calls DefCreateFromClip,
DliCreateFromClip should pass it the objtype parameter along
with the other parameters from the version of DefCreateFromClip
that was exported by the client library. DlICreateFromClip can
modify some of these parameters before passing them back to
DefCreateFromClip. For example, the object handler could
specify a different value for the renderopt parameter when it calls
DefCreateFromClip. If the client calls this function with
olerender_draw for renderopt and the handler performs the
drawing with Native data, the handler could change
olerender_draw to olerender_none. If the client calls this function
with olerender_draw for renderopt and the handler calls the
GetData function and performs the drawing based on a
class-specific format, the handler could change olerender_draw to
olerender_format. If the handler needed a different rendering
format than the format specified by the client application, the
object handler could also change the value of the cfFormat
parameter in the call to DefCreateFromClip.

Windows API Guide

If an object handler uses Native data to render an embedded
object, the handler can call the library and specify
olerender_none. If a handler uses Native data to render a linked
object, it can use olerender_format and specify Native data. When
the handler’s Draw function is called, the handler calls the
GetData function, specifying Native data, to do the rendering. If a
handler uses a private data format, the procedure is the
same—except that the private format is specified with the
olerender_format option and with the GetData function.

DefloadFromStream When the client library calls the DllLoadFromStream function,
and DllLoadFromStream the library includes three parameters that are not specified in the

original call to the OleLoadFromStream function. One of the
additional parameters is objtype, as described for
DefCreateFromClip and DIICreateFromClip. The other two
parameters are aClass, which is an atom containing the class name
for the object, and cfFormat, which specifies a private clipboard
format that the object handler can use for rendering the object.

The following syntax block shows the objtype, aClass, and cfFormat
parameters when an object handler uses the DefLoadFromStream
function. The DlILoadFromStream function has exactly the same
syntax as DefLoadFromStream.

OLESTATUS DefloadFromStream(lpstream, lpszProtocol, lpclient,
lhclientdoc, lpszObjname, lplpobject, objtype, aClass, cfFormat);

LPOLESTREAM lpstream; /* address of stream for object */
LPSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpclient; /* address of client structure */
LHCLIENTDOC lhclientdoc; /* long handle of client document */
LPSTR lpszCbjname; /* string for object name =/
LPOLEOBJECT FAR * lplpobject; /* address of pointer to cbject */
LONG objtype; /* OT_LINKED or OT EMBEDDED */
ATOM aClass; /* atom containing object’s class name */
OLECLIPFORMAT cfFormat; /* private data format for rendering */

If DliLoadFromStream calls DefLoadFromStream,
DllLoadFromStream should pass it the three additional
parameters along with the other parameters from the version of
DefLoadFromStream that was exported by the client library.

DliLoadFromStream can modify some of these parameters before
passing them back to DefLoadFromStream. For example, the
object handler could modify the value of the cfFormat parameter
to specify a private data format it would use to render the object.

Chapter 3, Object linking and embedding libraries 123

When the client calls the object handler with
DefLoadFromStream, the handler uses the Get function from the
OLESTREAMVTBL structure to obtain the data for the object.

Direct use of Dynamic Data Exchange

Client

applications and

124

direct use of
Dynamic Data
Exchange

The OLE libraries, OLECLL.DLL and OLESVR.DLL, use DDE
messages to communicate with each other. Although client and
server applications can use DDE directly, without employing
OLECLILDLL or OLESVR.DLL, this method of implementing
OLE is not recommended. Future enhancements to the OLE
libraries will benefit applications that use the libraries but will not
benefit applications that use DDE directly.

The following information about the DDE-based OLE protocol is
provided for applications that must implement DDE directly,
despite losing the ability to take advantage of future
enhancements to the system.

Implementation of the OLE protocol requires implementation of
the underlying DDE protocol. All the standard DDE rules and
facilities apply. Applications that conform to this protocol must
also conform to the DDE specification. Conforming to this
specification implies supporting the System topic and the
standard items in that topic.

When opening a link or an embedded document, the client
application should look up the class name in the registration
database, as described in “Registration.”

The following pseudocode illustrates the chain of events for a
client implementing OLE through DDE. Whenever a client that
attempts to establish a conversation with a server receives
responses from more than one server, the client should accept the
first server and reject the others.

Windows APl Guide

Linked object:

WM_DDE_INITIATE class name, document name
if not found {
WM_DDE_INITIATE class name, OLESystem
if not found {
WM_DDE_INITIATE class name, System
if not found {
launch application name, /Embedding
fLaunched = true
WM_DDE_INITIATE class name, OLESystem
if not found {
WM_DDE_INITIATE class name, System
if not found
return error

}
/ *
* Now there is a conversation with the server on the

* System or OLESystem topic.
*/

WM_DDE_EXECUTE StdOpenDocument(DocumentName)
WM_DDE_ INITIATE class name, document name
if not found {
if(fLaunched) WM_DDE_EXECUTE StdExit /* clean up */
return error

}
/’(-

* Now there is a conversation with the correct document.

*/

Chapter 3, Object linking and embedding libraries 125

Embedded object:

WM_DDE_INITIATE class name, OLESystem
if not found {
WM_DDE_INITIATE class name, System
if not found {
launch application name, /Embedding
fLaunched = true
WM_DDE_INITIATE class name, OLESystem
if not found {
WM_DDE_INITIATE class name, System
if not found
return error

}
/3(-

* Now there is a conversation with the server on the system or
* OLESystem topic.
*/

DDE_EXECUTE StdEditDocument(DocumentName)

/ *
* Or StdCreateDoc if this is an Insert Object command

*/

WM_DDE_INITIATE class name, document name
if not found {

if(fLaunched) DDE_EXECUTE StdExit /* clean up */
return error

}

/* Now there is a conversation with the correct document. */

126 Windows API Guide

Server
Opp"COﬁOﬂS ang When a server receives the /Embedding command-line argument,

direct use of it should not create a new default document. Instead, it should

s wait until the client sends either the StdOpenDocument

Dynamic DatQ command or the StdEditDocument command followed by the

Exchonge Native data and then instructs the server to show the window.
The server can use the StdHostNames item to display the client’s

name in the window title.

The following pseudocode illustrates the chain of events for a
server implementing OLE through DDE. The example shows two
cases: one in which the server reuses a single instance for editing
all objects (in MDI child windows), and another in which a new
instance is used for each object. Applications that use a new
instance for each object should reject requests to open or create a
new document when they already have a document open.

MDI application:

case WM_DDE_INITIATE:
if class name == this class {
if (DocumentName == OLESystem | | DocumentName ==
System)
WM_DDE_ACK
else if DocumentName == name of some open document
WM_DDE_ACK
}

Multiple-instance application:

case WM_DDE_INITIATE:
if class name == this class {
if (DocumentName == OLESystem | | DocumentName ==
System) {
if no documents are open
WM _DDE_ACK

}

else if DocumentName == name of some open document
WM_DDE_ACK

Chapter 3, Object linking and embedding libraries 127

128

Conversations

ltems for the
system topic

Document operations are performed during conversations with
an application’s OLESystem or System topic. The document’s
class name is used to establish the conversation.

Data transfer and negotiation operations are performed during
conversations with the document (that is, the topic). The
document name is used to establish the conversation.

Note that the topic name is used only in initiating conversations
and is not fixed throughout the conversation; permitting the
document to be renamed does not mean that there will be two
names. Therefore, it is reasonable to tie the topic name to the
document name.

An application using DDE-based OLE can use three new items
for the System topic: the Topics item, the Protocols item, and the
Status item.

The Topics item returns a list of DDE topic names that the server
application has open. Where topics correspond to documents, the
topic name is the document name.

The Protocols item returns a list of protocol names supported by
the application. The list is returned in tab-separated text format.
A protocol is a defined set of DDE execute strings and item and
format conventions that the application understands. The
protocol currently defined for linked and embedded objects is the
following:

Protocol: StdFileEditing commands/items / formats

For compatibility with client applications that were written before
the implementation of the OLE protocol, server applications that
use the DDE protocol directly should also include the string
Embedding in the list of protocols.

The Status item is a text item that returns Ready if the server is
prepared to respond to DDE requests; otherwise, it returns Busy.
This item can be queried to determine if the client should offer
such functions as one that gives the user an opportunity to
update the object. Because it is possible that a server could reject

Windows AP Guide

or defer a request even if Status returns Ready, client applications
should not depend solely on the Ready item.

Standard item
names anad Applications supporting OLE with direct DDE use four clipboard
notification formats in addition to the regular data and picture formats. These

are ObjectLink, OwnerLink, Native, and Binary. Binary format is
control astream of bytes whose interpretation is implicit in the item; for
example, the EditEnvitems, StdTargetDevice, and StdHostNames
items are in Binary format. The ObjectLink, OwnerLink, and
Native formats are described in “Clipboard conventions.”

New items available on each topic other than the System topic are
defined for this protocol. These items are the following:

Item Description

StdDocumentName Contains the permanent document name
associated with the topic. If no permanent
storage is associated with the topic, this item is
empty. This item supports both request and
advise transactions and can be used to detect the
renaming of open documents.

EditEnvitems Returns a list in tab-separated text format of the
items that contain environmental information
supported by the server for its documents.
Currently defined items are StdHostNames,
StdDocDimensions, and StdTargetDevice.
Applications can declare other items (and define
their interpretations if Binary format is used) to
permit clients that are informed of these items to
provide more detailed information. Servers that
cannot use particular items should omit their
names from the EditEnvItems item. Clients
should use the WM_DDE_REQUEST message
with this item to find out which items the server
can use and should supply the data through a
WM_DDE_POKE message.

StdHostNames Accepts information about the client application,
in Binary format interpreted as the following
structure:

struct {
WORD clientNameOffset;
WORD documentNameOffset;
BYTE datal(];
}StdHostNames;

Chapter 3, Object linking and embedding libraries 129

Item Description

The offsets are relative to the start of the data
array. They indicate the starting point for the
appropriate information in the array.

StdTargetDevice Accepts information about the target device that
the client is using. This information is in Binary
format, interpreted as the following structure.
Offsets are relative to the start of the data array.

typedefstruct OLETARGETDEVICE {
WORD otdDeviceNameOffset;
WORD otdDriverNameOffset;
WORD otdPortNameOffset;
WORD otdExtDevmodeOffset;
WORD cotdExtDevmodeSize;
WORD otdEnvironmentOffset;
WORD otdEnvironmentSize;
BYTE otdbatall:
JOLETARGETDEVICE;

StdDocDimensions Accepts information about the size of a
document. This information is in Binary format,
interpreted as the following structure. These
values are specified in MM_HIMETRIC units.

struct {
int iXContainer;
int iYContainer;
BtdDocDimensions;

StdColorScheme Returns the colors that the server is currently
using and accepts information about the colors
that the client requests the server to use. This
information is in Binary format, interpreted as a
LOGPALETTE structure.

null Specifies a request or advise transaction on all
data contained in the topic. This item is a
zero-length item name.

The update method used for advise transactions on items follows
a convention in which an update specifier is appended to the
actual item name. The item is encoded as follows:

itemnamelupdate type

130 Windows API Guide

For backward compatibility, omitting the update type has the
same result as specifying /Change. The update type placeholder
may be filled with one of the following values:

Value Meaning

/Change Notify for each change.
[Close Notify when document is closed.
/Save Notify when document is saved.

DDE server applications are required to save each occurrence of a
WM_DDE_ADVISE message that specifies a unique combination
of itemname, update type, format, and conversation. A notification is
disabled by a WM_DDE_UNADVISE message with
corresponding parameters. If the WM_DDE_UNADVISE
message does not specify a format, it disables the oldest
notification in first in, first out (FIFO) rotation.

Standard

commands in The syntax for standard commands sent in execute strings is the
DDE execute same as for other DDE commands:

STI'iﬂgS command(argument1,argument2,...)[command2(argument1,argument?,...)]

Commands without arguments do not require parentheses. String
arguments must be enclosed in double quotes.

International execute DDE execute strings are typically sent from a macro language in
commands an external application and are typically localized. OLE execute
commands, however, are sent by application programs for their
own purposes, need not be localized, and must be commonly
recognized.

The OLE standard execute commands should not be localized;
the U.S. spelling and separator characters are used. Therefore, the
following rules apply:

B (Client applications and the client library send standard execute |
commands in U.S. form.

B The server library must receive the U.S. form for these |
commands.

B Servers written directly to the DDE-level protocol should parse
the U.S. form, if they have no additional commands. ‘

Chapter 3, Object linking and embedding libraries 131 |

132

Required commands

® Servers that support both OLE and localized DDE execute
commands should first parse the string by using localized
separators. If this fails, they should parse it again using the
U.S. form and, if successful, should execute the command.
Optionally, if the command is received in the U.S. form, the
server can check that the command is one of the valid standard
commands.

This section lists commands that must be supported by server
applications.

The StdNewDocument, StdNewFromTemplate,
StdEditDocument, and StdOpenDocument commands all make
the document available for DDE conversations with the name
DocumentName, They do not show any window associated with
the document; the client must send the StdShowltem and
StdDoVerbltem commands, or the StdDoVerbltem command
alone to make the window visible. This enables the client to
negotiate additional parameters with the server (for example, the
StdTargetDevice item) without causing unnecessary repaints.

StdNewDocument(ClassName, DocumentName)
Creates a new, empty document of the given class, with the
given name, but does not save it. The server should return an
error value if the document name is already in use. When the
client receives this error, it should generate another name and
try again.

The server should not show the window until it receives a
StdShowltem command. Waiting for the client to send the
StdShowltem and StdDoVerbltem commands makes it
possible for the client to negotiate additional parameters (for
example, by using StdTargetDevice) without forcing the
window to repaint.

StdNewFromTemplate(ClassName, DocumentName, TemplateName)
Creates a new document of the given class with the given
document name, using the template with the given permanent
name (that is, filename).

The server should not show the window until it receives a
StdShowltem command. Waiting for the client to send a
StdShowltem command makes it possible for the client to
negotiate additional parameters (for example, by using
StdTargetDevice) without forcing the window to repaint.

Windows API Guide

StdEditDocument(DocumentName)
Creates a document with the given name and prepares to
accept data that is poked into it with WM_DDE_POKE. The
server should return an error if the document name is already
in use. When the client receives this error, it should generate
another name and try again.

The server should not show the window until it receives a
StdShowltem command. Waiting for the client to send a
StdShowltem command makes it possible for the client to
negotiate additional parameters (for example, by using
StdTargetDevice) without forcing the window to repaint.

StdOpenDocument(DocumentName)
Sent to the System topic. This command opens an existing
document with the given name.

The server should not show the window until it receives a
StdShowltem command. Waiting for the client to send a
StdShowltem command makes it possible for the client to
negotiate additional parameters (for example, by using
StdTargetDevice) without forcing the window to repaint.

StdCloseDocument(DocumentName)
Sent to the System topic. This command closes the window
associated with the document. Following acknowledgment, the
server terminates any conversations associated with the
document. The server should not activate the window while
closing it.

