
WINDOWS 3.1
REFERENCE GUIDE

BORLAND

Windows API Guide

Reference

Volume 3

Version 3.1
for the MS-DOS and PC-DOS
Operating Systems

BORLAND INTERNATIONAL INC, 1800 GREEN HILLS ROAD
P,O, BOX 660001, SCOTTS VALLEY, CA 95067-0001

Copyright © 1992 by Borland International. All rights reserved.
All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

PRINTED IN THE USA.
109876543

c o n

Chapter 1 Common dialog
box library

t

1

Using Color dialog boxes 3
Color models used by the Color
dialog box 4

RGB color model 4
HSL color model 6
Converting HSL values to RGB
values , ... 6

Using the Color dialog box to display
basic colors 7

Initializing the CHOOSE COLOR
structure 7
Calling the ChooseColor function .. 8

Using the Color dialog box to
display custom colors 8

Initializing the CHOOSECOLOR
structure . 8
Calling the ChooseColor function .. 9

Using Font dialog boxes 11

Displaying the Font dialog box in
your application 11

Using Open and Save As dialog boxes ... 13

Displaying the Open dialog
box in your application 13
Displaying the Save As dialog box in
your application 16
Monitoring list box controls in an
Open or Save As dialog box 18
Monitoring filenames in an Open or
Save As dialog box 19

Using Print and Print Setup dialog
boxes 20

e n t s

Device drivers and the Print
dialog box 21
Displaying a Print dialog box for
the default printer 21

Using Find and Replace dialog boxes 23
Displaying the Find dialog box 23

Displaying
the Replace dialog box 25
Processing dialog box messages for a
Find or Replace dialog box 26

Customizing common dialog boxes 27

Appropriate and inappropriate
customizations 27
Hook functions and custom dialog
box templates 28

Hook function 28
Customizing a dialog box .
template 31

Displaying
the custom dialog box 32

Supporting help for the common
dialog boxes . 34

Error detection 35

Chapter 2 Dynamic Data Exchange
Management Library 37

Basic concepts 38
Client and server interaction 39
Transactions and the DDE callback
function . 39
Service names, topic names, and
item names 40
System topic 40

Initialization 42

Callback function 43 Server applications 80
String management 45 Object handlers 80
Name service 47 Communication between OLE

Service-name registration 47
Service-name filter 48

libraries 81
Clipboard conventions 81

Conversation management 48 Registration 85

Single conversations 48
Multiple conversations 52

Data management 54

Transaction management 57
Request transaction 57
Poke transaction 58
Advise transaction 59
Execute transaction 60

Registration database 85
Version control
for servers 87

Client user interface 88
New and changed commands 88
Using packages 91

Server user interface 92
Updating objects from
multiple-instance servers 92

Synchronous and asynchronous
transactions 61
Transaction control 62

Updating objects from
single-instance servers 93

Object storage formats 93
Transaction classes 63
Transaction summary 64

Error detection 66

Client applications 95
Starting a client application 96
Opening a compound document 97

Monitoring applications 66 Document management 98

Chapter 3 Object linking and embedding
libraries 71

Saving a document 99
Closing a document 99

Basics of object linking and embedding .. 71 Asynchronous operations 99

Compound documents 72 Displaying and printing objects 102

Linked and embedded objects 73 Opening and closing objects 102

Packages 74 Deleting objects 103

Verbs 74 Client Cut and Copy commands 103

Benefits of object linking and Creating objects 105
embedding 75 Object-creation functions 105
Choosing between OLE and the Paste and Paste Link commands. 107
DDEML 76 Undo command 108

Using OLE for standard
DOE operations 77
Using both OLE
and the DDEML 79

Class Name Object command 109
Links command 109
Closing a client application 110

Data transfer in object linking and
embedding 79

Server applications 111
Starting a server application 112

Client applications 80 Opening a document or object 114

Windows API Guide

Server Cut and Copy commands 115
Update, Save As, and New
commands 116
Closing a server application 117

Object handlers 119

Implementing object handlers 119
Creating objects in an object handler . 122

DefCreateFromClip and
DllCreateFromClip 122
DefLoadFromStream and
DllLoadFromStream 123

Direct use of Dynamic Data Exchange .. 124
Client applications and direct use
of Dynamic Data Exchange 124
Server applications and direct use of
Dynamic Data Exchange 127
Conversations 128
Items for the system topic 128
Standard item names and notification
control 129
Standard commands in DOE
execute strings 131

International execute
commands 131
Required commands 132
Variants on required
commands 134

Chapter 4 Functions 135
AbortDoc 135
AbortProc 136
AllocDiskSpace 136
AllocFileHandles 137
AllocGDIMem 138
AllocMem 139
AllocUserMem 139
CallN extHookEx 140
CallWndProc 140
CBTProc 141
ChooseColor . 145

Table of Contents

ChooseFont . 147
ClassFirst . 148
ClassNext 149
CloseDriver 150

CommDlgExtendedError '" .. '" ... 151
CopyCursor 154
Copylcon ., '" 155
CopyLZFile '" .. 155
CPIAppiet 157
CreateScalableFontResource 157
DdeAbandonTransaction 160
DdeAccessData 162
DdeAddData 163
DdeCallback .. 165
DdeClientTransaction 167
DdeCmpStringHandles 170
DdeConnect 172
DdeConnectList 174

DdeCreateDataHandle 176
DdeCreateStringHandle 179
DdeDisconnect 181
DdeDisconnectList 181
DdeEnableCallback 182
DdeFreeDataHandle 183
DdeFreeStringHandle 185
DdeGetData 186
DdeGetLastError 187
DdeInitialize . 190
DdeKeepStringHandle 194
DdeNameService 195
DdePostAdvise 197
DdeQueryConvInfo 199
DdeQueryNextServer 200
DdeQueryString 202
DdeReconnect 203
DdeSetUserHandle 204
DdeUnaccessData 205
DdeUninitialize 206

iii

DebugOutput 207 GetCurrentPositionEx 245
DebugProc 208 GetCursor 245
DeillriverProc 209 GetDCEx 246
DirectedYield 210 GetDriverInfo 247
DIgDirSelectComboBoxEx 211 GetDriverModuleHandle 248
DIgDirSelectEx 212 GetExpandedName 249
DragAcceptFiles 213 GetFileResource 250
DragFinish 213 GetFileResourceSize 251
DragQueryFile 214 GetFileTitle 252
DragQueryPoint 214 GetFile Versionlnfo 253
DriverProc 215 GetFile VersionlnfoSize 254
EnableCommNotification 217 GetFontData ., 254
EnableScrollBar 218 GetFreeFileHandles 257
EndDoc 220 GetFreeSystemResources 257
EndPage 220 GetGlyphOutline 258
EnumFontFamilies 221 GetKerningPairs 260
EnumFontFamProc 222 GetMessageExtralnfo 261
EnumFontsProc 225 GetMsgProc 261
EnumMetaFileProc 227 GetNextDriver 262
EnumObjectsProc 228 GetOpenClipboardVVindow 263
EnumPropFixedProc ., 230 GetOpenFileName .. , 264
EnumPropMovableProc 231 GetOutlineTextMetrics 266
EnumTaskVVndProc 232 GetQueueStatus 268
Enum VVindowsProc 232 GetRasterizerCa ps 269
ExitVVindowsExec 233 GetSaveFileN ame 270
Extractlcon 234 GetSelectorBase 272
FindExecutable 234 GetSelectorLimit 273
FindText 236 GetSystemDebugState 273
FMExtensionProc 238 GetSystemDir . 274
FreeAllGDIMem 239 GetTextExtentPoint 275
FreeAllMem 240 GetTimerResolution 276
FreeAllUserMem 240 GetViewportExtEx 276
GetAspectRatioFilterEx 240 GetViewportOrgEx 276
GetBitmapDimensionEx 241 GetVVinDebuglnfo 277
GetBoundsRect 241 GetVVindowExtEx 278
GetBrushOrgEx 243 GetVVindowOrgEx 278
GetCharABCVVidths 243 GetVVindowPlacement 278
GetClipCursor 244 GetVVindowsDir 279

iv Windows API Guide

GetWinMem32Version 280 LocalFirst 314
Globa116PointerAlloc 281 LocalInfo . 315
Globa116PointerFree 282 LocalN ext 315
Globa132Alloc 283 LockInput 316
Globa132CodeAlias 285 LockWindovvVpdate 317
Globa132CodeAliasFree 286 LogError 318
Globa132Free 287 LogParamError 319
Globa132Realloc 287 LZClose . 322
GlobalEntryHandle 289 LZCopy 323
GlobalEntryModule 290 LZDone 324
GlobalFirst. 291 LZInit , 325
GlobalHandleToSel 292 LZOpenFile 327
GlobalInfo 293 LZRead 329
GlobalN ext 293 LZSeek 331
GrayStringProc 295 LZStart . 332
HardvvareProc 295 MapWindovvPoints 333
hardvvare_event 296 MemManInfo 334
hmemcpy 297 MemoryRead 335

hread 298 MemoryWrite 336
_hvvrite 298 MessageProc 337
InterruptRegister 299 ModuleFindHandle 338

Lovv-stack Faults 301 ModuleFindName 339
InterruptUnRegister 302 ModuleFirst 340
IsBadCodePtr 303 ModuleNext 341
IsBadHugeReadPtr 304 MouseProc 342
IsBadHugeWritePtr 304 MoveToEx 343
IsBadReadPtr 305 NotifyProc 343
IsBadStringPtr 305 NotifyRegister 344
IsBadWritePtr 306 NotifyUnRegister 347
IsGDIObject 306 OffsetVievvportOrgEx 347
IsMenu 307 OffsetWindovvOrgEx 348
IsTask 307 OleActivate 349
J ournalPlaybackProc 307 OleBlockServer , 350
J ournalRecordProc 309 OleClone 351
KeyboardProc 310 OleClose 352
LibMain 311 OleCopyFromLink 352
LineDDAProc 312 OleCopyToClipboard 353
LoadProc 313 OleCreate 354

Table of Contents v

OleCreateFromClip 355 OleRenameClientDoc 395
OleCreateFromFile 357 OleRenameServerDoc 396
OleCreateFromTemplate 360 OleRequestData 396
OleCreateInvisible 362 OleRevertClientDoc 397
OleCreateLinkFromClip 364 OleRevertServerDoc 398
OleCreateLinkFromFile 366 OleRevokeClientDoc 399

Ole Delete 368 OleRevokeObject 399
OleDraw 369 OleRevokeServer 400
OleEnumFormats 370 OleRevokeServerDoc 400

OleEnumObjects 371 OleSavedClientDoc 401
OleEqual 372 OleSavedServerDoc 402
OleExecute 372 OleSaveToStream 402

OleGetData 373 OleSetBounds 403
OleGetLinkUpdateOptions 374 OleSetColorScheme 404
OleIsDcMeta 375 OleSetData 405
OleLoadFromStream 376 OleSetHost~ames 406
OleLockServer 377 OleSetLinkUpdateOptions 407
OleObjectConvert 378 OleSetTargetDevice 408

OleQueryBounds 379 OleUnblockServer 409
OleQueryClientVersion 380 OleUnlockServer 410
OleQueryCreateFromClip 380 OleUpdate 411

OleQueryLinkFromClip 382 OpenDriver 411
OleQuery~ame 383 PrintDlg 412
OleQueryOpen 384 QueryAbort 415