StdShowltem(DocumentName, ItemName [, fDoNotTakeFocus])
Sent to the System topic. This command makes the window
containing the named document visible and scrolls to show the
named item (if any). The optional third argument indicates
whether the server should take the focus and bring itself to the
front. This argument should be TRUE if the server should not
take the focus; otherwise, it should be FALSE. The default
value is FALSE.

StdExit
Shuts down the server application. This command should be
used only by the client application that launched the server.
This command is available in the System topic only.

StdExit is sent to shut down an application if an error occurs
during the startup phase or if the client started the server for
an invisible update. If servers have unsaved data opened by
the user, they should ignore this command.

Chapter 3, Object linking and embedding libraries 133

134

Variants on required
commands

The following variants of the above commands may be sent to the
document topic rather than the System topic. This allows a client
that already has a conversation with the document to avoid
opening an additional conversation with the system. The
document name is omitted from these commands because it is
implied by the conversation topic and because it may have been
changed by the server. This kind of name change does not
invalidate the conversation. The client should not be forced to
keep track of the name change unnecessarily. However, the
server must be able to use the conversation information to
identify the document on which to operate.

StdCloseDocument
Sent to the document conversation. This command closes the
document associated with the conversation without activating
it. This command causes a WM_DDE_TERMINATE message
to be posted by the server window following the
acknowledgment.

StdDoVerbltem(ItemName, iVerb, fShow, fDoNotTakeFocus)
Sent to the document conversation. This command is similar to
the StdShowltem command, except that it includes an integer
indicating which of the registered operations to perform and a
flag indicating whether to show the window. The server can
ignore the fShow flag, if necessary.

StdShowltem(ItemName [, fDoNotTakeFocus])
Sent to the document conversation. This command shows the
document window, scrolling if necessary to bring the item into
view. If the item name is NULL, scrolling does not occur. The
optional second argument indicates whether the server should
take the focus and bring itself to the front. This argument
should be TRUE if the server should not take the focus;
otherwise, it should be FALSE. The default value is FALSE.

Windows APl Guide

Functions

AbortDoc 3.1
Syntax int AbortDoc(hdc)
function AbortDoc(DC: HDC): Integer;
The AbortDoc function terminates the current print job and erases
everything drawn since the last call to the StartDoc function. This function
replaces the ABORTDOC printer escape for Windows version 3.1.
Parameters hdc Identifies the device context for the print job.

Return Value

Comments

See Also

The return value is greater than or equal to zero if the function is
successful. Otherwise, it is less than zero.

Applications should call the AbortDoc function to terminate a print job
because of an error or if the user chooses to cancel the job. To end a
successful print job, an application should use the EndDoc function.

If Print Manager was used to start the print job, calling the AbortDoc
function erases the entire spool job—the printer receives nothing. If Print
Manager was not used to start the print job, the data may have been sent
to the printer before AbortDoc was called. In this case, the printer driver
would have reset the printer (when possible) and closed the print job.

EndDoc, SetAbortProc, StartDoc

Chapter 4, Funcfions 135

AbortProc

AbortProc 3.1
Syntax BOOL CALLBACK AbortProc(hdc, error)
TAbortProc = function(DC: HDC; Error: Integer): Bool;
The AbortProc function is an application-defined callback function that is
called when a print job is to be canceled during spooling.
Parameters hdc Identifies the device context.
error Specifies whether an error has occurred. This parameter is

Return Value

Comments

See Also

zero if no error has occurred; it is SP_OUTOFDISK if Print
Manager is currently out of disk space and more disk
space will become available if the application waits. If this
parameter is SP_OUTOFDISK, the application need not
cancel the print job. If it does not cancel the job, it must
yield to Print Manager by calling the PeekMessage or
GetMessage function.

The callback function should return TRUE to continue the print job or
FALSE to cancel the print job.

An application installs this callback function by calling the SetAbortProc
function. AbortProc is a placeholder for the application-defined function
name. The actual name must be exported by including it in an EXPORTS
statement in the application’s module-definition file.

GetMessage, PeekMessage, SetAbortProc

AllocDiskSpace 3.1

136

Syntax

#include <stress.h>
int AllocDiskSpace(lLeft, uDrive)

function AllocDiskSpace(1Left: Longint; wDrive: Word): Integer;

The AllocDiskSpace function creates a file that is large enough to ensure
that the specified amount of space or less is available on the specified disk
partition. The file, called STRESS.EAT, is created in the root directory of
the disk partition.

If STRESS.EAT already exists when AllocDiskSpace is called, the function
deletes it and creates a new one.

Windows AP! Guide

Parameters

Return Value

Comments

See Also

AllocFileHandles

ILeft Specifies the number of bytes to leave available on the disk.

uDrive Specifies the disk partition on which to create the
STRESS.EAT file. This parameter must be one of the
following values:

Value Meaning

EDS_WIN Creates the file on the Windows partition.

EDS_CUR Creates the file on the current partition.

EDS_TEMP Creates the file on the partition that contains
the TEMP directory.

The return value is greater than zero if the function is successful; it is zero
if the function could not create a file; or it is —1 if at least one of the
parameters is invalid.

In two situations, the amount of free space left on the disk may be less
than the number of bytes specified in the ILeft parameter: when the
amount of free space on the disk is less than the number in ILeft when an
application calls AllocDiskSpace, or when the value of ILeft is not an exact
multiple of the disk cluster size.

The UnAllocDiskSpace function deletes the file created by
AllocDiskSpace.

UnAllocDiskSpace

AllocFileHandles 3.1

Syntax

Parameters

#include <stress.h>
int AllocFileHandles(Left)

function AllocFileHandles(left: Integer): Integer;

The AllocFileHandles function allocates file handles until only the
specified number of file handles is available to the current instance of the
application. If this or a smaller number of handles is available when an
application calls AllocFileHandles, the function returns immediately.

Before allocating new handles, this function frees any handles previously
allocates by AllocFileHandles.

Left Specifies the number of file handles to leave available.

Chapter 4, Functions 137

AllocGDIMem

Return Value The return value is greater than zero if AllocFileHandles successfully
allocates at least one file handle. The return value is zero if fewer than the
specified number of file handles were available when the application
called AllocFileHandles. The return value is -1 if the Left parameter is
negative.

Comments AllocFileHandles will not allocate more than 256 file handles, regardless
of the number available to the application.

The UnAliocFileHandles function frees all file handles previously
allocated by AllocFileHandles.

See Also UnAllocFileHandles

AllocGDIMem 3.1

Syntax #include <stress.h>
BOOL AllocGDIMem(uLeft)

function AllocGDIMem(wLeft: Word): Bool;

The AllocGDIMem function allocates memory in the graphics device
interface (GDI) heap until only the specified number of bytes is available.
Before making any new memory allocations, this function frees memory
previously allocated by AliocGDIMem.

Parameters uleft Specifies the amount of memory, in bytes, to leave
available in the GDI heap.

Return Value The return value is nonzero if the function is successful. Otherwise, it is
zero.

Comments The FreeAlIGDIMem function frees all memory allocated by AllocGDIMem.

See Also FreeAllGDIMem

138 Windows API Guide

AllocMem

AllocUserMem

3.1

Syntax

Parameters

Return Value

Comments

See Also

AllocUserMem

#include <stress.h>
BOOL AllocMem(dwLeft)

function AllocMem(dwLeft: Longint): Bool;

The AllocMem function allocates global memory until only the specified
number of bytes is available in the global heap. Before making any new
memory allocations, this function frees memory previously allocated by
AllocMem.

dwLeft Specifies the smallest size, in bytes, of memory allocations
to make.

The return value is nonzero if the function is successful. Otherwise, it is
Zero.

The FreeAllMem function frees all memory allocated by AllocMem.

FreeAllMem

3.1

Syntax

Parameters

Return Value

Comments

See Also

Chapter 4, Functions

#include <stress.h>
BOOL AllocUserMem(uContig)

function AllocUserMem(wContig: Word): Bool;

The AllocUserMem function allocates memory in the USER heap until
only the specified number of bytes is available. Before making any new
allocations, this function frees memory previously allocated by
AllocUserMem.

uContig Specifies the smallest size, in bytes, of memory allocations
to make.

The return value is nonzero if the function is successful. Otherwise, it is
zero.

The FreeAllUserMem function frees all memory allocated by AllocUserMem.

FreeAllUserMem

139

CallNextHookEx

CallNextHookEx 3.1

CdlWndProc

Syntax

Parameters

Return Value

Comments

See Also

LRESULT CallNextHookEx(hHook, nCode, wParam, IParam)

function CallNextHookEx(Hook: HHook; Code: Integer; wParam: Word;
|Param: Longint): Longint;

The CallNextHookEx function passes the hook information to the next
hook function in the hook chain.

hHook Identifies the current hook function.

nCode Specifies the hook code to pass to the next hook function.
A hook function uses this code to determine how to
process the message sent to the hook.

wParam Specifies 16 bits of additional message-dependent
information.

IParam Specifies 32 bits of additional message-dependent
information.

The return value specifies the result of the message processing and
depends on the value of the nCode parameter.

Calling the CallNextHookEXx function is optional. An application can call
this function either before or after completing any processing in its own
hook function. If an application does not call CallNextHookEx, Windows
will not call the hook functions that were installed before the application’s
hook function was installed.

SetWindowsHookEx, UnhookWindowsHookEx

3.1

140

Syntax

Parameters

LRESULT CALLBACK CallWndProc(code, wParam, 1Param)

The CallWndProc function is a library-defined callback function that the
system calls whenever the SendMessage function is called. The system
passes the message to the callback function before passing the message to
the destination window procedure.

code Specifies whether the callback function should process the

message or call the CallNextHookEx function. If the code
parameter is less than zero, the callback function should

Windows APl Guide

Return Value

CBTProc

pass the message to CaliINextHookEx without further

processing.

wParam Specifies whether the message is sent by the current task.
This parameter is nonzero if the message is sent;
otherwise, it is NULL.

1Param Points to a structure that contains details about the

message. The following shows the order, type, and
description of each member of the structure:

Member Description

IParam Contains the IParam parameter of the message.

wParam Contains the wParam parameter of the message.

uMsg Specifies the message.

hWnd Identifies the window that will receive the
message.

The callback function should return zero.

Comments The CallWndProc callback function can examine or modify the message
as necessary. Once the function returns control to the system, the
message, with any modifications, is passed on to the window procedure.
This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the
WH_CALLWNDPROC filter type and the procedure-instance address of
the callback function in a call to the SetWindowsHookEx function.
CallWndProc is a placeholder for the library-defined function name. The
actual name must be exported by including it in an EXPORTS statement
in the library’s module-definition file.

See Also CallNextHookEx, SendMessage, SetWindowsHookEx
CBTProc 3.1
Syntax LRESULT CALLBACK CBTProc(code, wParam, |Param)

The CBTProc function is a library-defined callback function that the
system calls before activating, creating, destroying, minimizing,
maximizing, moving, or sizing a window; before completing a system
command; before removing a mouse or keyboard event from the system
message queue; before setting the input focus; or before synchronizing
with the system message queue.

Chapter 4, Functions 141

CBTProc

142

Parameters

The value returned by the callback function determines whether to allow
or prevent one of these operations.

code Specifies a computer-based-training (CBT) hook code that
identifies the operation about to be carried out, or a value
less than zero if the callback function should pass the code,
wParam, and [Param parameters to the CallNextHookEx
function. The code parameter can be one of the following:

Code

Meaning

HCBT_ACTIVATE

HCBT_CLICKSKIPPED

HCBT_CREATEWND

HCBT_DESTROYWND
HCBT_KEYSKIPPED

HCBT_MINMAX

HCBT_MOVESIZE

Indicates that the system is about to activate a
window.

Indicates that the system has removed a mouse
message from the system message queue. A CBT
application that must install a journaling playback
filter in response to the mouse message should do
so when it receives this hook code.

Indicates that a window is about to be created. The
system calls the callback function before sending
the WM_CREATE or WM_NCCREATE message to
the window. If the callback function returns TRUE,
the system destroys the window—the
CreateWindow function returns NULL, but the
WM_DESTROY message is not sent to the window.
If the callback function returns FALSE, the window
is created normally.

At the time of the HCBT_CREATEWND
notification, the window has been created, but its
final size and position may not have been
determined, nor has its parent window been
established.

It is possible to send messages to the newly created
window, although the window has not yet received
WM_NCCREATE or WM_CREATE messages.

It is possible to change the Z-order of the newly
created window by modifying the hwndlnsertAfter
member of the CBT_CREATEWND structure.
Indicates that a window is about to be destroyed.
Indicates that the system has removed a keyboard
message from the system message queue. A CBT
application that must install a journaling playback
filter in response to the keyboard message should
do so when it receives this hook code.

Indicates that a window is about to be minimized
or maximized.

Indicates that a window is about to be moved or
sized.

Windows API Guide

CBTProc

Code Meaning

HCBT_QS Indicates that the system has retrieved a
WM_QUEUESYNC message from the system
message queue.

HCBT_SETFOCUS Indicates that a window is about to receive the
input focus.

HCBT_SYSCOMMAND Indicates that a system command is about to be
carried out. This allows a CBT application to
prevent task switching by hot keys.

wParam This parameter depends on the code parameter. See the
following Comments section for details.

[Param This parameter depends on the code parameter. See the
following Comments section for details.

Return Value For operations corresponding to the following CBT hook codes, the
callback function should return zero to allow the operation, or 1 to
prevent it:

HCBT_ACTIVATE
HCBT_CREATEWND
HCBT_DESTROYWND
HCBT_MINMAX
HCBT_MOVESIZE
HCBT_SYSCOMMAND

The return value is ignored for operations corresponding to the following
CBT hook codes:

HCBT_CLICKSKIPPED
HCBT_KEYSKIPPED
HCBT_QS

Comments The callback function should not install a playback hook except in the
situations described in the preceding list of hook codes.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the
WH_CBT filter type and the procedure-instance address of the callback
function in a call to the SetWindowsHooKEX function.

CBTProc is a placeholder for the library-defined function name. The
actual name must be exported by including it in an EXPORTS statement
in the library’s module-definition file.

Chapter 4, Functions 143

CBTProc

The following table describes the wParam and IParam parameters for each
HCBT_ constant.

Constant

wParam

IParam

HCBT_ACTIVATE

HCBT_CLICKSKIPPED

HCBT_CREATEWND

HCBT_DESTROYWND

HCBT_KEYSKIPPED

HCBT_MINMAX

HCBT_MOVESIZE

HCBT_QS

HCBT_SETFOCUS

Specifies the handle of the
window about to be activated.

Identifies the mouse message
removed from the system
message queue.

Specifies the handle of the new
window.

Specifies the handle of the
window about to be destroyed.

Identifies the virtual key code.

Specifies the handle of the
window being minimized or
maximized.

Specifies the handle of the
window to be moved or sized.

This parameter is undefined; it
should be set to 0.

Specifies the handle of the
window gaining the input focus.

Specifies a long pointer to a
CBTACTIVATESTRUCT structure that
contains the handle of the currently active
window and specifies whether the
activation is changing because of a mouse
click.

Specifies a long pointer to a MOUSE-
HOOKSTRUCT structure that contains the
hit-test code and the handle of the
window for which the mouse message is
intended. For a list of hit-test codes, see
the description of the WM_NCHITTEST
message.

Specifies a long pointer to a
CBT_CREATEWND data structure that
contains initialization parameters for the
window.

This parameter is undefined and should
be set to OL.

Specifies the repeat count, scan code,
key-transition code, previous key state,
and context code. For more information,
see the description of the WM_KEYUP or
WM_KEYDOWN message.

The low-order word specifies a show-
window value (SW_) that specifies the
operation. For a list of show-window
values, see the description of the
ShowWindow function. The high-order
word is undefined.

Specifies a long pointer to a RECT
structure that contains the coordinates of
the window.

This parameter is undefined and should
be set to OL.

The low-order word specifies the handle
of the window losing the input focus. The
high-order word is undefined.

Windows APl Guide

ChooseColor

Constant

wParam

IParam

HCBT_SYSCOMMAND

Specifies a system-command
value (SC_) that specifies the
system command. For more
information about system
command values, see the
description of the
WM_SYSCOMMAND message.

If wParam is SC_HOTKEY, the low-order
word of [Param contains the handle of the
window that task switching will bring to
the foreground. If wParam is not
SC_HOTKEY and a System-menu
command is chosen with the mouse, the
low-order word of [Param contains the
x-coordinate of the cursor and the
high-order word contains the
y-coordinate. If neither of these
conditions is true, [Param is undefined.

See Also CallNextHookEx, SetWindowsHookEx

ChooseColor

3.1

Syntax

Parameters

#include <commdlg.h>
BOOL ChooseColor(Ipcc)

function ChooseColor(var CC: TChooseColor): Bool;

The ChooseColor function creates a system-defined dialog box from
which the user can select a color.

Ipcc

Chapfter 4, Functions

Points to a CHOOSECOLOR structure that initially
contains information necessary to initialize the dialog box.
When the ChooseColor function returns, this structure
contains information about the user’s color selection. The
CHOOSECOLOR structure has the following form:

#include <commdlg.h>

typedef struct tagCHOOSECOLOR { /* cc */
DWORD 1StructSize;
HWND hwndOwner;
HWND hInstance;

COLORREF rgbResult;
COLORREF FAR* lpCustColors;

DWORD

Flags;

LPARAM 1CustData;

UINT

(CALLBACK* lpfnHook) (HWND,

UINT, WPARAM, LPARAM);

IPCSTR lpTemplateName;

}CHOOSECOLOR;

145

ChooseColor

146

Return Value

Errors

Comments

Example

The return value is nonzero if the function is successful. It is zero if an
error occurs, if the user chooses the Cancel button, or if the user chooses
the Close command on the System menu (often called the Control menu)
to close the dialog box.

Use the CommDIgExtendedError function to retrieve the error value,
which may be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE

The dialog box does not support color palettes. The color choices offered
by the dialog box are limited to the system colors and dithered versions of
those colors.

If the hook function (to which the IpfnHook member of the
CHOOSECOLOR structure points) processes the WM_CTLCOLOR
message, this function must return a handle for the brush that should be
used to paint the control background.

The following example initializes a CHOOSECOLOR structure and then
creates a color-selection dialog box:

/* Color variables */

CHOOSECOLOR cc;

COLORREF clr;

COLORREF aclrCust(16];

int i;

/* Set the custom-color controls to white. */

for (1 =0; i < 16; i++)
aclrCust[i] = RGB (255, 255, 255);

/* Initialize clr toblack. */
clr = RGB(0, 0, 0);

/* Set all structure fields to zero. */

Windows API Guide

memset (&cc, O,

ChooseFont

sizeof (CHOOSECOLCR)) ;

/* Initialize the necessary CHOOSECOLOR members. */

cc
cc
cc
cc
cc

.1StructSize =
.hwndOwner = hwnd;
.rgbResult = clr;
.lpCustColors = aclrCust;
.Flags = CC_PREVENTFULLOPEN;

ifiChooseColor (&cc))

ChoosefFont

. /* Use cc.rgbResult to select the user-requested color.

sizeof (CHOOSECOLOR) ;

*/

3.1

Syntax

#include <commdlg.h>

BOOL ChooseFont(lpcf)

function ChooseFont(var ChooseFont: TChooseFont): Bool;

The ChooseFont function creates a system-defined dialog box from
which the user can select a font, a font style (such as bold or italic), a point
size, an effect (such as strikeout or underline), and a color.

Parameters Ipcf

Chapter 4, Functions

Points to a CHOOSEFONT structure that initially contains
information necessary to initialize the dialog box. When
the ChooseFont function returns, this structure contains
information about the user’s font selection. The

CHOOSEFONT structure has the following form:

#include <commdlg.h>

typedef struct tagCHOOSEFONT {

DWORD

HWND

HDC

LOGFONT FAR*
int

DWORD
COLORREF
LPARAM

UINT (CALLBACK*
LPCSTR
HINSTANCE
LPSTR

UINT

int

int

}CHOOSEFONT;

/* cf */
1StructSize;
hwndOwner;

hDC;

lpLogFont;
iPointSize;
Flags:;
rgbColors;
lCustData;
1pfnHook) (HWND,
lpTemplateName;
hlnstance;
lpszStyle;
nFontType;
nSizeMin;
nSizeMax;

UINT, WPARAM,

LPARAM) ;

147

ClassFirst

Return Value The return value is nonzero if the function is successful. Otherwise, it is
Zero.

Errors Use the CommDIgExtendedError function to retrieve the error value,
which may be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
CFERR_MAXLESSTHANMIN
CFERR_NOFONTS

Example The following example initializes a CHOOSEFONT structure and then
displays a font dialog box:

LOGFONT 1f;
CHOOSEFONT cf;

/* Set all structure fields to zero. */

memset (&cf, 0, sizeof (CHOOSEFONT)):
cf.lStructSize = sizeof (CHOOSEFONT) ;

cf.hwndCwner = hwnd;

cf.lplogFont = &1f;

cf.Flags = CF_SCREENFONTS | CF_EFFECTS;
cf.rgbColors = RGB(0, 255, 255); /* light blue */
cf.nFontType = SCREEN FONTTYPE;

ChooseFont (&cf) ;

ClossFirst 3.1

Syntax #include <toolhelp.h>
BOOL ClassFirst(Ipce)

function ClassFirst(IpClass: PClassEntry): Bool;

The ClassFirst function fills the specified structure with general
information about the first class in the Windows class list.

148 Windows APl Guide

ClassNext

Parameters Ipce Points to a CLASSENTRY structure that will receive the
class information. The CLASSENTRY structure has the
following form:

#include <toolhelp.h>

typedef struct tagCLASSENTRY { /* ce */
DWORD dwSize;
HMODULE hInst;
char szClassName [MAX CLASSNAME + 1];
WORD wNext;

}JCLASSENTRY;

Return Value The return value is nonzero if the function is successful. Otherwise, it is
Z€ero.

Comments The ClassFirst function can be used to begin a walk through the
Windows class list. To examine subsequent items in the class list, an
application can use the ClassNext function.

Before calling ClassFirst, an application must initialize the CLASSENTRY
structure and specify its size, in bytes, in the dwSize member. An
application can examine subsequent entries in the Windows class list by
using the ClassNext function.

For more specific information about an individual class, use the
GetClasslInfo function, specifying the name of the class and instance
handle from the CLASSENTRY structure.

See Also ClassNext, GetClassiInfo

ClassNext 3.1

Syntax #include <toolhelp.h>
BOOL ClassNext(Ipce)

function ClassNext(lpClass: PClassEntry): Bool;

The ClassNext function fills the specified structure with general
information about the next class in the Windows class list.

Chapter 4, Functions 149

CloseDriver

Parameters

Return Value

Ipce Points to a CLASSENTRY structure that will receive the
class information. The CLASSENTRY structure has the
following form:

finclude <toolhelp.h>

typedef struct tagCLASSENTRY { /* ce */
DWORD dwSize;
HMODULE hInst;
char szClassName [MAX CLASSNAME + 1];
WORD wNext;

}JCLASSENTRY;

The return value is nonzero if the function is successful. Otherwise, it is
Zero.

Comments The ClassNext function can be used to continue a walk through the
Windows class list started by the ClassFirst function.
For more specific information about an individual class, use the
GetClassiInfo function with the name of the class and instance handle
from the CLASSENTRY structure.

See Also ClassFirst
CloseDriver 3.1
Syntax LRESULT CloseDriver(hdrvr, IParam1, IParam?2)

function CloseDriver(Driver: THandle; IParam1, IParam?2: Longint):
Longint;
The CloseDriver function closes an installable driver.

Parameters hdror Identifies the installable driver to be closed. This

Return Value

150

parameter must have been obtained by a previous call to
the OpenDriver function.

IParam1 Specifies driver-specific data.
[Param?2 Specifies driver-specific data.

The return value is nonzero if the function is successful. Otherwise, it is
zero.

Windows APl Guide

Comments

See Also

CommbDlIgExtendedError

When an application calls CloseDriver and the driver identified by hdrvr
is the last instance of the driver, Windows calls the DriverProc function
three times. On the first call, Windows sets the third DriverProc
parameter, wMessage, to DRV_CLOSE; on the second call, Windows sets
wMessage to DRV_DISABLE; and on the third call, Windows sets
wMessage to DRV_FREE. When the driver identified by hdrvr is not the
last instance of the driver, only DRV_CLOSE is sent. The values specified
in the IParam1 and [Param2 parameters are passed to the [Param1 and
I[Param2 parameters of the DriverProc function.

DriverProc, OpenDriver

CommDIgExtendedError 3.1

Syntax

Parameters

Return Value

#include <commdlg.h>
DWORD CommbDIgExtendedError(void)

function CommDIgExtendedError: Longint;

The CommDIgExtendedError function identifies the cause of the most
recent error to have occurred during the execution of one of the following
common dialog box procedures:

o ChooseColor

@ ChooseFont

@ FindText

o GetFileTitle

o GetOpenFileName

@ GetSaveFileName

o PrintDlg

o0 ReplaceText
This function has no parameters.

The return value is zero if the prior call to a common dialog box
procedure was successful. The return value is CDERR_DIALOGFAILURE
if the dialog box could not be created. Otherwise, the return valueis a
nonzero integer that identifies an error condition.

Chapter 4, Functions 1561

CommbDlgExtendedError

152

Comments

Following are the possible CommDIgExtendedError return values and the

meaning of each:

Value

Meaning

CDERR_FINDRESFAILURE

CDERR_INITIALIZATION

CDERR_LOADRESFAILURE
CDERR_LOCKRESFAILURE
CDERR_LOADSTRFAILURE

CDERR_MEMALLOCFAILURE

CDERR_MEMLOCKFAILURE

CDERR_NOHINSTANCE

CDERR_NOHOOK

CDERR_NOTEMPLATE

CDERR_REGISTERMSGFAIL

CDERR_STRUCTSIZE

CFERR_NOFONTS
CFERR_MAXLESSTHANMIN

Specifies that the common dialog box
procedure failed to find a specified resource.
Specifies that the common dialog box
procedure failed during initialization. This -
error often occurs when insufficient memory
is available.

Specifies that the common dialog box
procedure failed to load a specified resource.
Specifies that the common dialog box
procedure failed to lock a specified resource.
Specifies that the common dialog box
procedure failed to load a specified string.
Specifies that the common dialog box
procedure was unable to allocate memory for
internal structures.

Specifies that the common dialog box
procedure was unable to lock the memory
associated with a handle.

Specifies that the ENABLETEMPLATE flag
was set in the Flags member of a structure for
the corresponding common dialog box but
that the application failed to provide a
corresponding instance handle.

Specifies that the ENABLEHOOK flag was set
in the Flags member of a structure for the
corresponding common dialog box but that
the application failed to provide a pointer to a
corresponding hook function.

Specifies that the ENABLETEMPLATE flag
was set in the Flags member of a structure for
the corresponding common dialog box but
that the application failed to provide a
corresponding template.

Specifies that the RegisterWindowMessage
function returned an error value when it was
called by the common dialog box procedure.
Specifies as invalid the IStructSize member of
a structure for the corresponding common
dialog box.

Specifies that no fonts exist.

Specifies that the maximum size given for the
dialog box is less than the specified minimum
size.

Windows API Guide

CommbDigExtendedError

Value

Meaning

FNERR_BUFFERTOOSMALL

FNERR_INVALIDFILENAME
FNERR_SUBCLASSFAILURE

FRERR_BUFFERLENGTHZERO

PDERR_CREATEICFAILURE

PDERR_DEFAULTDIFFERENT

PDERR_DNDMMISMATCH

PDERR_GETDEVMODEFAIL

PDERR_INITFAILURE
PDERR_LOADDRVFAILURE

PDERR_NODEFAULTPRN
PDERR_NODEVICES

Chapter 4, Functions

Specifies that the buffer for a filename is too
small. (This buffer is pointed to by the
IpstrFile member of the structure for a
common dialog box.)

Specifies that a filename is invalid.

Specifies that an attempt to subclass a list box
failed due to insufficient memory.

Specifies that a member in a structure for the
corresponding common dialog box points to
an invalid bulffer.

Specifies that the PrintDIg function failed
when it attempted to create an information
context.

Specifies that an application has called the
PrintDIg function with the
DN_DEFAULTPRN flag set in the wDefauit
member of the DEVNAMES structure, but the
printer described by the other structure
members does not match the current default
printer. (This happens when an application
stores the DEVNAMES structure and the user
changes the default printer by using Control
Panel.)

To use the printer described by the
DEVNAMES structure, the application should
clear the DN_DEFAULTPRN flag and call the
PrintDIg function again. To use the default
printer, the application should replace the
DEVNAMES structure (and the DEVMODE
structure, if one exists) with NULL; this
selects the default printer automatically.
Specifies that the data in the DEVMODE and
DEVNAMES structures describes two different
printers.

Specifies that the printer driver failed to
initialize a DEVMODE structure. (This error
value applies only to printer drivers written
for Windows versions 3.0 and later.)

Specifies that the PrintDIg function failed
during initialization.

Specifies that the PrintDlg function failed to
load the device driver for the specified printer.
Specifies that a default printer does not exist.
Specifies that no printer drivers were found.

183

CopyCursor

Value Meaning

PDERR_PARSEFAILURE Specifies that the PrintDlg function failed to
parse the strings in the [devices] section of the
WIN.INI file.

PDERR_PRINTERNOTFOUND Specifies that the [devices] section of the
WINLINI file did not contain an entry for the
requested printer.

PDERR_RETDEFFAILURE Specifies that the PD_RETURNDEFAULT
flag was set in the Flags member of the
PRINTDLG structure but that either the
hDevMode or hDevNames member was
nonzero.