OleQueryOutOfDate 384 QuerySendMessage 415
OleQueryProtocol 385 RedrawWindow 416
OleQueryReleaseError 386 RegCloseKey 419
OleQueryReleaseMethod 386 RegCreateKey 420
OleQueryReleaseStatus 388 RegDeleteKey 422
OleQueryServerVersion 388 RegEnumKey 423
OleQuerySize 389 RegOpenKey 424
OleQueryType 389 RegQueryValue 425
OleReconnect 390 RegSetValue 426
OleRegisterClientDoc 390 ReplaceText 427
OleRegisterServer 391 ResetDC 430
OleRegisterServerDoc 393 ScaleViewportExtEx 431
OleRelease 394 ScaleWindowExtEx 432
OleRename 394 ScrollWindowEx 432

vi Windows API Guide

SendDriverMessage 435 UnhookWindowsHookEx 474
SetAbortProc 435 V er FindFile . 475
SetBitmapDimensionEx 436 VerlnstallFile 478
SetBoundsRect 437 VerLanguage~ame 482
SetMetaFileBitsBetter 438 VerQueryValue 484
SetSelectorBase 439 WindowProc 487
SetSelectorLimit 439 W~etAddConnection 488
SetViewportExtEx 439 W~etCancelConnection .. " 489
SetViewportOrgEx 440 W~ etGetConnection 489
SetWinDebuglnfo 442 WordBreakProc '" 490
SetWindowExtEx '" 443
SetWindowOrgEx 444 Chapter 5 Data types 493

SetWindowPlacement 444 Chapter 6 Messages 503
SetWindowsHookEx 445 CB_ADDSTRI~G 503
ShellExecute 448 CB_DELETESTRI~G 504
ShellProc 451 CB_FI~DSTRI~GEXACT 505
SpoolFile 452 CB _ GETDROPPEDCO~TROLRECT 505
StackTraceCSIPFirst 453 CB _ GETDROPPEDST ATE 506
StackTraceFirst 454 CB _ GETEXTE~DEDUI 507
StackTrace~ext 455 CB_GETITEMHEIGHT 507
Start Doc 456 CB_SETEXTE~DEDUI 508
StartPage 457 CB_SETITEMHEIGHT 509
SubtractRect 457 EM_ GETFIRSTVISIBLELI~E 510
SysMsgProc , 458 EM_GETPASSWORDCHAR 510
SystemHeaplnfo , 459 EM_GETWORDBREAKPROC 511
SystemParameterslnfo 460 EM_SETREADO~LY 511
TaskFindHandle 466 EM_SETWORDBREAKPROC 512
TaskFirst 467 LB_FI~DSTRI~GEXACT 513
TaskGetCSIP , " 468 LB_GETCARETI~DEX 514
Tas~ ext 468 LB_SETCARETI~DEX 514
TaskSetCSIP 469 STM_ GETICO~ 515
TaskSwitch 470 STM_SETICO~ 515
TerminateApp 470 WM_ CHOOSEFO~T _ GETLOG-
TimerCount 471 FO~T 516
TimerProc 472 WM_COMM~OTIFY 516
UnAllocDiskSpace ... , 473 WM_DDE_ACK 517
UnAllocFileHandles 473 Posting 519
UndeleteFile 474 Receiving 519

Table of Contents vii

WM_DDE_ADVISE 520 CBN_SELENDOK 538

Posting 520 LBN_SELCANCEL 538

Receiving 521

WM_DDE_DATA 521

Posting 522

Receiving 522

WM_DDE_EXECUTE 523

Posting 524

Receiving 524

WM_DDE_INITIATE 524

Sending 525

Receiving 526

WM_DDE_POKE 526

Posting 527

Receiving 527

WM_DDE_REQUEST 527

Posting 528

Receiving 528

WM_DDE_TERMINATE 528

Posting 528

Receiving 529

WM_DDE_UNADVISE 529

Posting 529
Receiving 530

WM_DROPFILES 530

WM_PALETTEISCHANGING 530

WM_POWER 531

WM_QUEUESYNC 532

WM_SYSTEMERROR 532

WM_USER 533

WM_ WINDOWPOSCHANGED 534

WM_WINDOWPOSCHANGING ... 534

Notification messages 536

BN_HILITE 536

BN_PAINT 536

BN_ UNHILITE 536

CBN_CLOSEUP 537

CBN_SELENDCANCEL 537

Chapter 7 Structures 539
ABC 539

CBT _ CREATEWND 540

CBTACTIVATESTRUCT 540

CHOOSECOLOR 541

CHOOSEFONT 544

CLASSENTRY 551

COMSTAT 552

CONVCONTEXT 553

CONVINFO 554

CPLINFO 557

CTLINFO 558

CTLSTYLE 559

CTL TYPE 561

DDEACK 562

DDEADVISE 563
DDEDATA 564

DDEPOKE 565

DEBUGHOOKINFO 566

DEVNAMES 567

DOCINFO 568

DRIVERINFOSTRUCT 569

DRVCONFIGINFO 569

EVENTMSG 570
FINDREPLACE 571

FIXED 575

FMS_GETDRIVEINFO 576

FMS_GETFILESEL 577
FMS_LOAD 578

GLOBALENTRY 579

GLOBALINFO 582

GLYPHMETRICS 583

HARDWAREHOOKSTRUCT 584

HELPWININFO 584

HSZP AIR 585

viii Windows API Guide

KERNING PAIR 586
LOCALENTRY 587
LOCALINFO 590
MAT2 591
MEMMANINFO 592
METAHEADER 593

METARECORD 594
MINMAXINFO 595
MODULEENTRY 596

MONCBSTRUCT 597
MONCONVSTRUCT 598
MONERRSTRUCT 599

MONHSZSTRUCT 600
MONLINKSTRUCT 602
MONMSGSTRUCT 603
MOUSEHOOKSTRUCT 604
NCCALCSIZE_P ARAMS 605
NEWCPLINFO 606

NEWTEXTMETRIC 607
NFYLOADSEG 612
NFYLOGERROR 613

NFYLOGPARAMERROR 614
NFYRIP 615
NFYSTARTDLL 616

OLECLIENT 617
OLECLIENTVTBL 617

Parameters 618
Return Value 619
Comments 620

OLEOBJECT 620

OLEOBJECTVTBL 621
Parameters 624

Return Value 624
Comments 624
Parameters 624

Return Value 625
Comments 625
Parameters 625

Table of Contents

Return Value 625
Comments 625
Parameters 626
Return Value 626
Parameters . 626
Return Value 626

Comments 627
Parameters . 627
Return Value 627

Comments 627
See Also 627
Parameters . 627

Return Value 628
Parameters . 628
Return Value 628
Comments 629

OLESERVER 629
OLESERVERDOC 630

OLESERVERDOCVTBL 630
Parameters 631
Return Value 631

Parameters 631
Return Value 632
Comments 632

Parameters . 632
Return Value 633
Parameters . 633
Return Value 633
Parameters . 633
Return Value 634

Comments 634
Parameters . 634

Return Value 634
Parameters . 635
Return Value 635

Comments 635
Parameters . 636
Return Value 636

ix

Comments 636 SEGINFO 673

OLESERVERVTBL 636 SIZE 675

Parameters 637 STACKTRACEENTRY 676

Return Value 637 SYSHEAPINFO 677

Comments 637 TASKENTRY 678

Parameters . 638 TIMERINFO 679

Return Value 638 TTPOL YCURVE 680

Comments 638 TTPOL YGONHEADER 681

Parameters 639 VS_FIXEDFILEINFO 682

Return Value 639 WINDEBUGINFO 686

Comments 639 WINDOWPLACEMENT 690

Parameters . 640 WINDOWPOS 692

Return Value 640

Comments 640 Chapter 8 Macros 695

Parameters . 641 DECLARE_HANDLE 695

Return Value 641 DECLARE_HANDLE32 695

Comments 641 FIELDOFFSET 696

Parameters . 641 GetBValue 696

Return Value 641 GetGValue 697

Comments 641 GetRValue 697

Parameters 642 MAKELP 697

Return Value 642 MAKELP ARAM 698

Comments 642 MAKELRESUL T 698

OLESTREAM 643 OFFSETOF 699

OLESTREAMVTBL 643 SELECTOROF 699

Parameters . 644

Return Value 644
Chapter 9 Printer escapes 701

MOUSETRAILS 701
Comments 644 POSTSCRIPT_OAT A 702
Parameters . 644 POSTSCRIPT _IGNORE 702
Return Value 645 SETALLJUSTVALUES 703
Comments 645

OLETARGETDEVICE 645 Chapter 10 Dynamic Data
OPENFILENAME 646 Exchange transactions 705

OUTLINETEXTMETRIC 655 XTYP_ADVDATA 705

PANOSE 659 XTYP _ADVREQ 706

POINTFX 664 XTYP _ADVSTART 707

PRINTDLG 664 XTYP_ADVSTOP 708

RASTERIZER_STATUS 673 XTYP_CONNECT 708

x Windows API Guide

XTYP_CONNECT_CONFIRM 709
XTYP _DISCONNECT 710
XTYP _ERROR 711
XTYP _EXECUTE 711
XTYP _MONITOR 712
XTYP _POKE 713
XTYP _REGISTER 714
XTYP _REQUEST 715
XTYP _UNREGISTER 715
XTYP_WILDCONNECT 716
XTYP_XACT_COMPLETE 717

Chapter 11 Common dialog
box messages 719

COLOROKSTRING 719
FILEOKSTRING 720
FINDMSGSTRING 721
HELPMSGSTRING 721
LBSELCHSTRING 722
SETRGBSTRING 723
SHAREVISTRING 723

Index 725

Table of Contents xi

c H A p T E R

1

Common dialog box library

Common dialog boxes make it easier for you to develop
applications for the Microsoft Windows operating system. A
common dialog box is a dialog box that an application displays
by calling a single function rather than by creating a dialog box
procedure and a resource file containing a dialog box template.
The dynamic-link library COMMDLG.DLL provides a default
procedure and template for each type of common dialog box.
Each default dialog box procedure processes messages and
notifications for a common dialog box and its controls. A default
dialog box template defines the appearance of a common dialog
box and its controls.

In addition to simplifying the development of Windows
applications, a common dialog box assists users by providing a
standard set of controls for performing certain operations. As
Windows developers begin using the common dialog boxes in
their applications, users will find that after they master using a
common dialog box in one application, they can easily perform
the same operations in other applications.

This chapter describes the various common dialog boxes and
includes sample code to help you use common dialog boxes in
your Windows applications.

Chapter 7, Common dialog box library

2

Following are the types of common dialog boxes in the order in
which they are presented in this chapter:

Name

Color

Font

Open

Save As

Print

Print Setup

Find

Replace

Description

Displays available colors, from which the user can select
one; displays controls that let the user define a custom
color.
Displays lists of fonts, point sizes, and colors that
correspond to available fonts; after the user selects a font,
the dialog box displays sample text rendered with that
font.
Displays a list of filenames matching any specified
extensions, directories, and drives. By selecting one of the
listed filenames, the user indicates which file an
application should open.
Displays a list of filenames matching any specified
extensions, directories, and drives. By selecting one of the
listed filenames, the user indicates which file an
application should save.
Displays information about the installed printer and its
configuration. By altering and selecting controls in this
dialog box, the user specifies how output should be
printed and starts the printing process.
Displays the current list of available printers. The user
can select a printer from this list. This common dialog box
also provides options for setting the paper orientation,
size, and source (when the printer driver supports these
options). In addition to being called directly, the Print
Setup dialog can be opened from within the Print dialog.
Displays an edit control in which the user can type a
string for which the application should search. The user
can specify the direction of the search, whether the
application should match the case of the specified string,
and whether the string to match is an entire word.
Displays two edit controls in which the user can type
strings: the first string identifies a word or value that the
application should replace, and the second string
identifies the replacement word or value.

Windows API Guide

Applications that use the common dialog boxes should specify at
least 8K for the stack size, as shown in the following example:

NAME cd

EXETYPEWINDOWS

STUB 'WINSTUB.EXE'

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 1024

STACKSIZE8192

EXPORTS
FILEOPENHOOKPROC @1

Using Color dialog boxes

The Color dialog box contains controls that make it possible for a
user to select and create colors.

Following is a Color dialog box.