PDERR_SETUPFAILURE Specifies that the PrintDIg function failed to
load the required resources.

See Also ChooseColor, ChooseFont, FindText, GetFileTitle, GetOpenFileName,
GetSaveFileName, PrintDlg, ReplaceText
CopyCursor 3.1
Syntax HCURSOR CopyCursor(hinst, hcur)
“function CopyCursor(hInst: THandle; hCur: HCursor): HCursor;
The CopyCursor function copies a cursor.
Parameters hinst Identifies the instance of the module that will copy the
cursor.
hcur Identifies the cursor to be copied.

154

Return Value

Comments

See Also

The return value is the handle of the duplicate cursor if the function is
successful. Otherwise, it is NULL.

When it no longer requires a cursor, an application must destroy the
cursor, using the DestroyCursor function.

The CopyCursor function allows an application or dynamic-link library to
accept a cursor from another module. Because all resources are owned by
the module in which they originate, a resource cannot be shared after the
module is freed. CopyCursor allows an application to create a copy that
the application then owns.

Copylcon, DestroyCursor, GetCursor, SetCursor, ShowCursor

Windows API Guide

CopyLlZFile

Copylcon 3.1
Syntax HICON Copylcon(hinst, hicon)
function Copylcon(hinst: THandle; Icon: HIcon): Hlcon;
The Copylcon function copies an icon.
Parameters hinst Identifies the instance of the module that will copy the icon.

Return Value

Comments

See Also

CopylZFie

hicon Identifies the icon to be copied.

The return value is the handle of the duplicate icon if the function is
successful. Otherwise, it is NULL.

When it no longer requires an icon, an application should destroy the
icon, using the Destroylcon function.

The Copylcon function allows an application or dynamic-link library to
accept an icon from another module. Because all resources are owned by
the module in which they originate, a resource cannot be shared after the
module is freed. Copylcon allows an application to create a copy that the
application then owns.

CopyCursor, Destroylcon, Drawlcon

3.1

Syntax

Parameters

Return Value

#include <lzexpand.h>
LONG CopyLZFile(hfSource, hfDest)

function CopyLZFile(Source, Dest: Integer): Longint;

The CopyLZFile function copies a source file to a destination file. If the
source file is compressed, this function creates a decompressed
destination file. If the source file is not compressed, this function
duplicates the original file.

hfSource Identifies the source file.
hfDest Identifies the destination file.

The return value specifies the size, in bytes, of the destination file if the
function is successful. Otherwise, it is an error value less than zero; it may
be one of the following:

Chapter 4, Functions 155

CopylZFile

166

Comments

Example

Value

Meaning

LZERROR_BADINHANDLE
LZERROR_BADOUTHANDLE

LZERROR_READ
LZERROR_WRITE
LZERROR_GLOBALLOC

LZERROR_UNKNOWNALG

The handle identifying the source file was not
valid.

The handle identifying the destination file
was not valid.

The source file format was not valid.

There is insufficient space for the output file.
There is insufficient memory for the required
buffers.

The file was compressed with an
unrecognized compression algorithm.

The CopyLZFile function is designed for copying or decompressing
multiple files, or both. To allocate required buffers, an application should
call the LZStart function prior to calling CopyLZFile. To free these buffers,
an application should call the LZDone function after copying the files.

If the function is successful, the file identified by hfDest is decompressed.

If the source or destination file is opened by using a C run-time function
(rather than by using the _lopen or OpenFile function), it must be opened

in binary mode.

The following example uses the CopyLZFile function to create copies of

four text files:
#define STRICT

#include <windows.h>
#include <lzexpand.h>

#define NUM FILES 4

char *szSrc[NUM FILES] =

{"readme.txt", “data.txt”,

char*szDest [NUM_FILES]=

“update.txt”, “list.txt”};

{"readme.bak", “data.bak”, “update.bak”, “list.bak”};

OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;

HFILE hfSrcFile, hfDstFile;

int i;

/* Allocate internal buffers for the CopyLZFile function. */

LzStart ()

/* Open, copy, and then close the files. */

for (1=0; i< NUM_FILES; i++) {
hfSrcFile = LZOpenFile (szSrc[i}, &ofStrSrc, OF_READ) ;
hfDstFile = LZOpenFile (szDest[i], &ofStrDest, OF_CREATE);

Windows API Guide

CreateScalableFontResource

CopyLZFile (hfSrcFile, hfDstFile);
LZClose (hfSrcFile) ;
LZClose (hfDstFile) ;

}

LZDone () ; /* free the internal buffers */

See Also _lopen, LZCopy, LZDone, LZStart, OpenFile

CPlApplet 3.1

Syntax LONG CALLBACK* CPlAppletthwndCPl, iMessage, IParam1, IParam2)

TApplet_Proc = functionthWndCpl: HWnd; msg: Word; IParam1,
|Param2: Longint): Longint;

The CPIApplet function serves as the entry point for a Control Panel
dynamic-link library (DLL). This function is supplied by the application.

Parameters hwndCPI Identifies the main Control Panel window.
iMessage Specifies the message being sent to the DLL.
[Param1 Specifies 32 bits of additional message-dependent
information.
[Param?2 Specifies 32 bits of additional message-dependent
information.

Return Value The return value depends on the message.

Comments Use the hwndCPI parameter for dialog boxes or other windows that
require a handle of a parent window.

CreateScalableFontResource 3.1

Syntax BOOL CreateScalableFontResource(fHidden, lpszResourceFile,
IpszFontFile, IpszCurrentPath)

function CreateScalableFontResource(fHidden: HDC; lpszResourceFile,
lpszFontFile, lpszCurrentPath: PChar): Bool;

The CreateScalableFontResource function creates a font resource file for
the specified scalable font file.

Chapter 4, Functions 157

CreateScalableFontResource

1568

Parameters

Return Value

Comments

fHidden Specifies whether the font is a read-only
embedded font. This parameter can be one of the
following values:

Value Meaning
0 The font has read-write permission.
1 The font has read-only permission and

should be hidden from other applications in
the system. When this flag is set, the font is
not enumerated by the EnumFonts or
EnumFontFamilies function.

IpszResourceFile Points to a null-terminated string specifying the
name of the font resource file that this function
creates.

IpszFontFile Points to a null-terminated string specifying the

scalable font file this function uses to create the
font resource file. This parameter must specify
either the filename and extension or a full path
and filename, including drive and filename
extension.

lpszCurrentPath Points to a null-terminated string specifying either
the path to the scalable font file specified in the
IpszFontFile parameter or NULL, if IpszFontFile
specifies a full path.

The return value is nonzero if the function is successful. Otherwise, it is
zero.

An application must use the CreateScalableFontResource function to
create a font resource file before installing an embedded font. Font
resource files for fonts with read-write permission should use the .FOT
filename extension. Font resource files for read-only fonts should use a
different extension (for example, .FOR) and should be hidden from other
applications in the system by specifying 1 for the fHidden parameter. The
font resource files can be installed by using the AddFontResource
function.

When the IpszFontFile parameter specifies only a filename and extension,
the IpszCurrentPath parameter must specify a path. When the IpszFontFile
parameter specifies a full path, the IpszCurrentPath parameter must be
NULL or a pointer to NULL.

When only a filename and extension is specified in the IpszFontFile
parameter and a path is specified in the IpszCurrentPath parameter, the

Windows API Guide

CreateScalableFontResource

string in IpszFontFileis copied into the .FOT file as the .TTF file that
belongs to this resource. When the AddFontResource function is called,
the system assumes that the .TTF file has been copied into the SYSTEM
directory (or into the main Windows directory in the case of a network
installation). The .TTF file need not be in this directory when the
CreateScalableFontResource function is called, because the
IpszCurrentPath parameter contains the directory information. A resource
created in this manner does not contain absolute path information and
can be used in any Windows installation.

When a path is specified in the IpszFontFile parameter and NULL is
specified in the IpszCurrentPath parameter, the string in IpszFontFile is
copied into the .FOT file. In this case, when the AddFontResource
function is called, the .TTF file must be at the location specified in the
IpszFontFile parameter when the CreateScalableFontResource function
was called; the IpszCurrentPath parameter is not needed. A resource
created in this manner contains absolute references to paths and drives
and will not work if the .TTF file is moved to a different location.

The CreateScalableFontResource function supports only TrueType
scalable fonts.

Example The following example shows how to create a TrueType font file in the
SYSTEM directory of the Windows startup directory:

CreateScalableFontResource (0, “c:\\windows\\system\\font.fot”,
“font.ttr”, “c:\\windows\\system”);

AddFontResource ("c:\\windows\\system\\font.fot");

The following example shows how to create a TrueType font file in a
specified directory:

CreateScalableFontResource (0, “c:\\windows\\system\\font.fot”,
“c:\\fontdir\\font.ttr”, NULL);

AddFontResource ("c:\\windows\\system\\font.fot") ;

Chapter 4, Functions 159

DdeAbandonTransaction

The following example shows how to work with a standard embedded
font:

HFONThfont;
/*Extract .TTF file into C:\MYDIR\FONT.TTR. */
CreateScalableFontResource (0} font.fot”yc: \\mydir\\font.ttr”NULL) ;
AddFontResource ("font.fot");
hfont=CreateFont (...,CLIP_DEFAULT_PRECIS,...,"“FONT”};
: /* Use the font. */
Delekeobject(hfont);
RemoveFontResource ("font.fot");

. /* Delete C:\MYDIR\FONT.FOT and C:\MYDIR\FONT.TTR. */

The following example shows how to work with a read-only embedded
font:

HFONThfont;
/*Extract.TTF fileintoC:\MYDIR\FONT.TTR. */
CreateScalableFontResource (1} font.for”Yc:\\mydir\\font.ttr”NULL) ;
AddFontResource ("font. for");
hfont=CreateFont (..., CLIP_EMBEDDED, ..., “FONT");
: /* Use the font. */
Deleieobject(hfont);
RemoveFontResource ("font.for") ;

. /* Delete C:\MYDIR\FONT.FOR and C:\MYDIR\FONT.TTR. */

See Also AddFontResource

DdeAbandonTransaction 3.1

Syntax #include <ddeml.h>
BOOL DdeAbandonTransaction(idInst, hConv, idTransaction)

160 Windows APl Guide

DdeAbandonTransaction

function DdeAbandonTransaction(Inst: Longint; Conv: HConv;
Transaction: Longint): Bool;

The DdeAbandonTransaction function abandons the specified
asynchronous transaction and releases all resources associated with the

transaction.
Parameters idInst Specifies the application-instance identifier obtained by a
previous call to the Ddelnitialize function.
hConv Identifies the conversation in which the transaction was

initiated. If this parameter is NULL, all transactions are
abandoned (the idTransaction parameter is ignored).

idTransaction Identifies the transaction to terminate. If this parameter is
NULL, all active transactions in the specified conversation
are abandoned.

Return Value The return value is nonzero if the function is successful. Otherwise, it is
Zero.

Errors Use the DdeGetLastError function to retrieve the error value, which may
be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

Comments Only a dynamic data exchange (DDE) client application should call the
DdeAbandonTransaction function. If the server application responds to
the transaction after the client has called DdeAbandonTransaction, the
system discards the transaction results. This function has no effect on
synchronous transactions.

See Also DdeClientTransaction, DdeGetLastError, Ddelnitialize,
DdeQueryConvinfo

Chapter 4, Functions 161

DdeAccessData

DdeAccessData 3.1

162

Syntax

Parameters

Return Value

Errors

Comments

Example

#include <ddeml.h>
BYTE FAR* DdeAccessData(hData, lpcbData)

function DdeAccessData(Data: HDDEData; DataSize: PLongint): Pointer;

The DdeAccessData function provides access to the data in the given
global memory object. An application must call the DdeUnaccessData
function when it is finished accessing the data in the object.

hData Identifies the global memory object to access.

IpcbData Points to a variable that receives the size, in bytes, of the
global memory object identified by the hData parameter. If
this parameter is NULL, no size information is returned.

The return value points to the first byte of data in the global memory
object if the function is successful. Otherwise, the return value is NULL.

Use the DdeGetLastError function to retrieve the error value, which may
be one of the following;:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

If the hData parameter has not been passed to a Dynamic Data Exchange
Management Library (DDEML) function, an application can use the
pointer returned by DdeAccessData for read-write access to the global
memory object. If hData has already been passed to a DDEML function,
the pointer can only be used for read-only access to the memory object.

The following example uses the DdeAccessData function to obtain a
pointer to a global memory object, uses the pointer to copy data from the
object to a local buffer, then frees the pointer:

HDDEDATA hData;

LPBYTE lpszAdviseData;
DWORD cbDatalen;
DWORD i;

char szData([l128];

lpszAdviseData = DdeAccessData (hData, &cbDataLen);
for (1 = 0; i < cbDatalen; i++)

szData[i] = *lpszAdviseDatat++;
DdeUnaccessData (hData) ;

Windows API Guide

DdeAddData

See Also DdeAddData, DdeCreateDataHandle, DdeFreeDataHandle,

DdeAddData

DdeGetLastError, DdeUnaccessData

3.1

Syntax

Parameters

Return Value

Errors

#include <ddeml.h>
HDDEDATA DdeAddData(hData, 1pvSrcBuf, cbAddData, offObj)

function DdeAddData(Data: HDDEData; Src: Pointer; cb, Off: Longint):
HDDEData;

The DdeAddData function adds data to the given global memory object.
An application can add data beginning at any offset from the beginning of
the object. If new data overlaps data already in the object, the new data
overwrites the old data in the bytes where the overlap occurs. The
contents of locations in the object that have not been written to are
undefined.

hData Identifies the global memory object that receives additional
data.

IpvSrcBuf Points to a buffer containing the data to add to the global
memory object.

cbAddData Specifies the length, in bytes, of the data to be added to the
global memory object.

offObj Specifies an offset, in bytes, from the beginning of the
lobal memory object. The additional data is copied to the
g Yy ob) p
object beginning at this offset.

The return value is a new handle of the global memory object if the
function is successful. The new handle should be used in all references to
the object. The return value is zero if an error occurs.

Use the DdeGetLastError function to retrieve the error value, which may
be one of the following;:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR
DMLERR_NO_ERROR

Chapter 4, Functions 163

DdeAddData

164

Comments

Example

After a data handle has been used as a parameter in another Dynamic
Data Exchange Management Library (DDEML) function or returned by a
DDE callback function, the handle may only be used for read access to the
global memory object identified by the handle.

If the amount of global memory originally allocated is not large enough to
hold the added data, the DdeAddData function will reallocate a global
memory object of the appropriate size.

The following example creates a global memory object, uses the
DdeAddData function to add data to the object, and then passes the data
to a client with an XTYP_POKE transaction:

DWORD idInst; /* instance identifier */
HDDEDATA hddeStrings; /* data handle */
HSZ hszMyItem; /* item-name string handle */
DWORD offObj = 0; /* offset in global object */
char szMyBuf[16]; /* temporary string buffer */
HCONV hconv; /* conversation handle */
DWORD dwResult; /* transaction results */
BOOL fAddAString; /* TRUE if strings to add */

/* Create a global memory object. */

hddeStrings=bDdeCreateDataHandle (idInst, NULL, 0, O,
hszMyItem, CF_TEXT, 0);

/*

* If a string is available, the application-defined function

* IsThereAString() copies it to szMyBuf and returns TRUE. Otherwise,
* it returns FALSE.

*/

while ((fAddAString=IsThereAString())) {

/* Add the string to the global memory object. */

DdeAddData (hddeStrings, /* data handle */
&szMyBuf, /* string buffer */
(DWORD) strlen(szMyBuf) + 1, /* character count *x/
of fOb3j) ; /* offset in object */

offObj = (DWORD) strlen(szMyBuf) + 1; /* adjust offset */
}

/* No more data to add, so poke it to the server. */

DdeClientTransaction{(voidFAR*)hddeStrings,-1L,hconv,hszMyItem,
CF_TEXT, XTYP POKE, 1000, &dwResult):

See Also DdeAccessData, DdeCreateDataHandle, DdeGetLastError,

DdeUnaccessData

Windows API Guide

DdeCadllback

DdeCallback

3.1

Syntax #include <ddeml.h>

HDDEDATA CALLBACK DdeCallback(type, fmt, hconv, hszl, hsz2,

hData, dwDatal, dwData2)

TCallback = function(CallType, Fmt: Word; Conv: HConv; hsz1, hsz2:
HSZ; Data: HDDEData; Datal, Data2: Longint): HDDEData;

The DdeCallback function is an application-defined dynamic data
exchange (DDE) callback function that processes DDE transactions sent to
the function as a result of DDE Management Library (DDEML) calls by

other applications.

Parameters fype Specifies the type of the current transaction. This
parameter consists of a combination of transaction-class
flags and transaction-type flags. The following table
describes each of the transaction classes and provides a list
of the transaction types in each class.

Value

Meaning

XCLASS_BOOL

XCLASS_DATA

XCLASS_FLAGS

Chapter 4, Functions

A DDE callback function should return TRUE or
FALSE when it finishes processing a transaction
that belongs to this class. Following are the
XCLASS_BOOL transaction types:
XTYP_ADVSTART

XTYP_CONNECT

A DDE callback function should return a DDE data

handle, CBR_BLOCK, or NULL when it finishes

processing a transaction that belongs to this class.

Following are the XCLASS_DATA transaction
types:

XTYP_ADVREQ

XTYP_REQUEST

XTYP_WILDCONNECT

A DDE callback function should return
DDE_FACK, DDE_FBUSY, or
DDE_FNOTPROCESSED when it finishes

processing a transaction that belongs to this class.

Following are the XCLASS_FLAGS transaction
types:

XTYP_ADVDATA

XTYP_EXECUTE

XTYP_POKE

165

DdeCallback

166

Return Value

Comments

Value

Meaning

XCLASS_NOTIFICATION The transaction types that belong to this class are

for notification purposes only. The return value
from the callback function is ignored. Following are
the XCLASS_NOTIFICATION transaction types:
XTYP_ADVSTOP
XTYP_CONNECT_CONFIRM
XTYP_DISCONNECT

XTYP_ERROR

XTYP_MONITOR

XTYP_REGISTER

XTYP_XACT_COMPLETE
XTYP_UNREGISTER

fmt
hconv
hsz1

hsz2

hData

dwDatal

dwData2

Specifies the format in which data is to be sent or received.
Identifies conversation associated with the current transaction.

Identifies a string. The meaning of this parameter depends
on the type of the current transaction. For more
information, see the description of the transaction type.

Identifies a string. The meaning of this parameter depends
on the type of the current transaction. For more
information, see the description of the transaction type.

Identifies DDE data. The meaning of this parameter
depends on the type of the current transaction. For more
information, see the description of the transaction type.

Specifies transaction-specific data. For more information,
see the description of the transaction type.

Specifies transaction-specific data. For more information,
see the description of the transaction type.

The return value depends on the transaction class.

The callback function is called asynchronously for transactions that do not
involve creating or terminating conversations. An application that does
not frequently accept incoming messages will have reduced DDE
performance because DDEML uses messages to initiate transactions.

An application must register the callback function by specifying its
address in a call to the Ddelnitialize function. DdeCallback is a
placeholder for the application- or library-defined function name. The
actual name must be exported by including it in an EXPORTS statement
in the application’s module-definition file.

See Also DdeEnableCallback, Ddelnitialize

Windows API Guide

DdeClientTransaction

DdecClientTransaction

3.1

Syntax #include <ddeml.h>
HDDEDATA DdeClientTransaction(lpvData, cbData, hConv, hszltem,
uFmt, uType, uTimeout, IpuResult)

function DdeClientTransaction(Data: Pointer; DataLen: Longint; Conv:
HConv; Item: HSZ; Fmt, DataType: Word; Timeout: Longint; Result:
PLongint): HDDEData;

The DdeClientTransaction function begins a data transaction between a
client and a server. Only a dynamic data exchange (DDE) client
application can call this function, and only after establishing a
conversation with the server.

Parameters IpvData

cbData

hConv

hszltem

uFmt

uType

Chapter 4, Functions

Points to the beginning of the data that the client needs to
pass to the server.

Optionally, an application can specify the data handle
(HDDEDATA) to pass to the server, in which case the
cbData parameter should be set to —1. This parameter is
required only if the uType parameter is XTYP_EXECUTE
or XTYP_POKE. Otherwise, this parameter should be
NULL.

Specifies the length, in bytes, of the data pointed to by the
IpvData parameter. A value of ~1 indicates that IpvData is a
data handle that identifies the data being sent.

Identifies the conversation in which the transaction is to
take place.

Identifies the data item for which data is being exchanged
during the transaction. This handle must have been
created by a previous call to the DdeCreateStringHandle
function. This parameter is ignored (and should be set to
NULL) if the uType parameter is XTYP_EXECUTE.

Specifies the standard clipboard format in which the data
item is being submitted or requested.

Specifies the transaction type. This parameter can be one of
the following values:

167

DdeClientTransaction

168

Value

Meaning

XTYP_ADVSTART Begins an advise loop. Any number of distinct advise

loops can exist within a conversation. An application
can alter the advise loop type by combining the
XTYP_ADVSTART transaction type with one or more of
the following flags:

Value Meaning

XTYPF_NODATA Instructs the server to notify the
client of any data changes
without actually sending the
data. This flag gives the client
the option of ignoring the
notification or requesting the
changed data from the server.

XTYPF_ACKREQ Instructs the server to wait until
the client acknowledges that it
received the previous data item
before sending the next data
item. This flag prevents a fast
server from sending data faster
than the client can process it.

XTYP_ADVSTOP Ends an advise loop.

XTYP_EXECUTE Begins an execute transaction.

XTYP_POKE Begins a poke transaction.

XTYP_REQUEST Begins a request transaction.

uTimeout Specifies the maximum length of time, in milliseconds, that

IpuResult

the client will wait for a response from the server
application in a synchronous transaction. This parameter
should be set to TIMEOUT_ASYNC for asynchronous
transactions.

Points to a variable that receives the result of the
transaction. An application that does not check the result
can set this value to NULL. For synchronous transactions,
the low-order word of this variable will contain any
applicable DDE_ flags resulting from the transaction. This
provides support for applications dependent on
DDE_APPSTATUS bits. (It is recommended that
applications no longer use these bits because they may not
be supported in future versions of the DDE Management
Library.) For asynchronous transactions, this variable is
filled with a unique transaction identifier for use with the

Windows APl Guide

DdeClientTransaction

DdeAbandonTransaction function and the
XTYP_XACT COMPLETE transaction.

Return Value The return value is a data handle that identifies the data for successful
synchronous transactions in which the client expects data from the server.
The return value is TRUE for successful asynchronous transactions and
for synchronous transactions in which the client does not expect data. The
return value is FALSE for all unsuccessful transactions.

Errors Use the DdeGetLastError function to retrieve the error value, which may
be one of the following;:

DMLERR_ADVACKTIMEOUT
DMLERR_BUSY
DMLERR_DATAACKTIMEOUT
DMLERR_DLL_NOT_INITIALIZED
DMLERR_EXECACKTIMEOUT
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR
DMLERR_NOTPROCESSED
DMLERR_POKEACKTIMEOUT
DMLERR_POSTMSG_FAILED
DMLERR_REENTRANCY
DMLERR_SERVER_DIED
DMLERR_UNADVACKTIMEOUT

Comments When the application is finished using the data handle returned by the
DdeClientTransaction function, the application should free the handle by
calling the DdeFreeDataHandle function.

Transactions can be synchronous or asynchronous. During a synchronous
transaction, the DdeClientTransaction function does not return until the
transaction completes successfully or fails. Synchronous transactions
cause the client to enter a modal loop while waiting for various
asynchronous events. Because of this, the client application can still
respond to user input while waiting on a synchronous transaction but
cannot begin a second synchronous transaction because of the activity
associated with the first. The DdeClientTransaction function fails if any
instance of the same task has a synchronous transaction already in
progress.

Chapter 4, Functions 169

DdeCmpStringHandles

During an asynchronous transaction, the DdeClientTransaction function
returns after the transaction is begun, passing a transaction identifier for
reference. When the server’s DDE callback function finishes processing an
asynchronous transaction, the system sends an XTYP_XACT_COMPLETE
transaction to the client. This transaction provides the client with the
results of the asynchronous transaction that it initiated by calling the
DdeClientTransaction function. A client application can choose to
abandon an asynchronous transaction by calling the
DdeAbandonTransaction function.

Example The following example requests an advise loop with a DDE server
application:
HCONVhconv;
HSZhszNow;
HDDEDAT2ZhData;
DWORDdwResult;
hDataDdeClientTransaction(
(LPBYTE) NULL, /* pass no data to server */
0, /* no data */
hconv, /* conversation handle */
hszNow, /* item name */
CF_TEXT, /* clipboard format */
XTYP_ADVSTART, /* start an advise loop */
1000, /* time-out in one second */
&dwResult) ; /* points to result flags */
See Also DdeAbandonTransaction, DdeAccessData, DdeConnect,
DdeConnectList, DdeCreateStringHandle
DdeCmpStringHandles 3.1
Syntax #include <ddeml.h>
int DdeCmpStringHandles(hsz1, hsz2)
function DdeCmpStringHandles(hsz1, hsz2: HSZ): Integer;
The DdeCmpStringHandles function compares the values of two string
handles. The value of a string handle is not related to the case of the
associated string.
Parameters hszl Specifies the first string handle.
hsz2 Specifies the second string handle.

170

Windows API Guide

DdeCmpStringHandles

Return Value The return value can be one of the following:

Value Meaning
-1 The value of hsz1 is either 0 or less than the value of hsz2.
The values of hsz1 and hsz2 are equal (both can be 0).
1 The value of hsz2 is either 0 or less than the value of hszl.

Comments An application that needs to do a case-sensitive comparison of two string
handles should compare the string handles directly. An application
should use DdeCompStringHandles for all other comparisons to preserve
the case-sensitive nature of dynamic data exchange (DDE).

The DdeCompStringHandles function cannot be used to sort string
handles alphabetically.

Example This example compares two service-name string handles and, if the
handles are the same, requests a conversation with the server, then issues
an XTYP_ADVSTART transaction:

HSZ hszClock; /* service name */

HSZ hszTime; /* topic name */

HSZ hszl; /* unknown server */
HCONV hConv; /* conversation handle */
DWORD dwResult; /* result flags */
DWORD idInst; /* instance identifier */
/*

* Compare unknown service name handle with the stringhandle
* for the clock application.

*/
if(!DdeCmpStringHandles (hszl,hszClock)){
/*
* If this is the clock application, start a conversation

* with it and request an advise loop.

*/

hConv = DdeConnect {(idInst, hszClock, hszTime, NULL);
if (hConv != (HCONV) NULL)

DdeClientTransaction (NULL, 0, hConv, hszNow,
CF_TEXT, XTYP_ADVSTART, 1000, &dwResult);

See Also DdeAccessData, DdeCreateStringHandle, DdeFreeStringHandle

Chapter 4, Functions 171

DdeConnect

DdeConnect 3.1

Syntax #include <ddeml.h>
HCONYV DdeConnect(idInst, hszService, hszTopic, pCC)

function DdeConnect(Inst: Longint; Service, Topic: HSZ; CC:
PConvContext): HConv;

The DdeConnect function establishes a conversation with a server
application that supports the specified service name and topic name pair.
If more than one such server exists, the system selects only one.

Parameters idlnst Specifies the application-instance identifier obtained by a
previous call to the Ddelnitialize function.

hszService Identifies the string that specifies the service name of the
server application with which a conversation is to be
established. This handle must have been created by a
previous call to the DdeCreateStringHandle function. If
this parameter is NULL, a conversation will be established
with any available server.

hszTopic Identifies the string that specifies the name of the topic on
which a conversation is to be established. This handle must
have been created by a previous call to the
DdeCreateStringHandle function. If this parameter is
NULL, a conversation on any topic supported by the
selected server will be established.

pCC Points to the CONVCONTEXT structure that contains
conversation-context information. If this parameter is
NULL, the server receives the default CONVCONTEXT
structure during the XTYP_CONNECT or
XTYP_WILDCONNECT transaction.

The CONVCONTEXT structure has the following form:

#include<ddeml.h>

typedef struct tagCONVCONTEXT { /* cc

*/
UINT cb;
UINT wFlags;
UINT wCountryID;
int iCodePage;
DWORD dwLangID;
DWORD dwSecurity;
}CONVCONTEXT;

172 Windows API Guide

DdeConnect

Return Value The return value is the handle of the established conversation if the
function is successful. Otherwise, it is NULL.

Errors Use the DdeGetLastError function to retrieve the error value, which may
be one of the following;:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

Comments The client application should not make assumptions regarding which
server will be selected. If an instance-specific name is specified in the
hszService parameter, a conversation will be established only with the
specified instance. Instance-specific service names are passed to an
application’s dynamic data exchange callback function during the
XTYP_REGISTER and XTYP_UNREGISTER transactions.

All members of the default CONVCONTEXT structure are set to zero
except cb, which specifies the size of the structure, and iCodePage, which
specifies CP_WINANSI (the default code page).

Example The following example creates a service-name string handle and a
topic-name string handle, then attempts to establish a conversation with a
server that supports the service name and topic name. If the attempt fails,
the example retrieves an error value identifying the reason for the failure.