!!.asic Colols:

!;.ustom Colols:

ii~Ii;:===: D ~::~ ~::~ '_lIIiIIIIII ColollSQlid lum: [@ Blye: ~ 1_1_' , __ _
The Basic Colors control displays up to 48 colors. The actual
number of colors displayed is determined by the display driver.
For example, a VGA driver displays 48 colors, and a monochrome

Chapter 1, Common dialog box library 3

Color models
used by the Color

dialog box

RGB color model

4

display driver displays only 16. With the Basic Colors control, the
user can select a displayed color.

To display the Custom Colors control, the user clicks the Define
Custom Colors button. The Custom Colors control displays
custom colors. The user can select one of the 16 rectangles in this
control and then create a new color by using one of the following
methods:

• Specifying red, green, and blue (RGB) values by using the Red,
Green, and Blue edit controls, and then choosing the Add to
Custom Colors button to display the new color in the selected
rectangle.

• Moving the cursor in the color spectrum control (at the
upper-right of the dialog box) to select hue and saturation
values; moving the cursor in the luminosity control (the
rectangle to the right of the spectrum control); and then
choosing the Add to Custom Colors button to display the new
color in the selected rectangle.

• Specifying hue, saturation, and luminosity (HSL) values by
using the Hue, Sat, and Lum edit controls and then choosing
the Add to Custom Colors button to display the new color in
the selected rectangle.

The Color I Solid control displays the dithered and solid colors
that correspond to the user's selection. (A dithered color is a color
created by combining one or more pure or solid colors.) The
Flags member of the CHOOSECOLOR structure contains a flag
bit that, when set, displays a Help button.

An application can display the Color dialog box in one of two
ways: fully open or partially open. When the Color dialog box is
displayed partially open, the user cannot change the custom
colors.

The Color dialog box uses two models for specifying colors: the
RGB model and the HSL model. Regardless of the model used,
internal storage is accomplished by use of the RGB model.

The RGB model is used to designate colors for displays and other
devices that emit light. Valid red, green, and blue values are in
the range 0 through 255, with 0 indicating the minimum intensity

Windows API Guide

and 255 indicating the maximum intensity. The following
illustration shows how the primary colors red, green, and blue
can be combined to produce four additional colors. (With display
devices, the color black results when the red, green, and blue
values are set to O-that is, with display technology, black is the
absence of all colors.)

YELLOW

CYAN

Following are eight colors and their associated RGB values:

Color RGB values

Red 255,0, °
Green 0,255,0
Blue 0,0,255
Cyan 0,255,255
Magenta 255,0,255
Yellow 255,255, °
White 255,255,255
Black 0,0, °
Windows stores internal colors as 32-bit RGB values. The
high-order byte of the high-order word is reserved; the low-order
byte of the high-order word specifies the intensity of the blue
component; the high-order byte of the low-order word specifies
the intensity of the green component; and the low-order byte of
the low-order word specifies the intensity of the red component.

Chapter 7, Common dialog box library 5

6

HSL color model The Color dialog box provides controls for specifying HSL values.

Converting HSL values
to RGB values

The following illustration shows the color spectrum control and
the vertical luminosity control that appear in the Color dialog box
and shows the ranges of values the user can specify with these
controls.

240 - ;"""'='===---------. -240

Saturation Luminosity

0- L..-_________ ----'

I
-0

o Hue 239

In the Color dialog box, the saturation and luminosity values
must be in the range 0 through 240 and the hue value must be in
the range 0 through 239.

The dialog box procedure provided in COMMDLG.DLL for the
Color dialog box contains code that converts HSL values to the
corresponding RGB values. Following are several colors with
their associated HSL and RGB values:

Color HSL values RGB values

Red (0,240, 120) (255,0,0)
Yellow (40,240, 120) (255,255,0)
Green (80,240, 120) (0,255,0)

Cyan (120,240, 120) (0,255,255)
Blue (160,240, 120) (0,0,255)
Magenta (200,240, 120) (255,0,255)
White (0,0,240) (255, 255, 255)
Black (0,0,0) (0,0,0)

Windows API Guide

Using the Color
dialog box to
display basic

colors

Initializing the
CHOOSECOLOR

structure

An application can display the Color dialog box so that a user can
select one color from a list of basic screen colors. This section
describes how you can provide code and structures in your
application that make this possible.

Before you display the Color dialog box you need to initialize a
CHOOSECOLOR structure. This structure should be global or
declared as a static variable. The members of this structure
contain information about such items as the following:

III Structure size

C Which window owns the dialog box

III Whether the application is customizing the common dialog box

E3 The hook function and custom dialog box template to use for a
customized version of the Color dialog box

C RGB values for the selected basic color

If your application does not customize the dialog box and you
want the user to be able to select a single color from the basic
colors, you should initialize the CHOOSECOLOR structure in the
following manner:

/* Color variables * /

CHOOSE COLOR cc;
COLORREF clr;
COLORREF aclrCust[16];
int i;

/* Set the custom color controls to white. * /

for (i = 0; i < 16; i++)
aclrCust[i] = RGB(255, 255, 255);

/* Initialize clr to black. */

clr = RGB (0, 0, 0) i

/* Set all structure fields to zero. * /

memset(&cc, 0, sizeof(CHOOSECOLOR));

/*InitializethenecessaryCHOOSECOLORmembers. */

cc.1StructSize = sizeof(CHOOSECOLOR)i
cc.hwndOwner = hwnd;
cc.rgbResult = clri
cc.lpCustColors = aclrCust;

Chapter 7, Common dialog box library 7

8

Calling the
ChooseColor function

Using the Color
dialog box to

display custom
colors

Initializing the
CHOOSECOLOR

structure

cc.Flags = CC_PREVENTFULLOPENi

if (ChooseColor(&cc))

. /* Use cc.rgbResult to select the user-requested color. */

In the previous example, the array to which the IpCustColors
rnember points contains 16 doubleword RGB values that specify
the color white, and the CC_PREVENTFULLOPEN flag is set in
the Flags member to disable the Define Custom Colors button
and prevent the user from selecting a custom color.

After you initialize the structure, you should call the
ChooseColor function. If the function is successful and the user
chooses the OK button to close the dialog box, the rgbResult
member contains the RGB values for the basic color that the user
selected.

An application can display the Color dialog box so that the user
can create and select a custom color. This section describes how
you can provide code and structures in your application that
make this possible.

Before you display the Color dialog box, you need to initialize a
CHOOSECOLOR structure. This structure should be global or
declared as a static variable. The members of this structure
contain information about such items as the following:

• Structure size

• Which window owns the dialog box

• Whether the application is customizing the common dialog box

• The hook function and custom dialog box template to use for a
customized version of the Color dialog box

• RGB values for the custom color control

Windows API Guide

Calling the
ChooseColor function

If your application does not customize the dialog box and you
want the user to be able to create and select custom colors, you
should initialize the CHOOSECOLOR structure in the following
manner:

/ * Color Variables * /

CHOOSE COLOR chsclr;
DWORDdwCustClrs[16] = {RGB(255, 255, 255), RGB(239, 239, 239),

RGB(223, 223, 223), RGB(207, 207, 207),
RGB (191, 191, 191), RGB (175, 175, 175),
RGB (159, 159, 159), RGB (143, 143, 143),
RGB(127, 127, 127), RGB(l11, 111, 111),

BOOL fSetColor = FALSE;
int i;

};

RGB(95, 95, 95), RGB(79, 79, 79),
RGB (63, 63, 63), RGB (4 7, 47, 47),
RGB(31, 31, 31), RGB(15, 15, 15)

chsclr.lStructSize = sizeof (CHooSECOLOR);
chsclr.hwndOwner = hwnd;
chsclr.hlnstance = NULL;
chsclr.rgbResult = OL;
chsclr.lpCustColors = (LPDWORD) dwCustClrs;
chsclr.Flags = CC_FULLOPEN;
chsclr.lCustData = OL;
chsclr.lpfnHook = (FARPROC) NULL;
chsclr.lpTemplateName = (LPSTR) NULL;

In the previous example, the array to which IpCustColors points
contains sixteen 32-bit RGB values that specify 16 scales of gray,
and the CC_FULLOPEN flag is set in the Flags member to
display the complete Color dialog box.

After you initialize the structure, you should call the
ChooseColor function as shown in the following code fragment:

if (fSetColor = ChooseColor(&chsclr))

. /* Use chsclr .1pCustColors to select user specified colors* /

If the function is successful and the user chooses the OK button to
close the dialog box, the IpCustColors member points to an array
that contains the RGB values for the custom colors requested by
the application's user.

Applications can exercise more control over custom colors by
creating a new message identifier for the string defined by the
COLOROKSTRING constant. The application creates the new
message identifier by calling the RegisterWindowMessage

Chapter 1, Common dialog box library 9

10

function and passing this constant as the single parameter. After
calling RegisterWindowMessage, the application receives a
message immediately prior to the dismissal of the dialog box. The
IParam parameter of this message contains a pointer to the
CHOOSECOLOR structure. The application can use the
IpCustColors member of this structure to check the current color.
If the application returns a nonzero va lue when it processes this
message, the dialog box is not dismissed.

Similarly, applications can create a new message identifier for the
string defined by the SETRGBSTRING constant. The application's
hook function can use the message identifier returned by calling
RegisterWindowMessage with the SETRGBSTRING constant to
set a color in the dialog box. For example, the following line of
code sets the color selection to blue:

SendMessage (hwhndDlg, wSetRGBMsg, 0, (LPARAM) RGB (0,0,255)) ;

In this example, wSetRGBMsg is the message identifier returned
by the RegisterWindowMessage function. The IParam parameter
of the Send Message function is set to the RGB values of the
desired color. The wParam parameter is not used.

The application can specify any valid RGB values in this call to
Send Message. If the RGB values match one of the basic colors,
the system selects the basic color and updates the spectrum and
luminosity controls. If the RGB values do not match one of the
basic colors, the system updates the spectrum and luminosity
controls, but the basic color selection remains unchanged.

Note that if the Color dialog box is not fully open and the
application sends RGB values that do not match one of the basic
colors, the system does not update the dialog box. Updates are
unnecessary because the spectrum and luminosity controls are
not visible when the dialog box is only partially open.

For more information about processing registered window
messages, see "Using Find and Replace dialog boxes."

Windows API Guide

Using Font dialog boxes

Displaying the
Font dialog box in

your application

The Font dialog box contains controls that make it possible for a
user to select a font, a font style (such as bold, italic, or regular), a
point size, and an effect (such as underline, strikeout, or a text
color).

Following is a Font dialog box.

r.=Fo=nt=-: ____ -----, r-Fo_nt_S-=t~l_e:_-----, .s.ize:
1m I Regulal

~ •.. -..
'~~&~~~YS I~
~~~~~~ SERIF I 

. , . 
Bold 
Bold Italic 
Italic 

AaBbYyZz 

1~1Bt1 
'1-

The Font dialog box appears after you initialize the members in a 
CHOOSE FONT structure and call the Choose Font function. This 
structure should be global or declared as a static variable. The 
members of the CHOOSEFONT structure contain information 
about such items as the following: 

EI The attributes of the font that initially is to appear in the dialog 
box. 

lJ The attributes of the font that the user selected. 

lJ The point size of the font that the user selected. 

lJ Whether the list of fonts corresponds to a printer, a screen, or 
both. 

E1 Whether the available fonts listed are TrueType only. 

13 Whether the Effects box should appear in the dialog box. 

m Whether dialog box messages should be processed by an 
application-supplied hook function. 

Chapter 7, Common dialog box library 11 



12 

• Whether the point sizes of the selectable fonts should be 
limited to a specified range. 

• Whether the dialog box should display only 
what-you-see-is-what-you-get (WYSIWIG) fonts. (These fonts 
are resident on both the screen and the printer.) 

• The color that the ChooseFont function should use to render 
text in the Sample box the first time the application displays 
the dialog box. 

• The color that the user selected for text output. 

To display the Font dialog box, an application should perform the 
following steps: 

1. If the application requires printer fonts, retrieve a 
device-context handle for the printer and use this handle to 
set the hOC member of the CHOOSE FONT structure. (If the 
Font dialog box displays only screen fonts, this member 
should be set to NULL.) 

2. Set the appropriate flags in the Flags member of the 
CHOOSEFONT structure. This setting must include 
CF _SCREENFONTS, CF _PRINTERFONTS, or CF _BOTH. 

3. Set the rgbColors member of the CHOOSEFONT structure if 
the default color (black) is not appropriate. 

4. Set the nFontType member of the CHOOSE FONT structure 
using the appropriate constant. 

5. Set the nSizeMin and nSizeMax members of the 
CHOOSEFONT structure if the CF _LIMITSIZE value is 
specified in the Flags member. 

6. Call the ChooseFont function. 

The following example initializes the CHOOSEFONT structure 
and calls the ChooseFont function: 

LOGFONTlf; 
CHOOSEFONTc f ; 

/* Set all structure fields to zero. */ 

memset(&cf, 0, sizeof(CHOOSEFONT)); 

cf.1StructSize = sizeof(CHOOSEFONT); 
cf . hwndOwner = hwnd; 
cf.lpLogFont = &If; 
cf.Flags = CF SCREENFONTS I CF EFFECTS; 
cf.rgbColors ~ RGB(O, 255, 255); /* light blue */ 

Windows API Guide 



cf.nFontType = SCREEN_FONTTYFE; 

ChooseFont(&cf); 

When the user closes the Font dialog box by choosing the OK 
button, the ChooseFont function returns information about the 
selected font in the LOGFONT structure to which the IpLogFont 
member points. An application can use this LOGFONT structure 
to select the font that will be used to render text. The following 
example selects a font by using the LOG FONT structure and 
renders a string of text: 

hdc = GetDC(hwnd); 
hFont = CreateFontlndirect(cf.lpLogFont); 
hFontOld = SelectObject(hdc, hFont); 
TextOut(hdc, 50, 150, 

"AaBbCcDdEeFfGgHhIiJjKkLIMrnNnOoPpQqRrSsTtUuVvWwXxYyZz" , 52); 
SelectObject(hdc, hFontOld); 
DeleteObject(hFont); 
ReleaseDC(hwnd, hdc); 

An application can also use the 
WM_CHOOSEFONT_GETLOGFONT message to retrieve the 
current LOGFONT structure for the Font dialog box before the 
user closes the dialog box. 

Using Open and Save As dialog boxes 

Displaying the 
Open dialog 

box in your 
application 

The Open dialog box and the Save As dialog box are similar in 
appearance. Each contains controls that make it possible for the 
user to specify the location and name of a file or set of files. In the 
case of the Open dialog box, the user selects the file or files to be 
opened; in the case of the Save As dialog box, the user selects the 
file or files to be saved. 

The Open dialog box appears after you initialize the members of 
an OPENFILENAME structure and call the GetOpenFileName 
function. 

Chapter 1, Common dialog box library 13 



Following is an Open dialog box. 

~ Open 

File Name: ~ireclories: 1.111 ft. In c:\windows 

dcnxcode.wri ~ ~c:\ .t... Iii '$' 
hw.wri ~windows 
iusl.wri I I 
iusl2.wri CJ system 1m; HI' ;W 
mylsl.wri 
rev.wri DRead Only 
unischd.wri 

~ unitool.wri ~ 
lisl Files of lYpe: Drives: 

IWrite Files(".WRIJ II IliiiI c: II 

Before the call to GetOpenFileName, structure members contain 
such data as the name of the directory and the filter that are to 
appear in the dialog box. (A filter is a filename extension. The 
common dialog box code uses the extension to filter appropriate 
filenames from a directory.) After the call, structure members 
contain such data as the name of the selected file and the number 
of characters in that filename. 

To display an Open dialog box, an application should perform 
the following steps: 

1. Store the valid filters in a character array. 

2. Set the IpstrFilter member to point to this array. 

3. Set the nFilterlndex member to the value of the index that 
identifies the default filter. 

4. Set the IpstrFile member to point to an array that contains the 
initial filename and receives the selected filename. 

5. Set the nMaxFile member to the value that specifies the length 
of the filename array. 

6. Set the IpstrFileTitle member to point to a buffer that receives 
the title of the selected file. 

7. Set the nMaxFileTitle member to specify the length of the 
buffer. 

8. Set the IpstrlnitialDir member to point to a string that 
specifies the initial directory. (If this member does not point 
to a valid string, it must be set to a or point to a string that is 
set to NULL.) 

14 Windows API Guide 



9. Set the IpstrTitle member to point to a string specifying the 
name that should appear in the title bar of the dialog box. (If 
this pointer is NULL, the title will be Open.) 

10. Initialize the IpstrDefExt member to point to the default 
extension. (This extension can be 0, 1,2, or 3 characters long.) 

11. Call the GetOpenFileName function. 

The following example initializes an OPENFILENAME structure, 
calls the GetOpenFileName function, and opens the file by using 
the IpstrFile member of the structure. The OPENFILENAME 
structure should be global or declared as a static variable. 

OPENFlLENAME ofn; 
char szDirName[256]; 
char szFile[256] , szFileTitle[256]; 
UINT i, cbString; 
char chReplace; /* string separator for szFilter */ 
char szFilter[256]; 
HFlLE hf; 

/* Get the system directory name, and store in szDirName. * / 

GetSystemDirectory(szDirName, sizeof(szDirName)); 
szFile [0] =' \0'; 

if ((cbString = LoadString(hinst, IDS FILTERSTRING, 
szFilter, sizeof(szFilter))) == 0) { 

ErrorHandler(); 
return OL; 

chReplace = szFilter[cbString - 1]; /* retrieve wildcard */ 

for (i = 0; szFilter[i] != '\0'; i++) 
if (szFilter[i] == chReplace) 

szFilter[i] = '\0'; 

/* Set all structure members to zero. * / 

memset(&ofn, 0, sizeof(OPENFILENAME)); 

ofn.1StructSize = sizeof(OPENFlLENAME); 
ofn.hwndOwner = hwnd; 
ofn.lpstrFilter = szFilter; 
ofn.nFilterlndex = 1; 
ofn.lpstrFile = szFile; 
ofn.nMaxFile = sizeof(szFile); 
ofn.lpstrFileTitle = szFileTitle; 
ofn.nMaxFileTitle = sizeof(szFileTitle); 
ofn.lpstrlnitialDir = szDirName; 
ofn.Flags = OFN_SHOWHELP I OFN PATHMUSTEXIST 
OFN_FILEMUSTEXIST; 

Chapter 7, Common dialog box library 15 



16 

Displaying the 
Save As dialog 

box in your 
application 

if(GetOpenFileName(&ofn)){ 
hf = _lopen(ofn.lpstrFile, OF_READ); 

/* Perform file operations. */ 

else 
ErrorHandler(); 

The string referred to by the IDS_FILTERSTRING constant in the 
preceding example is defined as follows in the resource-definition 
file: 

STRINGTABLE 
BEGIN 

IDS FILTERSTRING "Write Files (*.WRI) 1*.wriIWord Files (*.DOC) I*.docl" 
END 

The vertical bars in this string are used as wildcards. After using 
the LoadString function to retrieve the string, the wildcards are 
replaced with NULL. The wildcard can be any unique character 
and must be included as the last character in the string. 
Initializing strings in this manner guarantees that the parts of the 
string are contiguous in memory and that the string is terminated 
with two null characters. 

Applications that can open files over a network can create a new 
message identifier for the string defined by the SHAREVISTRING 
constant. The application creates the new message identifier by 
calling the RegisterWindowMessage function and passing this 
constant as the single parameter. After calling 
RegisterWindowMessage, the application is notified whenever a 
sharing violation occurs during a call to the Open File function. 
For more information about processing registered window 
messages, see "Using Find and Replace dialog boxes." 

The Save As dialog box appears after you initialize the members 
of an OPEN FILENAME structure and call the GetSaveFileName 
function. 

Windows API Guide 



Following is a Save As dialog box. 

FileName: 

Irev.wr~ 
QCflllcode. wri ~ hW.\'ui 

I!.irectories: 
c:\windows 

E3 c:\ 

I~ 
~ i •• *:attr,1!;11 

e> windows 
iu~twri CJ system iu~l2.Wli liiIIr~1~\%\~ 
mrhL\wi 
rev.wl'i 
uni:;chd. wri ¥ l.mi!nni.w!i 

o Read Only 

Save File as llpe: Driyes: 

IWrite Files(".WRIJ II IIiiiiI c: 

Before the call to GetSaveFileName, structure members contain 
such data as the name of the initial directory and a filter string. 
After the call, structure members contain such data as the name 
of the file to be saved and the number of characters in that 
filename. 

The following example initializes an OPENFILENAME structure, 
calls GetSaveFileName function, and saves the file. The 
OPENFILENAME structure should be global or declared as a 
static variable. 

OPENFILENAM~fn; 

char szDirName[256]; 
char szFile[256], szFileTitle[256]; 
UINT i, cbString; 
char chReplace; 1* string separator for szFilter *1 
char szFilter[256]; 
HFILEhf; 

1* 
* Retrieve the system directory name, and store it in 
* szDirName. 
*1 

GetSystemDirectory(szDirName, sizeof(szDirName)); 

if ((cbString = LoadString(hinst, IDS_FILTERSTRING, 
szFilter, sizeof(szFilter))) == 0) { 

ErrorHandler(); 
return 0; 

chReplace szFilter[cbString - 1]; 1* retrieve wildcard *1 

for (i = 0; szFilter[i] != '\0'; i++) 
if (szFilter[i] == chReplace) 

szFilter[i] = '\0'; 

Chapter 7, Common dialog box library 17 



Monitoring list box 
controls in an 

Open or Save As 
dialog box 

18 

/* Set all structure members to zero. * / 

memset(&ofn, 0, sizeof(OPENFILENAME))i 

/*InitializetheOPENFILENAMEmembers. */ 

szFile [0) = , \0' i 

ofn.1StructSize = sizeof(OPENFILENAME)i 
ofn.hwndOwner = hwndi 
ofn.lpstrFilter = szFilteri 
ofn.lpstrFile = szFilei 
ofn.nMaxFile = sizeof(szFile)i 
ofn.lpstrFileTitle = szFileTitlei 
ofn.nMaxFileTitle = sizeof(szFileTitle)i 
ofn.lpstrInitialDir = szDirNamei 
ofn.Flags = OFN_SHOWHELP I OFN_OVERWRITEPROMPTi 

if(GetSaveFileName(&ofn)){ 

/* Perform file operations. */ 

else 
ErrorHandler () i 

The string referred to by the IDS_FILTERSTRING constant in the 
preceding example is defined in the resource-definition file. It is 
used in exactly the same way as the IDS_FILTERSTRING 
constant discussed in "Displaying the Open dialog box in your 
application." 

An.application can monitor list box selections in order to process 
and display data in custom controls. For example, an application 
can use a custom control to display the total length, in bytes, of all 
of the files selected in the File Name box. One method the 
application can use to obtain this value is to recompute the total 
count of bytes each time the user selects a file or cancels the 
selection of a file. A faster method is for the application to use the 
LBSELCHSTRING message to identify a new selection and add 
the corresponding file length to the value that appears in the 
custom control. (Note that in this example, the custom control is a 
standard Windows control that you identify in a resource file 
template for one of the common dialog boxes.) 

An application registers the selection-change message with the 
RegisterWindowMessage function. Once the application registers 
the message, it uses this function's return value to identify 

Windows API Guide 



Monitoring 
filenames in an 

Open or Save As 
dialog box 

messages from the dialog box. The message is processed in the 
application-supplied hook function for the common dialog box. 
The wParam parameter of each message identifies the list box in 
which the selection occurred. The low-order word of the lParam 
parameter identifies the list box item. The high-order word of the 
lParam parameter is one of the following values: 

Value 

CD _LBSELCHANGE 

CD _LBSELSUB 

CD _LBSELADD 

CD _LBSELNOITEMS 

Meaning 

Specifies that the item identified by the 
low-order word of lParam was the item in a 
single-selection list box. 
Specifies that the item identified by the 
low-order word of lParam is no longer 
selected in a multiple-selection list box. 