DWORD idInst = 0L;
HSZ hszClock;
HSZ hszTime;
HCONV hconv;
UINT uError;

hszClock = DdeCreateStringHandle (idInst, “Clock”, CP_WINANSI);
hszTime = DdeCreateStringHandle(idInst, “Time”, CP_WINANSI);

if ((hconv = DdeConnect (

idInst, /* instance identifier */
hszClock, /* server’s service name */
hszTime, /* topic name */
NULL)) == NULL) { /* use default CONVCONTEXT */

uError = DdeGetlastError{(idInst);
}

See Also DdeConnectList, DdeCreateStringHandle, DdeDisconnect,
DdeDisconnectList, Ddelnitialize

Chapter 4, Functions 173

DdeConnectlList

DdeConnectList 3.1

Syntax

Parameters

174

#include <ddeml.h>
HCONVLIST DdeConnectList(idInst, hszService, hszTopic, hConvList,
pCO)

function DdeConnectList(Inst: Longint; Service, Topic: HSZ; convList:
HConvList; CC: PConvContext): HConvlList;

The DdeConnectList function establishes a conversation with all server
applications that support the specified service/topic name pair. An
application can also use this function to enumerate a list of conversation
handles by passing the function an existing conversation handle. During
enumeration, the Dynamic Data Exchange Management Library
(DDEML) removes the handles of any terminated conversations from the
conversation list. The resulting conversation list contains the handles of
all conversations currently established that support the specified service
name and topic name.

idInst Specifies the application-instance identifier obtained by a
previous call to the Ddelnitialize function.

hszService Identifies the string that specifies the service name of the
server application with which a conversation is to be
established. If this parameter is NULL, the system will
attempt to establish conversations with all available
servers that support the specified topic name.

hszTopic Identifies the string that specifies the name of the topic on
which a conversation is to be established. This handle must
have been created by a previous call to the
DdeCreateStringHandle function. If this parameter is
NULL, the system will attempt to establish conversations
on all topics supported by the selected server (or servers).

hConuvList Identifies the conversation list to be enumerated. This
parameter should be set to NULL if a new conversation list
is to be established.

pCC Points to the CONVCONTEXT structure that contains

conversation-context information. If this parameter is
NULL, the server receives the default CONVCONTEXT
structure during the XTYP_CONNECT or
XTYP_WILDCONNECT transaction.

Windows API Guide

DdeConnectlist

The CONVCONTEXT structure has the following form:

#include <ddeml.h>

typedef struct tagCONVCONTEXT { /* cc

*/
UINT cb;
UINT wFlags;
UINT wCountryID;
int iCodePage;
DWORD dwLangID;
DWORD dwSecurity;

} CONVCONTEXT;

Return Value The return value is the handle of a new conversation list if the function is
successful. Otherwise, it is NULL. The handle of the old conversation list
is no longer valid.

Errors Use the DdeGetLastError function to retrieve the error value, which may
be one of the following;:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALID_PARAMETER
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR
DMLERR_SYS_ERROR

Comments An application must free the conversation-list handle returned by this
function, regardless of whether any conversation handles within the list
are active. To free the handle, an application can call the
DdeDisconnectList function.

All members of the default CONVCONTEXT structure are set to zero
except cb, which specifies the size of the structure, and iCodePage, which
specifies CP_WINANSI (the default code page).

Example The following example uses the DdeConnectList function to establish a
conversation with all servers that support the System topic, counts the
servers, allocates a buffer for storing the server’s service-name string
handles, and then copies the handles to the buffer:

HCONVLIST hconvlist; /* conversation list */
DWORD idInst; /* instance identifier */
HSZ hszSystem; /* System topic */
HCONV hconv = NULL; /* conversation handle */
CONVINFO ci; /* holds conversation data */
UINT cConv = 0; /* count of conv. handles */
HSZ *pHsz, *aHsz; /* point to string handles */

Chapter 4, Functions 175

DdeCreateDataHandle

/* Connect to all servers that support the System topic. */

hconvList=DdeConnectList (idInst, (HSZ)NULL, hszSystem,
(HCONV) NULL, (LPVOID) NULL);

/* Count the number of handles in the conversation list. */

while ((hconv=DdeQueryNextServer (hconvList, hconv)) != (HCONV) NULL)
cConv++;

/* Allocate a buffer for the string handles. */

hconv = (HCONV) NULL;
aHsz = (HSZ *) LocalAlloc (LMEM _FIXED, cConv * sizeof (HSZ)):

/* Copy the string handles to the buffer. */

pHsz = aHsz;

while ((hconv=DdeQueryNextServer (hconvList, hconv)) != (HCONV) NULL) {
DdeQueryConvInfo (hconv, QID SYNC, (PCONVINFO) &ci) ;

DdeKeepStringHandle (idInst, ci.hszSvcPartner);
*pHsz++ = ci.hszSvcPartner;

. /* Use the handles; converse with servers. */

/* Free thememory and terminate conversations. */

LocalFree ((HANDLE3HsZ) ;
DdeDisconnectList (hconvList);

See Also DdeConnect, DdeCreateStringHandle, DdeDisconnect,
DdeDisconnectList, Ddelnitialize, DdeQueryNextServer

DdeCreateDataHandle 3.1

Syntax #include <ddeml.h>
HDDEDATA DdeCreateDataHandle(idInst, lpvSrcBuf, cbInitData,
offSrcBuf, hszltem, uFmt, afCmd)

function DdeCreateDataHandle(Inst: Longint; Src: Pointer; cb, Off:
Longint; Item: HSZ; Fmt, Cmd: Word): HDDEData;

The DdeCreateDataHandle function creates a global memory object and
fills the object with the data pointed to by the IpvSrcBuf parameter. A
dynamic data exchange (DDE) application uses this function during
transactions that involve passing data to the partner application.

176 Windows API Guide

Parameters

Return Value

Errors

Chapter 4, Functions

idInst

lpvSrcBuf

cbInitData

offSrcBuf

hszltem

uFmt
afCmd

DdeCreateDataHandle

Specifies the application-instance identifier obtained by a
previous call to the Ddelnitialize function.

Points to a buffer that contains data to be copied to the
global memory object. If this parameter is NULL, no data
is copied to the object.

Specifies the amount, in bytes, of memory to allocate for
the global memory object. If this parameter is zero, the
IpvSrcBuf parameter is ignored.

Specifies an offset, in bytes, from the beginning of the
buffer pointed to by the IpvSrcBuf parameter. The data
beginning at this offset is copied from the buffer to the
global memory object.

Identifies the string that specifies the data item
corresponding to the global memory object. This handle
must have been created by a previous call to the
DdeCreateStringHandle function. If the data handle is to
be used in an XTYP_EXECUTE transaction, this parameter
must be set to NULL.

Specifies the standard clipboard format of the data.

Specifies the creation flags. This parameter can be
HDATA_APPOWNED, which specifies that the server
application that calls the DdeCreateDataHandle function
will own the data handle that this function creates. This
makes it possible for the server to share the data handle
with multiple clients instead of creating a separate handle
for each request. If this flag is set, the server must
eventually free the shared memory object associated with
this handle by using the DdeFreeDataHandle function. If
this flag is not set, after the data handle is returned by the
server’s DDE callback function or used as a parameter in
another DDE Management Library function, the handle
becomes invalid in the application that creates the handle.

The return value is a data handle if the function is successful. Otherwise,

it is NULL.

Use the DdeGetLastError function to retrieve the error value, which may
be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR
DMLERR_NO_ERROR

177

DdeCreateDataHandle

178

Comments

Example

Any locations in the global memory object that are not filled are
undefined.

After a data handle has been used as a parameter in another DDEML
function or has been returned by a DDE callback function, the handle may
be used only for read access to the global memory object identified by the
handle.

If the application will be adding data to the global memory object (using
the DdeAddData function) so that the object exceeds 64K in length, then
the application should specify a total length (cbInitData + offSrcData) that
is equal to the anticipated maximum length of the object. This avoids
unnecessary data copying and memory reallocation by the system.

The following example processes the XTYP_WILDCONNECT transaction
by returning a data handle to an array of HSZPAIR structures—one for
each topic name supported:

#define CTOPICS 2

UINT type;

UINT fmt;

HSZPAIR ahp[(CTOPICS + 1)];
HSZ ahszTopicList [CTOPICS];
HSZ hszServ, hszTopic;
WORD i, 5;

if (type == XTYP_WILDCONNECT) {

/*
* Scan the topic list and create array of HSZPAIR data
* structures.
*/
j=0;
for (1 = 0; i < CTOPICS; i++) {
if (hszTopic == (HSZ) NULL |
hszTopic == ahszTopicList[1]) {
ahp[j] .hszSvc = hszServ;
ahp[j++] .hszTopic = ahszTopicList([i];

}

/*

* End the list with an HSZPAIR structure that contains NULL
* string handles as its members.

x/

ahp[j]} .hszSvc = NULL;
ahp[j++] .hszTopic = NULL;

/*
* Return a handle to a global memory object containing the
* HSZPAIR structures.

*/

Windows APl Guide

See Also

DdeCreateStringHandle

return DdeCreateDataHandle (

idInst, /* instance identifier *x/
&ahp, /* points to HSZPAIR array */
sizeof (HSZ) * j, /* length of the array x/
0, /* start at the beginning */
NULL, /* no item-name string */
fmt, /* return the same format */
0); /* let the system own it */

}

DdeAccessData, DdeFreeDataHandle, DdeGetData, Ddelnitialize

DdeCreateStringHandle 3.1

Syntax

Parameters

Return Value

Errors

Chapter 4, Functions

#include <ddeml.h>
HSZ DdeCreateStringHandle(idInst, lpszString, codepage)

function DdeCreateStringHandle(Inst: Longint; psz: PChar; CodePage:
Integer): HSZ;

The DdeCreateStringHandle function creates a handle that identifies the
string pointed to by the IpszString parameter. A dynamic data exchange
(DDE) client or server application can pass the string handle as a
parameter to other DDE Management Library functions.

idInst Specifies the application-instance identifier obtained by a
previous call to the Ddelnitialize function.

IpszString Points to a buffer that contains the null-terminated string
for which a handle is to be created. This string may be any
length.

codepage Specifies the code page used to render the string. This
value should be either CP_WINANSI or the value returned
by the GetKBCodePage function. A value of zero implies
CP_WINANSL

The return value is a string handle if the function is successful. Otherwise,
it is NULL.
Use the DdeGetLastError function to retrieve the error value, which may

be one of the following;:

DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_SYS_ERROR

179

DdeCreateStringHandle

180

Comments

Example

Two identical strings always correspond to the same string handle. String
handles are unique across all tasks that use the DDEML. That is, when an
application creates a handle for a string and another application creates a
handle for an identical string, the string handles returned to both
applications are identical—regardless of case.

The value of a string handle is not related to the case of the string it
identifies.

When an application has either created a string handle or received one in
the callback function and has used the DdeKeepStringHandle function to
keep it, the application must free that string handle when it is no longer
needed.

An instance-specific string handle is not mappable from string handle to
string to string handle again. This is shown in the following example, in
which the DdeQueryString function creates a string from a string handle
and then DdeCreateStringHandle creates a string handle from that string,
but the two handles are not the same:

DWORD idInst;

DWORD cb;

HSZ hszInst, hszNew;
PSZ pszInst;

DdeQueryString (idInst, hszInst, pszInst, cb, CP_WINANSI);
hszNew = DdeCreateStringHandle (idInst, pszInst, CP_WINANSI);
/* hszNew != hszlnst ! */

The following example creates a service-name string handle and a
topic-name string handle and then attempts to establish a conversation
with a server that supports the service name and topic name. If the
attempt fails, the example obtains an error value identifying the reason
for the failure.

DWORD idInst = OL;
HSZ hszClock;
HSZ hszTime;
HCONV hconv;
UINT uError;

hszClock = DdeCreateStringHandle (idInst, “Clock”, CP_WINANSI);
hszTime = DdeCreateStringHandle (idInst, “Time”, CP_WINANSI);

if ((hconv = DdeConnect (

idInst, /* instance identifier */
hszClock, /* server’s service name */
hszTime, /* topic name */
NULL)) == NULL) { /* use default CONVCONTEXT */

uError = DdeGetLastError{(idInst);

Windows APl Guide

See Also

DdeDisconnectlList

DdeAccessData, DdeCmpStringHandles, DdeFreeStringHandle,
Ddelnitialize, DdeKeepStringHandle, DdeQueryString

DdeDisconnect 3.1

Syntax

Parameters

Return Value

Errors

Comments

See Also

#include <ddeml.h>
BOOL DdeDisconnect(hConv)

function DdeDisconnect(Conv: HConv): Bool;

The DdeDisconnect function terminates a conversation started by either
the DdeConnect or DdeConnectList function and invalidates the given
conversation handle.

hConv Identifies the active conversation to be terminated.

The return value is nonzero if the function is successful. Otherwise, it is
Zero.

Use the DdeGetLastError function to retrieve the error value, which may
be one of the following;:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

Any incomplete transactions started before calling DdeDisconnect are
immedjiately abandoned. The XTYP_DISCONNECT transaction type is
sent to the dynamic data exchange (DDE) callback function of the partner
in the conversation. Generally, only client applications need to terminate
conversations.

DdeConnect, DdeConnectList, DdeDisconnectList

DdeDisconnectList 3.1

Syntax

#include <ddeml.h>
BOOL DdeDisconnectList(thConvList)

function DdeDisconnectList(ConvList: HConvList): Bool;

The DdeDisconnectList function destroys the given conversation list and
terminates all conversations associated with the list.

Chapter 4, Functions 181

DdeEnableCallback

Parameters hConvList Identifies the conversation list. This handle must have
been created by a previous call to the DdeConnectL.ist
function.

Return Value The return value is nonzero if the function is successful. Otherwise, it is
Zero.

Errors Use the DdeGetLastError function to retrieve the error value, which may
be one of the following;:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Comments An application can use the DdeDisconnect function to terminate
individual conversations in the list.

See Also DdeConnect, DdeConnectList, DdeDisconnect

DdeEnableCallback 3.1

Syntax #include <ddeml.h>
BOOL DdeEnableCallback(idInst, hConv, uCmd)

function DdeEnableCallback(Inst: Longint; Conv: HConv; Cmd: Word):
Bool;

The DdeEnableCallback function enables or disables transactions for a
specific conversation or for all conversations that the calling application
currently has established.

After disabling transactions for a conversation, the system places the
transactions for that conversation in a transaction queue associated with
the application. The application should reenable the conversation as soon
as possible to avoid losing queued transactions.

Parameters idInst Specifies the application-instance identifier obtained by a
previous call to the Ddelnitialize function.

hConv Identifies the conversation to enable or disable. If this
parameter is NULL, the function affects all conversations.

uCmd Specifies the function code. This parameter can be one of
the following values:

182 Windows API Guide

Return Value

Errors

Comments

See Also

DdeFreeDataHandle

Value

Meaning

EC_ENABLEALL
EC_ENABLEONE
EC_DISABLE

Enables all transactions for the specified conversation.
Enables one transaction for the specified conversation.
Disables all blockable transactions for the specified
conversation.

A server application can disable the following transactions:
XTYP_ADVSTART

XTYP_ADVSTOP

XTYP_EXECUTE

XTYP_POKE

XTYP_REQUEST

A client application can disable the following transactions:
XTYP_ADVDATA

XTYP_XACT_COMPLETE

The return value is nonzero if the function is successful. Otherwise, it is

Zero.