Specifies that the item identified by the 
low-order word of lParam was selected from a 
multiple-selection list box. 
Specifies that no items exist in a 
multiple-selection list box. 

For an example that registers a common dialog box message, see 
"Using Find and Replace dialog boxes." 

Applications can alter the normal processing of an Open or Save 
As dialog box by monitoring which filename the user types and 
by performing other, unique operations. For example, one 
application could prevent the user from closing the dialog box if 
the selected filename is prohibited; another application could 
make it possible for the user to select multiple filenames. 

To monitor filenames, an application should register the 
FILEOKSTRING message. An application registers this message 
by calling the RegisterWindowMessage function and passing the 
message name as its single parameter. After the message is 
registered, the dialog box procedure in COMMDLG.DLL uses it 
to signal that the user has selected a filename and chosen the OK 
button and that the dialog box has checked the filename and is 
ready to return. The dialog box procedure signals these actions by 
sending the message to the application's hook function. After 
receiving the message, the hook function should return a value to 
the dialog box procedure that called it. If the hook function did 
not process the message, it should return 0; if the hook function 
did process the message and the dialog box should close, the 

Chapter " Common dialog box library 19 



hook function should return 0; if the hook function did process 
the message but the dialog box should not close, the hook 
function should return 1. (All other return values are reserved.) 

Usina Print and Print SetuD dialoa boxes 

20 

- I '-' 

A Print dialog box contains controls that let a user configure a 
printer for a particular print job. The user can make such 
selections as print quality, page range, and number of copies (if 
the printer supports multiple copies). 

Following is a Print dialog box. 

- , Print "', 

Printer: Default Printer (Diconix 150 Plus) 'I .... 
Print Range--------, 

o All 

o S~lection 
@le.~~~:~: ~ 10: ~ 

111"'ld 

I~--

Print Q,uality: 1320 dpi x 96 dpi II ,!;.opies: ~ 

D Print to File 

Choosing the Setup button in the Print dialog box displays the 
following Print Setup dialog box for a PostScript printer. 

- Print Setup 

Printer-----------------, ' .... 

@lti~)'~.~I(·.~.I.i~.i.~r.·j 1_ 
(currently Oiconix 150 Plus on LPT1:) 

o SpecificE,rinter: 1_ 
IOiconix 150 Plus on LPT1: II 

Orientation-----, 

rA1 @ Portrait 

~ 0 La~dscape 

Paper 

Si~e: ILetter B 112 x 11 in II 

Source: I Tractor II 

The Print Setup dialog box provides controls that make it possible 
for the user to reconfigure the selected printer. 

Windows API Guide 



Device drivers 
and the Print 

dialog box 

Displaying a Print 
dialog box for the 

default printer 

The Print dialog box differs from other common dialog boxes in 
that part of its dialog box procedure resides in COMMDLG.DLL 
and part in a printer driver. A printer driver is a program that 
configures a printer, converts graphics device interface (GD!) 
commands to low-level printer commands, and stores commands 
for a particular print job in a printer's queue. 

A printer driver exports a function called ExtDeviceMode, which 
displays a dialog box and its controls. In previous versions of 
Windows, an application called the LoadLibrary function to load 
a device driver and the GetProcAddress function to obtain the 
address of the ExtDeviceMode function. This is no longer 
necessary with the Windows common dialog box interface. 
Instead of calling LoadLibrary and GetProcAddress, a Windows 
application can call a single function, PrintDlg, to display the 
Print dialog box and begin a print job. The code for PrintDlg 
resides in COMMDLG.DLL. The dialog box that appears when an 
application calls PrintDlg differs slightly from the dialog box that 
appears when the application calls directly into the device driver. 
The functionality is very similar in spite of the different 
appearance. 

To display a Print dialog box for the default printer, an 
application must initialize a PRINTDLG structure and then call 
the PrintDlg function. 

The members of the PRINTDLG structure can contain information 
about such items as the following: 

CI The printer device context 

Ell Values that should appear in the dialog box controls 

tI The hook function and custom dialog box template to use for a 
customized version of the Print dialog box or Print Setup 
dialog box 

An application can display a Print dialog box for the currently 
installed printer by performing the following steps: 

1. Setting the PD _RETURNDC flag in the Flags member of the 
PRINTDLG structure. (This flag should only be set if the 
application requires a device-context handle.) 

Chapter 7, Common dialog box library 21 



22 

2. Initializing the IStructSize, hDevMode, and hDevNames 
members. 

3. Calling the PrintDlg function and passing a pointer to the 
PRINTDLG structure just initialized. 

Setting the PD_RETURNDC flag causes PrintDlg to display the 
Print dialog box and return a handle identifying a printer device 
context in the hDC member of the PRINTDLG structure. (The 
application passes the device-context handle as the first 
parameter to the GDI functions that render output on the printer.) 

The following example initializes the members of the PRINTDLG 
structure and calls the PrintDlg function prior to printing output. 
This structure should be global or declared as a static variable. 

PRINTDLGpd; 

1* Set all structure members to zero. *1 

memset(&pd, 0, sizeof(PRINTDLG)); 

1* InitializethenecessaryPRINTDLGstructuremembers. *1 

pd.1StructSize = sizeof(PRINTDLG); 
pd.hwndOwner = hwnd; 
pd. Flags = PD_RETURNDC; 

1* Print a test page if successful. * 1 

if (PrintDlg(&pd) != 0) { 
Escape (pd.hDC, STARTDOC, 8, "Test-Doc", NULL); 

1* Print text and rectangle. *1 

TextOut(pd.hDC, 50, 50, "Cormnon Dialog Test Page", 23); 
Rectangle (pd.hDC, 50, 90, 625, 105); 
Escape (pd. hDC, NEWFRAME, 0, NULL, NULL); 
Escape (pd.hDC, ENDDOC, 0, NULL, NULL); 
DeleteDC(pd.hDC); 
if (pd.hDevMode != NULL) 

GlobalFree(pd.hDevMode); 
if (pd.hDevNames != NULL) 

GlobalFree(pd.hDevNames); 

else 
ErrorHandler () ; 

Windows API Guide 



Using Find and Replace dialog boxes 

Displaying the 
Find dialog box 

The Find dialog box and the Replace dialog box are similar in 
appearance. You can use the Find dialog box to add string-search 
capabilities to your application and use the Replace dialog box to 
add both string-search and string-substitution capabilities. 

The Find dialog box contains controls that make it possible for a 
user to specify the following: 

II The string that the application should find 

1:1 Whether the string specifies a complete word or part of a word 

II Whether the application should match the case of the specified 
string 

II The direction in which the application should search 
(preceding or following the current cursor location) 

II Whether the application should resume the search, searching 
for the next occurrence of the string 

Following is a Find dialog box. 

\:lli . . Find.' . 

FindWhat: L-Ilh_is _______ -->II_ 

o Malch ~hole Word Only 

[8J r~.·~.~.~~~~.'!~~~~·~J 

To display the Find dialog box, you need to initialize a 
FINDREPLACE structure and call the FindText function. 
Members of the FINDREPLACE structure contain information 
about such items as the following: 

• Which window owns the dialog box 

EI How the application should perform the search 

El A character buffer that is to receive the string 

Chapter 1, Common dialog box library 23 



24 

To initialize the FINDREPLACE structure, you need to perform 
the following tasks: 

1. Set the IStructSize member by using the sizeof operator. 

2. Set the hwndOwner member by using the handle that 
identifies the owner window of the dialog box. 

3. If you are customizing the Find dialog box, set the hlnstance 
member to identify the instance of the module that contains 
your custom dialog box template. 

4. Set the Flags member to indicate the selection state of the 
dialog box options. (For example, setting the 
FR_NOUPDOWN flag disables the Up and Down buttons, 
setting the FR_NOWHOLEWORD flag disables the Match 
Whole Word Only check box, and setting the 
FR_NOMATCHCASE flag disables the Match Case check 
box). 

5. If you are supplying a custom dialog box template or hook 
function, set additional flags in the Flags member. 

6. Set the IpstrFindWhat member to point to the buffer that will 
receive the string to be found. 

7. Set the wFindWhatLen member to specify the size, in bytes, of 
the buffer to which IpstrFindWhat points. 

8. Set the ICustData member with any custom data your 
application may need to access. 

9. If your application customizes the Find dialog box, set the 
IpfnHook member to point to your hook function. 

10. If your application uses a custom dialog box template, set the 
IpTemplateName member to point to the string that identifies 
the template. 

Windows API Guide 



Displaying 
the Replace 

dialog box 

The following example initializes the FINDREPLACE structure 
and then calls the FindText function. This structure should be 
global or declared as a static variable. 

FINDREPLACEfr; 

/* Set all structure fields to zero. * / 

rnernset(&fr, 0, sizeof(FINDREPLACE)); 

fr.1StructSize = sizeof(FINDREPLACE); 
fr .hwndOwner = hwnd; 
fr.lpstrFindWhat = szFindWhat; 
fr.wFindWhatLen = sizeof(szFindWhat); 

hDlg = FindText(&fr); 

break; 

The Replace dialog box is similar to the Find dialog box. 
However, the Replace dialog box has no Direction box and has 
three additional controls that make it possible for the user to 
specify the following: 

CI The replacement string 

1:1 Whether the application should replace the occurrence of the 
string that is currently highlighted 

13 Whether the application should replace all occurrences of the 
string 

Following is a Replace dialog box. 

- ! ,~·t· " '". .: " Replace)'" ". r." -' 
FindWhal: L-11e_,, _______ --'II ..... 

ReQlace Wilh: IIesl2 I 18111111 
1_1 1-t8ll~·~.I.~·~··~h~I~.5i1,.~·i.~·~g.·~(j;·j 

D Malch!;.ase 

To display the Replace dialog box, you need to initialize a 
FINDREPLACE structure and call the ReplaceText function. 

Chapter 1, Common dialog box library 25 



Processing dialog 
box messages for 
a Find or Replace 

dialog box 

26 

The Find and Replace dialog boxes differ from the other common 
dialogs in two respects: First, they are modeless; and second, their 
respective dialog box procedures send messages to the 
application that calls the FindText or ReplaceText function. These 
messages contain data specified by the user in the dialog box 
controls, such as the direction in which the application should 
search for a string, whether the application should match the case 
of the specified string, and whether the application should match 
the entire string. 

To process messages from a Find or Replace dialog box, an 
application must register the dialog box's unique message, 
FINDMSGSTRING. 

The application registers this message with the 
RegisterWindowMessage function. Once the application registers 
the message, it uses the function's return value to identify 
messages from the Find or Replace dialog box. The following 
example registers the message with the RegisterWindowMessage 
function: 

UINT uFindReplaceMsg; 

/* Register the FindReplace message. * / 

uFindReplaceMsg = RegisterWindowMessage(FINDMSGSTRING); 

After the application registers this message, it can process 
messages for the Find or Replace dialog box by using the 
RegisterWindowMessage return value. The following example 
processes messages for the Find dialog box and then calls its own 
SearchFile function to locate the string of text. If the user is 
closing the dialog box (that is, if the Flags member of 
FINDREPLACE is FR_DIALOGTERM), the handle should be 
invalidated and the procedure should return zero. 

LRESULTCALLBACKMainWndProc(HWNDhwnd,UINTmsg,WPARAMwParam, 
LPARAM IParam) 

FINDREPLACE FAR* Ipfr; 

if (msg == uFindReplaceMsg) 
Ipfr = (FINDREPLACE FAR*) IParam; 
SearchFile((BOOL) (lpfr->Flags & FR_DOWN), 

(BOOL) (lpfr->Flags & FR_MATCHCASE)); 
return 0; 

Windows API Guide 



Customizing common dialog boxes 

Appropriate and 
inappropriate 

customizations 

A custom common dialog box is a common dialog box that has 
been altered to suit a particular Windows application. The 
customization may be complex and include the hiding of original 
controls, the addition of new controls, or a change in the size of 
the original dialog box; or it may be simple, such as the alteration 
of a single existing control. 

Developers who need to customize a common dialog box must 
provide a special hook function and, in most cases, a custom 
dialog box template. Customizations of this kind require a 
significant amount of additional code-displaying a customized 
common dialog box is not as simple as initializing the members of 
a structure and calling a single function. 

Applications that subclass controls in any of the common dialog 
boxes must do so while processing the WM_INITDIALOG 
message in the application's hook function. This allows the 
application to receive the control-specific messages first, because 
it will have subclassed the control after the common dialog box 
has installed its subclassing procedures. (The previous hook 
function should be called for all messages that are not handled by 
the application's subclass function, as is standard for subclassing.) 

An application cannot subclass a control by defining a local class 
to override a specific control type. The reason is that the data 
segment would not be correctly initialized when the class was 
called-the data segment would be the common dialog box's data 
segment, not the application's data segment. 

From the user's perspective, the chief benefit of the common 
dialog box is its consistent appearance and functionality from 
application to application. Therefore, it becomes important that a 
developer only customize a common dialog box when it is 
absolutely necessary for an application. Otherwise, the consistent 
appearance and simple coding interface are lost. Appropriate 
customizations leave intact as many of the original controls as 
possible. Increasing the size of the dialog box or adding new 
controls in available space that already appears in the dialog box 
would be an appropriate customization. Hiding original controls 

Chapter 1, Common dialog box library 27 



28 

Hook functions 
and custom 

dialog box 
templates 

or otherwise changing the intended functionality of the original 
controls would be an inappropriate customization. 

Each common dialog box uses the dialog box procedure and 
dialog box template provided for it in COMMDLG.DLL. The 
dialog box procedure processes messages and notifications for 
the common dialog box and its controls. The dialog box template 
defines the appearance of the dialog box-its dimensions, its 
location, and the dimensions and locations of controls that appear 
within it. 

In addition to the provided dialog box procedure and dialog box 
template, a custom dialog box requires a hook function that you 
provide and, usually, a custom version of the dialog box template. 

Hook function The dialog box procedure provided in COMMDLG.DLL for a 
common dialog box calls the application's hook function if the 
application sets the appropriate flag and pointer in the structure 
for that common dialog box. The structure for each common 
dialog box contains a Flags member that specifies whether the 
application supplies a hook function and contains an IpfnHook 
member that points to the hook function if one exists. If the 
application sets the Flags member to indicate that a hook 
function exists, it must also set the IpfnHook member. The 
following example sets the Flags and IpfnHook members of an 
OPENFILENAME structure to support an application's hook 
function: 

#defineSTRICT 

#include <windows.h> 
#include <commdlg.h> 
#include <string.h> 
#include "header.h" 

/* required for all Windows applications */ 

/* specific to this program */ 

OPENFILENAME ofn; 

/* Get the system directory name, and store in szDirName. */ 

GetSystemDirectory((LPSTR)szDirName, 255); 

/* Initialize the OPENFILENAME members. */ 

szFile[O] = '\0'; 
ofn.1StructSize = sizeof(OPENFILENAME); 
ofn.hwndOwner = hwnd; 
ofn.hInstance = hInst; 

Windows API Guide 



ofn.lpstrFilter = szFilter[O]; 
ofn.lpstrCustomFilter = NULL; 
ofn.nMaxCustFilter = OL; 
ofn.nFilterlndex = lL; 
ofn.lpstrFile = szFile; 
ofn.nMaxFile = sizeof(szFile); 
ofn.lpstrFileTitle = szFileTitle; 
ofn.nMaxFileTitle = sizeof(szFileTitle); 
ofn.lpstrlnitialDir = szDirName; 
ofn.lpstrTitle = NULL; 
ofn.Flags = OFN_ENABLEHOOK OFN_ENABLETEMPLATE; 
ofn.nFileOffset = 0; 
ofn.nFileExtension = 0; 
ofn.lpstrDefExt = NULL; 
ofn.lpfnHook = MakeProclnstance((FARPROC) FileOpenHookProc, hlnst); 
ofn.lpTemplateName = "FileOpen"; 

In the previous example, the MakeProclnstance function is called 
to create a procedure-instance address for the hook function. This 
address is assigned to the IpfnHook member of the 
OPENFILENAME structure. If the hook function is part of a 
dynamic-link library (rather than an application), the procedure 
address is obtained by calling the GetProcAddress function 
(instead of MakeProclnstance). 

The hook function processes any messages or notifications that 
the custom dialog box requires. With the exception of one 
message (WM_INITDIALOG), the hook function receives 
messages and notifications before the dialog box procedure 
provided in COMMDLG.DLL receives them. In the case of 
WM_INITDIALOG, the hook function receives the message after 
the dialog box procedure and should process it. When the hook 
function finishes processing a message, it returns a value that 
indicates whether the dialog box procedure provided in 
COMMDLG.DLL should also process the message. If the dialog 
box procedure should process the message, the return value is 
FALSE; if the dialog box procedure should ignore the message, 
the return value is TRUE. 

To process the message from the OK button after the dialog box 
procedure processes it, an application must post a message to 
itself when the OK message is received. When the application 
receives the message it has posted, the common dialog box 
procedure will have finished processing messages for the dialog 
box. This technique is particularly useful when working with the 
Find and Replace dialog boxes, because the Flags member of the 
FINDREPLACE structure does not reflect changes to the dialog 
box until after the messages have been processed by 
COMMDLG.DLL. 

Chapter 1, Common dialog box library 29 



30 

The following example shows a hook function for a custom Open 
dialog box: 

UINTCALLBACKFileOpenHookProc(HWNDhdlg,UINTmsg,WPARAM 
wParam, LPARAM lParam) 

switch (msg) { 
case WM INITDIALOG: 

return TRUE; 

case WM COMMAND: 

/* Use IsDlgButtonChecked to set lCustData. */ 

if (wParam == IDOK) { 

/* Set backup flag. */ 

ofn.1CustData = 
(DWORD) IsDlgButtonChecked(hdlg, ID_CUSTCHX); 

return FALSE; /* Allow standard processing. */ 

/* Allow standard processing. */ 

return FALSE; 

This hook function tests a custom check box when the user 
chooses the OK button. If the check box was selected, the hook 
function sets the ICustData member of the OPEN FILENAME 
structure to 1; otherwise, it sets the ICustData member to O. 

A hook function should never call the End Dialog function. 
Instead, if a hook function contains code that abnormally 
terminates a common dialog box, this code should pass the 
IDABORT value to the dialog box procedure by using the 
PostMessage function as shown in the following example: 

PostMessage(hDlg,WM_COMMAND,IDABORT, (LONG)FALSE); 

When a hook function posts the IDABORT value, the common 
dialog box function returns the value contained in the low word 
of the IParam parameter. For example, if the hook function for 
GetOpenFileName called the PostMessage function with 
(LONG) 100 as the last parameter, GetOpenFileName would 
return 100. 

Windows API Guide 



Customizing a dialog 
box template 

A hook function must be exported in an application's 
module-definition (.DEF) file as shown in the following example: 

NAME cd 

EXETYFE WINDOWS 

STUB 'WINSTUB.EXE' 

CODE PRELOAD MOVEABLE DISCARDABLE 

DATA PRELOAD MOVEABLE MULTIPLE 

HEAPSIZE 1024 

STACKSIZE8192 

EXPORTS 
FILEOPENHOOKPROC @1 

The dialog box template provided in COMMDLG.DLL for each 
common dialog box contains the data that the dialog box 
procedure uses to display that common dialog box. Most 
applications that customize a common dialog box also need to 
create a custom dialog box template to use instead of the dialog 
box template in COMMDLG.DLL. (A custom dialog box template 
is not required for all custom dialog boxes. For instance, a 
template would not be necessary if an application changed a 
dialog box in a relatively minor way and only in an unusual 
situation.) 

A developer should create a custom dialog box template by 
modifying the appropriate dialog box template in 
COMMDLG.DLL. Following are the template filenames and the 
names of their corresponding common dialog boxes: 

Template filename 

COLOR.DLG 

FILEOPEN.DLG 
FILEOPEN.DLG 
FINDTEXT.DLG 

FINDTEXT.DLG 
FONT.DLG 
PRNSETUP.DLG 
PRNSETUP.DLG 

Corresponding dialog box 

Color 
Open (single selection) 
Open (multiple selection) 
Find 
Replace 
Font 
Print 
Print Setup 

Chapter 7, Common dialog box library 31 



32 

Displaying 
the custom 
dialog box 

The following excerpt is from a custom dialog box template 
created for an Open dialog box: 

END 

CONTROL "&Backup File", ID_CUSTCHX, "button", 
BS_AUTOCHECKBOX I WS_CHILD I WS TABSTOP WS_GROUP, 
208, 86, 50, 12 

This entry supports the addition of a new Backup File check box 
immediately below the existing Read Only check box. 

The custom template should be added to the application's 
resource file. 

After your application creates the hook function and the dialog 
box template, it should set the members of the structure for the 
common dialog box being customized and call the appropriate 
function to display the custom dialog box. 

The following example calls the GetOpenFileName function and 
creates a backup file if the user selected the custom Backup File 
check box in the custom Open dialog box: 

/* Open the file and create a backup. * / 

if(GetOpenFileName(&ofn) ){ 

hf = _lopen(ofn.lpstrFile, OF_READWRITE); 

/* Create the backup file. */ 

if (ofn.lCustData) { 

/* Process files with extension. */ 

if (ofn.nFileExtension){ 

for (i=O; i«int)ofn.nFileExtension; i++) 
szChar[i] = *ofn.lpstrFile++; 

}/*endif */ 

/* Process files without extension. */ 

else { 

i=O; 

while (*ofn.lpstrFile!='\O') 
szChar[i++] = *ofn.lpstrFile++; 

Windows API Guide 



szChar [iJ =' .' ; 
}/*end else*/ 

pszNewPAFN = lstrcat(szChar, "BAK"); 

/* Create the backup file. */ 

hfBackup = _lcreat(pszNewPAFN, 0); 

/* Copy contents of original file to the backup file. */ 

while ((cBufLngth=_lread(hf, cBufl, 256)) == 256) 
lwrite(hfBackup, cBufl, cBufLngth); 

_lwrite(hfBackup, cBufl, cBufLngth); 
lclose(hfBackup); 

/*~ndif GetOpenFileName*/ 

/* File operations begin here. */ 

/* endif (GetOpenFileName) */ 

The following is the custom Open dialog box. The new Backup 
File check box appears in the lower-right corner. 

File tiame: 

10 
3270.txl 
nelworks.lxl 
prinlers.lxl 
readme.lxl 
sysini.lxl 
sysini2.lxl 
sysini3.lxl 
winini.lxl 

.o.irectories: 
c:\windows 

If e; c:\ 
~ windows 
CJ system 

lisl Files of IYpe: Driyes: 

... IW_r_il_e_F_ile_s..;...(·_. T_X_T_l _____ III ..... ] IIiiiiiI c: ioe 

Chapter 1, Common dialog box library 

laillJ • 
~I'~. '_1 

o .!l.ackup File 

I~I 

33 



Supporting help for the common dialog boxes 

34 

An application can display a Help button in any of the common 
dialog boxes by setting the appropriate flag in the Flags member 
of the structure for that common dialog box. Following are the 
structures for the common dialog boxes and the Help flag that 
corresponds to each structure: 

Structure Flag value 

OPENFILENAME OFN_SHOWHELP 
CHOOSECOLOR CC_SHOWHELP 
FINDREPLACE FR_SHOWHELP 
CHOOSEFONT CF_SHOWHELP 
PRINTDLG PD _SHOWHELP 

If an application displays the Help button, it must process the 
user's request for Help. This can be done either in one of the 
application's window procedures or in a hook function. 

If the application processes the request for Help in one of the 
application's window procedures, it must first create a new 
message identifier for the string defined by the 
HELPMSGSTRING constant. The application creates the new 
message identifier by calling the RegisterWindowMessage 
function and passing this constant as the single parameter. (For 
more information about processing registered window messages, 
see "Using Find and Replace dialog boxes.") In addition to 
creating a new message identifier, the application must set the 
hwndOwner member of the appropriate structure for the 
common dialog box so that this member contains the handle of 
the dialog box's owner window. After the message identifier is 
created and the hwndOwner member is set, the dialog box 
proced ure notifies the window procedure of the owner window 
whenever the user chooses the Help button. 

The following example processes a user's request for Help in the 
window procedure of its owner window. The if statement should 
be in the default: section of the switch statement that processes 
messages. 

Windows API Guide 



Error detection 

MyHelpMsg = RegisterWindowMessage(HELPMSGSTRING); 

if (message == MyHelpMsg) 
WinHelp (hWnd, "appfile.hlp", HELP_CONTEXT, ID_MY_CONTEXT); 

If the application processes the request for Help in a hook 
function, it should test for the following condition in the 
WM_COMMAND message: 

wParam == pshHelp 

When this condition is true, the hook function should call the 
WinHelp function as shown in the preceding example. (To process 
Help in a hook function, you must include the header file 
DLGS.H in the source file that contains the hook-function code.) 