Use the DdeGetLastError function to retrieve the error value, which may
be one of the following;:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_ERROR
DMLERR_INVALIDPARAMETER

An application can disable transactions for a specific conversation by
returning CBR_BLOCK from its dynamic data exchange (DDE) callback
function. When the conversation is reenabled by using the
DdeEnableCallback function, the system generates the same transaction
as was in process when the conversation was disabled.

DdeConnect, DdeConnectList, DdeDisconnect, Ddelnitialize

DdeFreeDataHandle

3.1

Syntax

#include <ddeml.h>

BOOL DdeFreeDataHandle(hData)

function DdeFreeDataHandle(Data: HDDEData): Bool;

The DdeFreeDataHandle function frees a global memory object and
deletes the data handle associated with the object.

Chapter 4, Functions

183

DdeFreeDataHandle

184

Parameters

Return Value

Errors

Comments

Example

hData Identifies the global memory object to be freed. This
handle must have been created by a previous call to the
DdeCreateDataHandle function or returned by the
DdeClientTransaction function.

The return value is honzero if the function is successful. Otherwise, it is
Zero.

Use the DdeGetLastError function to retrieve the error value, which may
be one of the following;:

DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

An application must call DdeFreeDataHandle under the following
circumstances:

B To free a global memory object that the application allocated by calling
the DdeCreateDataHandle function if the object’s data handle was
never passed by the application to another Dynamic Data Exchange
Management Library (DDEML) function

B To free a global memory object that the application allocated by
specifying the HDATA_APPOWNED flag in a call to the
DdeCreateDataHandle function

B To free a global memory object whose handle the application received
from the DdeClientTransaction function

The system automatically frees an unowned object when its handle is
returned by a dynamic data exchange (DDE) callback function or used as
a parameter in a DDEML function.

The following example creates a global memory object containing help
information, then frees the object after passing the object’s handle to the
client application:

DWORD idInst;
HSZ hszItem;
HDDEDATA hDataHelp;

char szDdeHelp[] = “DDEML test server help:\r\n”\
“\tThe ’Server’ (service) and 'Test’ (topic) names may change.\r\n”\
“Items supported under the 'Test’ topic are:\r\n”\
“\tCount:\tThis value increments on each data change.\r\n”\
“\tRand:\tThis value is changed after each data change. \r\n”\
“\t\tIn Runaway mode, the above items change after a request.\r\n”\
“\tHuge:\tThis is randomly generated text data >64k that the\r\n”\
“\t\ttest client can verify. It is recalculated on each\r\n”\
"“\t\trequest. This also verifies huge data poked or executed\r\n”\
"\t\tfrom the test client.\r\n”\

Windows APl Guide

See Also

DdeFreeStringHandle

“\tHelp:\tThis help information. This data is APPOWNED.\r\n”;
/* Create global memory object containing help information. */
if (!hDataHelp) {

hDataHelp = DdeCreateDataHandle (idInst, szDdeHelp,
strlen(szDdeHelp) + 1, 0, hszItem, CF _TEXT, HDATA APPOWNED);

. /* Pass help information to client application. */

/* Free the global memory object. */

if (hDataHelp)
DdeFreeDataHandle (hDataHelp) ;

DdeAccessData, DdeCreateDataHandle

DdefreeStringHandle 3.1

Syntax

Parameters

Return Value

Comments

#include <ddeml.h>
BOOL DdeFreeStringHandle(idInst, hsz)

function DdeFreeStringHandle(Inst: Longint; HSZ: HSZ): Bool;

The DdeFreeStringHandle function frees a string handle in the calling
application.

idInst Specifies the application-instance identifier obtained by a
previous call to the Ddelnitialize function.

hsz Identifies the string handle to be freed. This handle must
have been created by a previous call to the
DdeCreateStringHandle function.

The return value is nonzero if the function is successful. Otherwise, it is
zero.

An application can free string handles that it creates with the
DdeCreateStringHandle function but should not free those that the ’
system passed to the application’s dynamic data exchange (DDE) callback

function or those returned in the CONVINFO structure by the |
DdeQueryConvinfo function.

Chapter 4, Functions 185

DdeGetData

DdeGetData

Example The following example frees string handles during the
XTYP_DISCONNECT transaction:

DWORD idInst = 0L;
HSZhszClock;

HSZhszTime;
HSZhszNow;
UINTtype;

if (type ==XTYP_DISCONNECT) {

}

DdeFreeStringHandle (idInst, hszClock);
DdeFreeStringHandle (idInst, hszTime);
DdeFreeStringHandle (idInst, hszNow);

return (HDDEDATA) NULL;

See Also DdeCmpStringHandles, DdeCreateStringHandle, Ddelnitialize,
DdeKeepStringHandle, DdeQueryString

3.1

186

Syntax

Parameters

Return Value

#include <ddeml.h>
DWORD DdeGetData(hData, pDest, cbMax, offSrc)

function DdeGetData(Data: HDDEData; Dst: Pointer; Max, Off: Longint):

Longint;

The DdeGetData function copies data from the given global memory
object to the specified local buffer.

hData

pDest

cbMax

offSrc

Identifies the global memory object that contains the data
to copy.

Points to the buffer that receives the data. If this parameter
is NULL, the DdeGetData function returns the amount, in
bytes, of data that would be copied to the buffer.

Specifies the maximum amount, in bytes, of data to copy to
the buffer pointed to by the pDest parameter. Typically,
this parameter specifies the length of the buffer pointed to
by pDest.

Specifies an offset within the global memory object. Data is
copied from the object beginning at this offset.

If the pDest parameter points to a buffer, the return value is the size, in
bytes, of the memory object associated with the data handle or the size
specified in the cbMax parameter, whichever is lower.

Windows API Guide

DdeGetlLastError

If the pDest parameter is NULL, the return value is the size, in bytes, of
the memory object associated with the data handle.

Errors Use the DdeGetLastError function to retrieve the error value, which may
be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALID_HDDEDATA
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

Example The following example copies data from a global memory object to a local
buffer and then fills the TIME structure with data from the buffer:

HDDEDATA hData;
char szBuf[32];

typedef struct {
int hour;
int minute;
int second;
} TIME;

DdeGetData (hData, (LPBYTE) szBuf, 32L, OL);
sscanf (szBuf, “%d:%d:%d”, &nTime.hour, &nTime.minute,
&nTime.second) ;

See Also DdeAccessData, DdeCreateDataHandle, DdeFreeDataHandle

DdeGetlLastError 3.1

Syntax #include <ddeml.h>
UINT DdeGetLastError(idInst)

function DdeGetLastError(Inst: Longint): Word;

The DdeGetl.astError function returns the most recent error value set by
the failure of a Dynamic Data Exchange Management Library (DDEML)
function and resets the error value to DMLERR_NO_ ERROR.

Parameters idInst Specifies the application-instance identifier obtained by a
previous call to the Ddelnitialize function.

Return Value The return value is the last error value. Following are the possible
DDEML error values:

Chapter 4, Functions 187

DdeGetlLastError

188

Value

Meaning

DMLERR_ADVACKTIMEOUT
DMLERR_BUSY
DMLERR_DATAACKTIMEOUT

DMLERR_DLL_NOT_INITIALIZED

DMLERR_DLL_USAGE

DMLERR_EXECACKTIMEOUT

DMLERR_INVALIDPARAMETER

DMLERR_LOW_MEMORY

Arequest for a synchronous advise’
transaction has timed out.

The response to the transaction
caused the DDE_FBUSY bit to be set.

A request for a synchronous data
transaction has timed out.

A DDEML function was called
without first calling the Ddelnitialize
function, or an invalid instance
identifier was passed to a DDEML
function.

An application initialized as
APPCLASS_MONITOR has
attempted to perform a DDE
transaction, or an application
initialized as
APPCMD_CLIENTONLY has
attempted to perform server
transactions.

A request for a synchronous execute
transaction has timed out.

A parameter failed to be validated by
the DDEML. Some of the possible
causes are as follows:
* The application used a data
handle initialized with a
different item-name handle than
that required by the transaction.

* The application used a data
handle that was initialized with
a different clipboard data format
than that required by the
transaction.

* The application used a
client-side conversation handle
with a server-side function or
vise versa.
* The application used a freed
data handle or string handle.
* More than one instance of the
application used the same object.
A DDEML application has created a
prolonged race condition (where the
server application outruns the client),

causing large amounts of memory to
be consumed.

Windows API Guide

DdeGetLastError

Value

Meaning

DMLERR_MEMORY_ERROR
DMLERR_NO_CONV_ESTABLISHED

DMLERR_NOTPROCESSED
DMLERR_POKEACKTIMEOUT

DMLERR_POSTMSG_FAILED

DMLERR_REENTRANCY

DMLERR_SERVER DIED

DMLERR_SYS_ERROR
DMLERR_UNADVACKTIMEOUT

DMLERR_UNFOUND_QUEUE_ID

A memory allocation failed.

A client’s attempt to establish a
conversation has failed.

A transaction failed.

A request for a synchronous poke
transaction has timed out.

An internal call to the PostMessage
function has failed.

An application instance with a
synchronous transaction already in
progress attempted to initiate another
synchronous transaction, or the
DdeEnableCallback function was
called from within a DDEML callback
function.

A server-side transaction was
attempted on a conversation that was
terminated by the client, or the server
terminated before completing a
transaction.

An internal error has occurred in the
DDEML.

A request to end an advise transaction
has timed out.

An invalid transaction identifier was
passed to a DDEML function. Once
the application has returned from an
XTYP_XACT_COMPLETE callback,
the transaction identifier for that
callback is no longer valid.

Example

DWORD idInst;
HDDEDATA hddeMyData;
HSZPAIR ahszp[2];

HSZ hszClock, hszTime;

/* Create stringhandles. */

The following example calls the DdeGetLastError function if the
DdeCreateDataHandle function fails:

hszClock = DdeCreateStringHandle (idInst, (LPSTR) “Clock”,

CP_WINANSI) ;

hszTime = DdeCreateStringHandle (idInst, (LPSTR) “Time”,

CP_WINANSI) ;

/* Copy handles to an HSZPAIR structure. */

ahszp([0] .hszSvc = hszClock;

Chapter 4, Functions

189

Ddelnitialize

ahszp[0] .hszTopic = hszTime;
ahszp([l].hszSvc = (HSZ) NULL;
ahszp([1l] .hszTopic = (HSZ) NULL;

/* Create a global memory object. */

hddeMyData = DdeCreateDataHandle (idInst, ahszp,
sizeof (ahszp), 0, NULL, CF_TEXT, 0);
if (hddeMyData == NULL)

/*
* Pass error value to application-defined error handling
* function.

HandleError (DdeGetLastError (idInst));

See Also Ddelnitialize
Ddelnitialize 3.1
Syntax #include <ddemlLh>

UINT Ddelnitialize(IpidInst, pfnCallback, afCmd, uRes)
function Ddelnitialize(var Inst: Longint; Callback: TCallback; Cmd, Res:
Longint): Word;
The Ddelnitialize function registers an application with the Dynamic Data
Exchange Management Library (DDEML). An application must call this
function before calling any other DDEML function.

Parameters IpidInst Points to the application-instance identifier. At
initialization, this parameter should point to OL. If the
function is successful, this parameter points to the instance
identifier for the application. This value should be passed
as the idInst parameter in all other DDEML functions that
require it. If an application uses multiple instances of the
DDEML dynamic link library, the application should
provide a different callback function for each instance.

If IpidInst points to a nonzero value, this implies a

reinitialization of the DDEML. In this case, IpidInst must

point to a valid application-instance identifier.
pfnCallback Points to the application-defined DDE callback function.

190

This function processes DDE transactions sent by the
system. For more information, see the description of the
DdeCallback callback function.

Windows API Guide

Ddelnitialize

afCmd Specifies an array of APPCMD_ and CBF_ flags. The
APPCMD _ flags provide special instructions to the
Ddelnitialize function. The CBF_ flags set filters that
prevent specific types of transactions from reaching the
callback function. Using these flags enhances the
performance of a DDE application by eliminating
unnecessary calls to the callback function.

This parameter can be a combination of the following flags:

Flag

Meaning

APPCLASS_MONITOR

APPCLASS_STANDARD

APPCMD_CLIENTONLY

APPCMD_FILTERINITS

Chapter 4, Functions

Makes it possible for the application to
monitor DDE activity in the system. This
flag is for use by DDE monitoring
applications. The application specifies the
types of DDE activity to monitor by
combining one or more monitor flags with
the APPCLASS_MONITOR flag. For
details, see the following Comments
section.

Registers the application as a standard
(nonmonitoring) DDEML application.
Prevents the application from becoming a
server in a DDE conversation. The
application can be only a client. This flag
reduces resource consumption by the
DDEML. It includes the functionality of
the CBF_FAIL_ALLSVRXACTIONS flag.
Prevents the DDEML from sending
XTYP_CONNECT and
XTYP_WILDCONNECT transactions to
the application until the application has
created its string handles and registered its
service names or has turned off filtering by
a subsequent call to the DdeNameService
or Ddelnitialize function. This flag is
always in effect when an application calls
Ddelnitialize for the first time, regardless
of whether the application specifies this
flag. On subsequent calls to Ddelnitialize,
not specifying this flag turns off the
application’s service-name filters;
specifying this flag turns on the
application’s service-name filters.

191

Ddelnitialize

Flag Meaning

CBF_FAIL_ALLSVRXACTIONS Prevents the callback function from
receiving server transactions. The system
will return DDE_FNOTPROCESSED to
each client that sends a transaction to this
application. This flag is equivalent to
combining all CBF_FAIL_ flags.

CBF_FAIL_ADVISES Prevents the callback function from
receiving XTYP_ADVSTART and
XTYP_ADVSTOP transactions. The system
will return DDE_FNOTPROCESSED to
each client that sends an
XTYP_ADVSTART or XTYP_ADVSTOP
transaction to the server.

CBF_FAIL_CONNECTIONS Prevents the callback function from
receiving XTYP_CONNECT and
XTYP_WILDCONNECT transactions.

CBF_FAIL_EXECUTES Prevents the callback function from
receiving XTYP_EXECUTE transactions.
The system will return
DDE_FNOTPROCESSED to a client that
sends an XTYP_EXECUTE transaction to
the server.

CBF_FAIL_POKES Prevents the callback function from
receiving XTYP_POKE transactions. The
system will return
DDE_FNOTPROCESSED to a client that
sends an XTYP_POKE transaction to the
server.

CBF_FAIL_REQUESTS Prevents the callback function from
receiving XTYP_REQUEST transactions.
The system will return
DDE_FNOTPROCESSED to a client that
sends an XTYP_REQUEST transaction to
the server.

CBF_FAIL_SELFCONNECTIONS Prevents the callback function from
receiving XTYP_CONNECT transactions
from the application’s own instance. This
prevents an application from establishing
a DDE conversation with its own instance.
An application should use this flag if it
needs to communicate with other
instances of itself but not with itself.