Whenever a common dialog box function fails, an application can 
call the CommDlgExtendedError function to find out the cause of 
the failure. The CommDlgExtendedError function returns an 
error value that identifies the cause of the most recent error. 

Six constants are defined in the CDERRH header file that 
identify the ranges of error values for categories of errors 
returned by CommDlgExtendedError. Following are these 
constants in ascending order by value range: 

Constant 

CDERR_GENERALCODES 

PDERR_PRINTERCODES 

CFERR_ CHOOSEFONTCODES 

FNERR_FILENAMECODES 

Meaning 

General error codes for common 
dialog boxes. These errors are in 
the range OxOOOO through OxOFFF. 
Error codes for the Print common 
dialog box. These errors are in the 
range OxlOOO through OxlFFF. 
Error codes for the Font common 
dialog box. These errors are in the 
range Ox2000 through Ox2FFF. 
Error codes for the Open and 
Save As common dialog boxes. 
These errors are in the range 
Ox3000 through Ox3FFF. 

Chapter 7 I Common dialog box library 35 



FRERR_FINDREPLACECODES 

CCERR_ CHOOSECOLORCODES 

36 

Error codes for the Find and 
Replace common dialog boxes. 
These errors are in the range 
Ox4000 through Ox4FFE 
Error codes for the Color 
common dialog box. These errors 
are in the range OxSOOO through 
OxSFFF. 

Windows API Guide 



c H A p T E R 

2 

Dynamic Data Exchange 
Management Library 

This chapter describes how to use the Dynamic Data Exchange 
Management Library (DDEML). The DDEML is a dynamic-link 
library (DLL) that applications running with the Microsoft 
Windows operating system can use to share data. 

The following topics are related to the information in this chapter: 

III Atoms 

CI Memory management 

II Clipboard 

C Dynamic-link libraries 

II Object linking and embedding (OLE) 

Dynamic data exchange (DDE) is a form of interprocess 
communication that uses shared memory to exchange data 
between applications. Applications can use DDE for one-time 
data transfers and for ongoing exchanges in which the 
applications send updates to one another as new data becomes 
available. 

Dynamic data exchange differs from the clipboard data-transfer 
mechanism that is also part of the Windows operating system. 
One difference is that the clipboard is almost always used as a 
one-time response to a specific action by the user-such as 
choosing the Paste command from a menu. Although DDE may 

Chapter 2, Dynamic Data Exchange Management Library 37 



Basic concepts 

38 

also be initiated by a user, it typically continues without the 
user's further involvement. 

The DDEML provides an application programming interface 
(API) that simplifies the task of adding DOE capability to a 
Windows application. Instead of sending, posting, and processing 
DOE messages directly, an application uses the functions 
provided by the DDEML to manage DOE conversations. (A DOE 
conversation is the interaction between client and server 
applications.) The DDEML also provides a facility for managing 
the strings and data that are shared among DOE applications. 
Instead of using atoms and pointers to shared memory objects, 
DOE applications create and exchange string handles, which 
identify strings, and data handles, which identify global memory 
objects. DDEML provides a service that makes it possible for a 
server application to register the service names that it supports. 
The names are broadcast to other applications in the system, 
which can then use the names to connect to the server. The 
DDEML also ensures compatibility among DOE applications by 
forcing them to implement the DOE protocol in a consistent 
manner. 

Existing applications that use the message-based DOE protocol 
are fully compatible with those that use the DDEML. That is, an 
application that uses message-based DOE can establish 
conversations and perform transactions with applications that use 
the DDEML. Because of the many advantages of the DDEML, 
new applications should use it rather than the DOE messages. 

The DDEML can run on systems that have Microsoft Windows 
version 3.0 or later installed. The DDEML does not support real 
mode. To use the API elements of the DOE management library, 
you must include the DDEML.H header file in your source files, 
link with DDEML.LIB, and ensure that DDEML.DLL resides in 
the system's path. 

The concepts in this section are key to understanding DOE and 
the DDEML. 

Windows API Guide 



Client and server 
interaction 

Transactions and 
the DDE callback 

function 

Dynamic data exchange always takes place between a client 
application and a server application. The client initiates the 
exchange by establishing a conversation with the server so that it 
can send transactions to the server. (A transaction is a request for 
data or services.) The server responds to these transactions by 
providing data or services to the client. A server can have many 
clients at the same time, and a client can request data from 
multiple servers. Also, an application can be both a client and a 
server. A client terminates a conversation when it no longer needs 
a server's data or services. 

For example, a graphics application might contain a bar graph 
that represents a corporation's quarterly profits, and the data for 
the bar graph might be contained in a spreadsheet application. To 
obtain the latest profit figures, the graphics application (the client) 
establishes a conversation with the spreadsheet application (the 
server). The graphics application then sends a transaction to the 
spreadsheet application, requesting the latest profit figures. 

The DDEML notifies an application of DDE activity that affects 
the application by sending transactions to the application's DDE 
callback function. A transaction is similar to a message-it is a 
named constant accompanied by other parameters that contain 
additional information about the transaction. 

The DDEML passes a transaction to an application-defined DDE 
callback function, which carries out the appropriate action 
depending on the type of the transaction. For example, when a 
client application attempts to establish a conversation with a 
server application, the client calls the DdeConnect function. This 
causes the DDEML to send an XTYP _CONNECT transaction to 
the server's DDE callback function. The callback function can 
allow the conversation by returning TRUE to the DDEML, or it 
can deny the conversation by returning FALSE. 

For a detailed discussion of transactions, see "Transaction 
management." 

Chapter 2, Dynamic Data Exchange Management Library 39 



Service names, 
topic names, and 

item names 

System topic 

40 

A DDE server uses a three-level hierarchy-service name (called 
"application name" in previous DDE documentation), topic 
name, and item name-to uniquely identify a unit of data that the 
server can exchange during a conversation. A service name is a 
string that a server application responds to when a client attempts 
to establish a conversation with the server. A client must specify 
this service name to be able to establish a conversation with the 
server. Although a server can respond to many service names, 
most servers respond to only one name. 

A topic name is a string that identifies a logical data context. For 
servers that operate on file-based documents, topic names are 
typically filenames; for other servers, they are other 
application-specific strings. A client must specify a topic name 
along with a server's service name when it attempts to establish a 
conversation with a server. 

An item name is a string that identifies a unit of data that a server 
can pass to a client during a transaction. For example, an item 
name might identify an integer, a string, several paragraphs of 
text, or a bitmap. 

To a client, these names are the keys that make it possible for the 
client to establish a conversation with a server and to receive data 
from the server. 

The System topic provides a context for information that may be 
of general interest to any DDE client. Server applications are 
encouraged to support the System topic at all times. (The System 
topic is defined in the DDEML header file as SZDDESYS_TOPIC.) 

To find out which servers are present and the kinds of 
information they can provide, a client can request a conversation 
on the System topic with the service name set to NULL when the 
client application starts. Such wildcard conversations should be 
kept to a minimum, because they are costly in terms of system 
performance. 

For more information about initiating DDE conversations, see 
"Conversation management." 

Windows API Guide 



A server should support the following item names within the 
System topic and any other item names that may be useful to a 
client: 

Item 

SZDDE_ITEM_ITEMLIST 

SZDDESYS_ITEM_FORMATS 

SZDDESYS_ITEM_HELP 
SZDDESYS_ITEM_RTNMSG 

SZDDESYS_ITEM_STATUS 

SZDDESYS_ITEM_SYSITEMS 

Description 

A list of the items that are supported 
under a non-System topic. (This list 
may vary from moment to moment 
and from topic to topic.) 
A list of clipboard format numbers 
that the server can render. This list 
should be ordered with the most 
descriptive formats first. A server 
may not be able to render all items in 
all formats within this list. At a 
minimum, a server should support 
the CF _TEXT clipboard format for 
item names associated with the 
System topic. 
General help information. 
Supporting detail for the most 
recently used WM_DDE_ACK 
message. This is useful when more 
than 8 bits of application-specific 
return data are required. 
An indication of the current status of 
the server. Typically, this item 
supports only the CF _TEXT format 
and contains the Ready or Busy 
string. 
A list of the items supported under 
the System topic by this server. 
A list of the topics supported by the 
server at the current time. (This list 
may vary from moment to moment.) 

These item names are string constants defined in the DDEML 
header files. To obtain string handles for these strings, an 
application must use the DDEML string-management functions, 
just as it would for any other string in a DDEML application. For 
more information about managing strings, see "String 
management." 

Chapter 2, Dynamic Data Exchange Management Library 41 



Initialization 

42 

The DDEML requires that Windows be running; otherwise, the 
system cannot load the DDEML dynamic-link library. Before 
calling any DDEML function, an application should call the 
GetWinFlags function, checking the return value for the 
WF _PMODE flag. If this flag is returned, the application can call 
DDEML functions. 

Before calling any other DDEML function, an application must 
call the Ddelnitialize function. The Ddelnitialize function obtains 
an instance identifier for the application, registers the 
application's DDE callback function with the DDEML, and 
specifies the transaction filter flags for the callback function. 

The DDEML uses instance identifiers so that it can support 
applications that allow multiple DDEML instances. Each instance 
of an application must pass its instance identifier as the idlnst 
parameter to any other DDEML function that requires it. An 
application that uses multiple DDEML instances should assign a 
different DDE callback function to each instance. This makes it 
possible for the application to identify each instance within its 
callback function. 

The purpose for multiple DDEML instances is to support DLLs 
using the DDEML. It is not recommended that an application 
have multiple DDE instances. 

Transaction filters optimize system performance by preventing 
the DDEML from passing unwanted transactions to the 
application's DDE callback function. An application sets the 
transaction filters when it calls the Ddelnitialize function. An 
application should specify a transaction filter flag for each type of 
transaction that it does not process in its callback function. An 
application can change its transaction filters with a subsequent 
call to the Ddelnitialize function. 

For more information about transactions, see "Transaction 
management." 

Windows API Guide 



The following example shows how to initialize an application to 
use the DDEML: 

DWORD idlnst = OLi /* instance identifier */ 
HANDLE hlnsti /* instance handle * / 
FARPROC lpDdeProci /* procedure instance address */ 

lpDdeProc = MakeProclnstance((FARPROC) DdeCallback, hlnst); 
if (DdeInitialize(&idInst, 

(PFNCALLBACK) lpDdeProc, 
CBF_FAIL_EXECUTES I 

CBF_FAIL_POKES, OL); 
return FALSE; 

/* receives instance identifier */ 
/* address of callback function */ 
/* filter XTYP_EXECUTE transactions */ 
/* filter XTYP_POKE transactions */ 

This example obtains a procedure-instance address for the 
callback function named DdeCallback and then passes the 
address to the DDEML. The CBF _FAIL_EXECUTES and 
CBF _FAIL_POKES filters prevent the DDEML from passing 
XTYP _EXECUTE or XTYP _POKE transactions to the callback 
function. 

An application should call the DdeUninitialize function when it 
no longer needs to use the DDEML. This function terminates any 
conversations currently open for the application and frees the 