CBF_SKIP_ALLNOTIFICATIONS Prevents the callback function from
receiving any notifications. This flag is
equivalent combining all CBF_SKIP_ flags.

192 Windows APl Guide

Ddelnifialize

Flag Meaning

CBF_SKIP_CONNECT_CONFIRMS Prevents the callback function from
receiving XTYP_CONNECT _CONFIRM

notifications.
CBF_SKIP_DISCONNECTS Prevents the callback function from

receiving XTYP_DISCONNECT

notifications.
CBF_SKIP_REGISTRATIONS Prevents the callback function from

receiving XTYP_REGISTER notifications.

CBF_SKIP_UNREGISTRATIONS Prevents the callback function from
receiving XTYP_UNREGISTER
notifications.

uRes Reserved; must be set to OL.

Return Value The return value is one of the following:

DMLERR_DLL_USAGE
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_SYS_ERROR

Comments An application that uses multiple instances of the DDEML must not pass
DDEML objects between instances.

A DDE monitoring application should not attempt to perform DDE
(establish conversations, issue transactions, and so on) within the context
of the same application instance.

A synchronous transaction will fail with a DMLERR_REENTRANCY
error if any instance of the same task has a synchronous transaction
already in progress.

A DDE monitoring application can combine one or more of the following
monitor flags with the APPCLASS_MONITOR flag to specify the types of
DDE activity to monitor:

Flag Meaning

MF_CALLBACKS Notifies the callback function whenever a transaction is
sent to any DDE callback function in the system.

MF_CONV Notifies the callback function whenever a conversation is
established or terminated.

MF_ERRORS Notifies the callback function whenever a DDE error
occurs.

Chapfter 4, Functions 193

DdeKeepStringHandle

Example

Flag Meaning

MF_HSZ_INFO Notifies the callback function whenever a DDE
application creates, frees, or increments the use count of a
string handle or whenever a string handle is freed as a
result of a call to the DdeUninitialize function.

MF_LINKS Notifies the callback function whenever an advise loop is
started or ended.

MF_POSTMSGS Notifies the callback function whenever the system or an
application posts a DDE message.

MF_SENDMSGS Notifies the callback function whenever the system or an

application sends a DDE message.

The following example obtains a procedure-instance address for a DDE
callback function, then initializes the application with the DDEML.

DWORD idInst = OL;
FARPROC lpDdeProc;

lpDdeProc = MakeProcInstance((FARPROC) DDECallback, hiInst);
if (DdeInitialize((LPDWORD) &idInst, (PFNCALLBACK) lpDdeProc,
APPCMD CLIENTONLY, OL))
return FALSE;

See Also DdeClientTransaction, DdeConnect, DdeCreateDataHandle,
DdeEnableCallback, DdeNameService, DdePostAdvise, DdeUninitialize
DdeKeepStringHandle 3.1
Syntax #include <ddeml.h>

194

Parameters

BOOL DdeKeepStringHandle(idInst, hsz)

function DdeKeepStringHandle(Inst: Longint; HSZ: HSZ): Bool;

The DdeKeepStringHandle function increments the usage count
(increases it by one) associated with the given handle. This function
makes it possible for an application to save a string handle that was
passed to the application’s dynamic data exchange (DDE) callback
function. Otherwise, a string handle passed to the callback function is
deleted when the callback function returns.

idInst Specifies the application-instance identifier obtained by a
previous call to the Ddelnitialize function.

hsz Identifies the string handle to be saved.

Windows API Guide

Return Value

DdeNcmeSérvicé

The return value is nonzero if the function is successful. Otherwise, it is
zero.

Example The following example is a portion of a DDE callback function that
increases the usage count and saves a local copy of two string handles:
HSZ hszl;
HSZ hsz2;
static HSZ hszServerBase;
static HSZ hszServerlInst;
DWORD idInst;
case XTYP_REGISTER:
/* Keep the handles for later use. */
DdeKeepStringHandle (idInst, hszl);
DdeKeepStringHandle (idInst, hsz2);
hszServerBase = hszl;
hszServerInst = hsz2;
: /* Finish processing the transaction. */
See Also DdeCreateStringHandle, DdeFreeStringHandle, Ddelnitialize,
DdeQueryString
DdeNameService 3.1
Syntax #include <ddeml.h>
HDDEDATA DdeNameService(idInst, hsz1, hszRes, afCmd)
function DdeNameService(Inst: Longint; hsz1, hsz2: HSZ; Cmd: Word):
HDDEData;
The DdeNameService function registers or unregisters the service names
that a dynamic data exchange (DDE) server supports. This function
causes the system to send XTYP_REGISTER or XTYP_UNREGISTER
transactions to other running DDE Management Library (DDEML) client
applications.
A server application should call this function to register each service
name that it supports and to unregister names that it previously
registered but no longer supports. A server should also call this function
to unregister its service names just before terminating.
Parameters idlnst Specifies the application-instance identifier obtained by a

Chapter 4, Functions

previous call to the Ddelnitialize function.

195

DdeNameService

196

Return Value

Errors

Comments

hsz1 Identifies the string that specifies the service name that the
server is registering or unregistering. An application that is
unregistering all of its service names should set this

parameter to NULL.
hszRes Reserved; should be set to NULL.
afCmd Specifies the service-name flags. This parameter can be one

of the following values:

Value Meaning

DNS_REGISTER Registers the given service name.

DNS_UNREGISTER Unregisters the given service name. If the hsz1
parameter is NULL, all service names registered by the
server will be unregistered.

DNS_FILTERON Turns on service-name initiation filtering. This filter
prevents a server from receiving XTYP_CONNECT
transactions for service names that it has not registered.
This is the default setting for this filter.

If a server application does not register any service
names, the application cannot receive
XTYP_WILDCONNECT transactions.

DNS_FILTEROFF Turns off service-name initiation filtering. If this flag is
set, the server will receive an XTYP_CONNECT
transaction whenever another DDE application calls the
DdeConnect function, regardless of the service name.

The return value is nonzero if the function is successful. Otherwise, it is
Zero.

Use the DdeGetLastError function to retrieve the error value, which may
be one of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_DLL_USAGE
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

The service name identified by the hsz1 parameter should be a base name
(that is, the name should contain no instance-specific information). The
system generates an instance-specific name and sends it along with the
base name during the XTYP_REGISTER and XTYP_UNREGISTER
transactions. The receiving applications can then connect to the specific
application instance.

Windows APl Guide

Example

See Also

DdePostAdvise

The following example initializes an application with the DDEML, creates
frequently used string handles, and registers the application’s service
name:

HSZ hszClock;

HSZ hszTime;

HSZ hszNow;

HINSTANCE hinst;

DWORD idInst = OL;
FARPROC lpDdeProc;

/* Initialize the application for the DDEML. */

lpDdeProc = MakeProcInstance ((FARPROC) DdeCallback, hinst);

if (!DdeInitialize ((LPDWORD) &idInst, (PFNCALLBACK) lpDdeProc,

APPCMD_FILTERINITS | CBF_FAIL EXECUTES, OL)) {

/* Create frequently used string handles. */
hszTime = DdeCreateStringHandle(idInst, “Time”, CP_WINANSI);
hszNow = DdeCreateStringHandle (idInst, “Now”, CP_WINANSI);
hszClock = DdeCreateStringHandle(idInst, “Clock”, CP_WINANSI);

/* Register the service name. */

DdeNameService (idInst, hszClock, (HSZ) NULL, DNS REGISTER) ;

DdeConnect, DdeConnectList, Ddelnitialize

DdePostAdvise 3.1

Syntax

Parameters

Chapter 4, Functions

#include <ddeml.h>
BOOL DdePostAdvise(idInst, hszTopic, hszltem)

function DdePostAdvise(Inst: Longint; Topic, Item: HSZ): Bool;

The DdePostAdvise function causes the system to send an
XTYP_ADVREQ transaction to the calling (server) application’s dynamic
data exchange (DDE) callback function for each client that has an advise
loop active on the specified topic or item name pair. A server application
should call this function whenever the data associated with the topic or
item name pair changes.

idInst Specifies the application-instance identifier obtained by a
previous call to the Ddelnitialize function.

hszTopic Identifies a string that specifies the topic name. To send
notifications for all topics with active advise loops, an
application can set this parameter to NULL.

197

DdePostAdvise

Return Value

Errors

Comments

Example

hszltem Identifies a string that specifies the item name. To send
notifications for all items with active advise loops, an
application can set this parameter to NULL.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may
be one of the following;:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_DLL_USAGE
DMLERR_NO_ERROR

A server that has nonenumerable topics or items should set the hszTopic
and hszltem parameters to NULL so that the system will generate trans-
actions for all active advise loops. The server’s DDE callback function
returns NULL for any advise loops that do not need to be updated.

If a server calls DdePostAdvise with a topic/item/format name set that
includes the set currently being handled in a XTYP_ADVREQ callback, a
stack overflow may result.

The following example calls the DdePostAdvise function whenever the
time changes:

typedef struct { /* tm */
int hour;
int minute;
int second;

} TIME;

TIME tmTime;
DWORD idInst;
HSZ hszTime;
HSZ hszNow;
TIME tmCurTime;

. /* Fill tmCurTime with the current time. */

/* Check for any change in second, minute, or hour. */

if ((tmCurTime.second != tmTime.second) ||
(tmCurTime.minute != tmTime.minute) ||
(tmCurTime.hour '= tmTime.hour)) {

/* Send the current time to the clients. */

DdePostAdvise (idInst, hszTime, hszNow) ;

See Also Ddelnitialize

198

Windows APl Guide

DdeQueryConvinfo

DdeQueryConvinfo 3.1

Syntax

#include <ddeml.h>
UINT DdeQueryConvInfo(hConv, idTransaction, IpConvInfo)

function DdeQueryConvInfo(Conv: HConv; Transaction: Longint;
Convlinfo: PConvInfo): Word;

The DdeQueryConvinfo function retrieves information about a dynamic
data exchange (DDE) transaction and about the conversation in which the
transaction takes place.

Parameters HhConv Identifies the conversation.

idTransaction ~ Specifies the transaction. For asynchronous transactions,
this parameter should be a transaction identifier returned
by the DdeClientTransaction function. For synchronous
transactions, this parameter should be QID_SYNC.

IpConvinfo Points to the CONVINFO structure that will receive
information about the transaction and conversation. The

cb member of the CONVINFO structure must specify the
length of the buffer allocated for the structure.

The CONVINFO structure has the following form:

#include <ddeml.h>

typedef struct tagCONVINFO { /* ci */
DWORD cb;
DWORD hUser;
HCONV ~ hConvPartner;

HSZ hszSvcPartner;
HSZ hszServiceReq;
HSZ hszTopic;

HSZ hszItem;

UINT wFmt ;

UINT wType;

UINT wStatus;

UINT wConvst;

UINT wLastError;

HCONVLIST hConvList;

CONVCONTEXT ConvCtxt;
} CONVINFO;

Return Value The return value is the number of bytes copied into the CONVINFO

Chapter 4, Functions

structure, if the function is successful. Otherwise, it is zero.

199

DdeQueryNexiServer

Errors Use the DdeGetLastError function to retrieve the error value, which may

be one of the following;:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

Example The following example fills a CONVINFO structure with information
about a synchronous conversation and then obtains the names of the

partner application and topic:

DWORD idInst;

HCONV hConv;

CONVINFO ci;

WORD wError;

char szSvcPartner{32];
char szTopic[32];:

DWORD cchServ, cchTopic;

if (!DdeQueryConvInfo (hConv, QID SYNC, &ci))
wError = DdeGetLastError(idInst);

else {
cchServ = DdeQueryString(idInst, ci.hszSvcPartner,
(LPSTR) &szSvcPartner, sizeof (szSvcPartner),
CP_WINANSI) ;
cchTopic = DdeQueryString(idInst, ci.hszTopic,
(LPSTR) &szTopic, sizeof (szTopic),
CP_WINANSI);
}

See Also DdeConnect, DdeConnectList, DdeQueryNextServer

DdeQueryNextServer

3.1

Syntax #include <ddeml.h>
HCONYV DdeQueryNextServer(hConvList, hConvPrev)

function DdeQueryNextServer(ConvList: HConvList; ConvPrev: HConv):

HConv;

The DdeQueryNextServer function obtains the next conversation handle

in the given conversation list.

Parameters hConvList Identifies the conversation list. This handle must have
been created by a previous call to the DdeConnectList

function.

200 Windows APl Guide

hConvPrev

Return Value The return value is the next conversation handle in the list if the list
contains any more conversation handles. Otherwise, it is NULL.

DdeQueryNexiServer

Identifies the conversation handle previously returned by
this function. If this parameter is NULL, this function
returns the first conversation handle in the list.

Example The following example uses the DdeQueryNextServer function to count
the number of conversation handles in a conversation list and to copy the

service-name string handles of the servers to a local buffer:

HCONVLIST hconvlList; /*
DWORD idInst; /*
HSZ hszSystem; /*
HCONV hconv = NULL; /*
CONVINFO ci; /*
UINT cConv = 0; /*
HSZ *pHsz, *aHsz; /*

/* Connect to all servers that support the System topic. */

hconvList=DdeConnectList (idInst, (HSZ) NULL, hszSysten,

conversation list */
instance identifier */
System topic */
conversation handle */

holds conversation data */
count of conv. handles */
point to string handles */

(HCONV) NULL, (LPVOID) NULL);

/* Count the number of handles in the conversation list. */

while ((hconv=DdeQueryNextServer (hconvList, hconv)) != (HCONV) NULL)

cConv++;

/* Allocate a buffer for the string handles. */

hconv = (HCONV) NULL;

aHsz = (HSZ *) LocalAlloc (LMEM FIXED, cConv *sizeof (HSZ));

/* Copy the string handles to the buffer. */

pHsz = aHsz;

while ((hconv=DdeQueryNextServer (hconvlList, hconv)) != (HCONV) NULL) {
DdeQueryConvInfo (hconv, QID SYNC, (PCONVINEFO)
DdeKeepStringHandle (idInst, ci.hszSvcPartner);
*pHsz++ = ci.hszSvcPartner;

. /* Use the handles; converse with servers. */

/* Free the memory and terminate conversations. */

LocalFree ((HANDLEAHszZ) ;
DdeDisconnectList (hconvList);

See Also DdeConnectList, DdeDisconnectList

Chapter 4, Functions

201

DdeQueryString

DdeQueryString 3.1

202

Syntax

Parameters

Return Value

#include <ddeml.h>
DWORD DdeQueryString(idInst, hsz, lpsz, cchMax, codepage)

function DdeQueryString(Inst: Longint; HSZ: HSZ; psz: PChar; Max:
Longint; CodePage: Integer): Longint;

The DdeQueryString function copies text associated with a string handle
into a buffer.

The string returned in the buffer is always null-terminated. If the string is
longer than (cchMax — 1), only the first (cchMax — 1) characters of the string
are copied.

If the Ipsz parameter is NULL, this function obtains the length, in bytes, of
the string associated with the string handle. The length does not include
the terminating null character.

i