DDEML resources that the system allocated for the application. 

The DDEML may have difficulty terminating a conversation. This 
occurs when the other partner in a conversation fails to terminate 
its end of the conversation. In this case, the system enters a modal 
loop while it waits for any conversations to be terminated. A 
system-defined timeout period is associated with this loop. If the 
timeout period expires before the conversations have been 
terminated, a message box appears that gives the user the choice 
of waiting for another timeout period (Retry), waiting indefinitely 
(Ignore), or exiting the modal loop (Abort). An application should 
call DdeUninitialize after it has become invisible to the user and 
after its message loop has terminated. 

Callback function 

An application that uses the DDEML must provide a callback 
function that processes the DOE events that affect the application. 
The DDEML notifies an application of such events by sending 
transactions to the application's DOE callback function. The 
transactions that a callback function receives depend on the 

Chapter 2, Dynamic Data Exchange Management Library 43 



44 

callback-filter flags that the application specified in the 
Ddelnitialize function and on whether the application is a client, a 
server, or both. The following example shows the general 
structure of a callback function for a typical client application: 

HDDEDATAEXPENTRYDdeCallback (wType,wFmt, hConv,hszl, 
hsz2, hData, dwDatal, dwData2) 

WORD wType; 1* transaction type */ 
WORD wFmt; 1* clipboard format */ 
HCONV hConv; 1* handle of the conversation */ 
HSZ hszl; 1* handle of a string */ 
HSZ hsz2; 1* handle of a string */ 
HDDEDATA hData; 1* handle of a global memory object */ 
DWORD dwDatal; 1* transaction-specific data */ 
DWORD dwData2; 1* transaction-specific data */ 
{ 

switch (wType) { 
case XTYP REGISTER: 
case XTYP UNREGISTER: 

return (HDDEDATA) NULL; 

case XTYP ADVDATA: 

return (HDDEDATA) DDE_FACK; 

case XTYP XACT COMPLETE: 

return (HDDEDATA) NULL; 

case XTYP DISCONNECT: 

return (HDDEDATA) NULL; 

default: 
return (HDDEDATA) NULL; 

The wType parameter specifies the transaction type sent to the 
callback function by the DDEML. The values of the remaining 
parameters depend on the transaction type. The transaction types 
and the events that generate them are described in the following 
sections of this chapter. For detailed information about each 
transaction type, see "Transaction management." 

Windows API Guide 



String management 

Many DDEML functions require access to strings in order to carry 
out a DDE task. For example, a client must specify a service name 
and a topic name when it calls the DdeConnect function to 
request a conversation with a server. An application specifies a 
string by passing a string handle rather than a pointer in a 
DDEML function. A string handle is a doubleword value, 
assigned by the system, that identifies a string. 

An application can obtain a string handle for a particular string 
by calling the DdeCreateStringHandle function. This function 
registers the string with the system and returns a string handle to 
the application. The application can pass the handle to DDEML 
functions that need to access the string. The following example 
obtains string handles for the System topic string and the 
service-name string: 

HSfuszServName; 
HSfuszSysTopic; 

hszServNameDdeCreateStringHandle( 
idlnst, /* instance identifier */ 
"MyServer", /* string to register */ 
CP_WINANSI); /* code page */ 

hszSysTopi~deCreateStringHandle( 

idlnst, /* instance identifier */ 
SZDDESYS_TOPIC, /* System topic */ 
CP_WINANSI); /* code page */ 

The idlnst parameter in the preceding example specifies the 
instance identifier obtained by the Ddelnitialize function. 

An application's DDE callback function receives one or more 
string handles during most DDE transactions. For example, a 
server receives two string handles during the XTYP _REQUEST 
transaction: One identifies a string specifying a topic name; the 
other identifies a string specifying an item name. An application 
can obtain the length of the string that corresponds to a string 
handle and copy the string to an application-defined buffer by 
calling the DdeQueryString function, as the following example 
demonstrates: 

DWORD idlnst; 
DWORD cb; 
HSZ hszServ; 
PSTR pszServName; 

Chapter 2, Dynamic Data Exchange Management Library 45 



46 

cb = DdeQueryString(idInst, hszServ, (LPSTR) NULL, OL, 
CP_WINANSI) + 1; 
pszServName = (PSTR) LocalAlloc(LPTR, (WORD) cb); 
DdeQueryString(idInst, hszServ, pszServName, cb, CP_WINANSI); 

An instance-specific string handle is not mappable from string 
handle to string to string handle again. For instance, in the 
following example, the DdeQueryString function creates a string 
from a string handle and then DdeCreateStringHandle creates a 
string handle from that string, but the two handles are not the 
same: 

DWORD cb; 
HSZ hszInst, hszNew; 
psz pszInst; 

DdeQueryString(idInst, hszInst, pszInst, cb, CP WINANSI); 
hszNew = DdeCreateStringHandle(idInst, pszInst,-CP_WINANSI); 
/* hszNew != hszInst ! */ 

A string handle that is passed to an application's DDE callback 
function becomes invalid when the callback function returns. An 
application can save a string handle for use after the callback 
function returns by using the DdeKeepStringHandle function. 

When an application calls DdeCreateStringHandle, the system 
enters the specified string into a systemwide string table and 
generates a handle that it uses to access the string. The system 
also maintains a usage count for each string in the string table. 

When an application calls the DdeCreateStringHandle function 
and specifies a string that already exists in the table, the system 
increments the usage count rather than adding another 
occurrence of the string. (An application can also increment the 
usage count by using the DdeKeepStringHandle function.) When 
an application calls the DdeFreeStringHandle function, the 
system decrements the usage count. 

A string is removed from the table when its usage count equals 
zero. Because more than one application can obtain the handle of 
a particular string, an application should not free a string handle 
more times than it has created or kept the handle. Otherwise, the 
application could cause the string to be removed from the table, 
denying other applications access to the string. 

Windows API Guide 



Name service 

Service-name 
registration 

The DDEML string-management functions are based on the 
Windows atom manager and are subject to the same size 
restrictions as atoms. 

The DDEML makes it possible for a server application to register 
the service names that it supports and to prevent the DDEML 
from sending XTYP _CONNECT transactions for unsupported 
service names to the server's DOE callback function. The 
remaining topics in this section describe this service. 

By registering its service names with the DDEML, a server 
informs other DOE applications in the system that a new server is 
available. A server registers a service name by calling the 
DdeNameService function, specifying a string handle that 
identifies the name. As a result, the DDEML sends an 
XTYP _REGISTER transaction to the callback function of each 
DDEML application in the system (except those that specified the 
CBF _SKIP _REGISTRATIONS filter flag in the Ddelnitialize 
function). The XTYP _REGISTER transaction passes two string 
handles to a callback function: The first identifies the string 
specifying the base service name; the second identifies the string 
specifying the instance-specific service. A client typically uses the 
base service name in a list of available servers, so that the user can 
select a server from the list. The client uses the instance-specific 
service name to establish a conversation with a specific instance 
of a server application if more than one instance is running. 

A server can use the DdeNameService function to unregister a 
service name. This causes the DDEML to send 
XTYP _ UNREGISTER transactions to the other DOE applications 
in the system, informing them that they can no longer use the 
name to establish conversations. 

A server should call the DdeNameService function to register its 
service names soon after calling the Ddelnitialize function. A 
server should unregister its service names just before calling the 
DdeUninitialize function. 

Chapter 2, Dynamic Data Exchange Management Library 47 



Service-name 
filter Besides registering service names, the DdeNameService function 

makes it possible for a server to turn its service-name filter on or 
off. When a server turns off its service-name filter, the DDEML 
sends the XTYP _CONNECT transaction to the server's DDE 
callback function whenever any client calls the DdeConnect 
function, regardless of the service name specified in the function. 
When a server turns on its service-name filter, the DDEML sends 
the XTYP _CONNECT transaction to the server only when the 
DdeConnect function specifies a service name that the server has 
specified in a call to the DdeNameService function. 

By default, the service-name filter is on when an application calls 
Ddelnitialize. This prevents the DDEML from sending the 
XTYP _CONNECT transaction to a server before the server has 
created the string handles that it needs. A server can turn off its 
service-name filter by specifying the DNS_FILTEROFF flag in a 
call to the DdeNameService function. The DNS _FIL TERON flag 
turns on the filter. 

Conversation management 

48 

Single 
conversations 

A conversation between a client and a server is always 
established at the request of the client. When a conversation is 
established, each partner receives a handle that identifies the 
conversation. The partners use this handle in other DDEML 
functions to send transactions and manage the conversation. 

A client can request a conversation with a single server, or it can 
request multiple conversations with one or more servers. The 
remaining topics in this section describe how an application 
establishes conversations and explain how an application can 
obtain information about conversations that are already 
established. 

A client application requests a single conversation with a server 
by calling the DdeConnect function, specifying string handles 
that identify the strings specifying the service name of the server 
and the topic name of interest. The DDEML responds by sending 

Windows API Guide 



the XTYP _CONNECT transaction to the DDE callback function of 
each server application that either has registered a service name 
that matches the one specified in the DdeConnect function or has 
turned service-name filtering off by calling the DdeNameService 
function. A server can also filter the XTYP _CONNECT 
transactions by specifying the CBF _FAIL_CONNECTIONS filter 
flag in the Ddelnitialize function. During the XTYP _CONNECT 
transaction, the DDEML passes the service name and the topic 
name to the server. The server should examine the names and 
return TRUE if it supports the service/topic name pair or FALSE 
if it does not. 

If no server returns TRUE from the XTYP _CONNECT 
transaction, the client receives NULL from the DdeConnect 
function and no conversation is established. If a server does 
return TRUE, a conversation is established and the client receives 
a conversation handle-a doubleword value that identifies the 
conversation. The client uses the handle in subsequent DDEML 
calls to obtain data from the server. The server receives the 
XTYP _CONNECT_CONFIRM transaction (unless the server 
specified the CBF _FAIL_CONFIRMS filter flag). This transaction 
passes the conversation handle to the server. 

The following example requests a conversation on the System 
topic with a server that recognizes the service name MyServer. 
The hszServName and hszSysTopic parameters are previously 
created string handles. 

HCONV hConv; 
HWND hwndParenti 
HSZ hszServName; 
HSZ hszSysTopic; 

hConv = DdeConnect( 
idlnst, /* instance identifier */ 
hszServName, /* service-name string handle */ 
hszSysTopic, /* System-topic string handle */ 
(PCONVCONTEXT) NULL); /* reserved-must be NULL */ 

if (hConv == NULL) 
MessageBox(hwndParent, "MyServer is unavailable.", 

(LPSTR) NULL, ME_OK); 
return FALSE; 

The DdeConnect function in the preceding example causes the 
DDE callback function of the MyServer application to receive an 
XTYP _CONNECT transaction. 

Chapter 2, Dynamic Data Exchange Management Library 49 



50 

In the following example, the server responds to the 
XTYP _CONNECT transaction by comparing the topic-name 
string handle that the DDEML passed to the server with each 
element in the array of topic-name string handles that the server 
supports. If the server finds a match, it establishes the 
conversation. 

#define CTOPICS 5 

HSZ hszl; /* string handle passed by DDEML *1 
HSZ ahszTopics[CTOPICS]; /* array of supported topics *1 
int i; 1* loop counter *1 

. 1* Use switch statement to examine transaction types. * 1 

case XTYF CONNECT: 
for (i = 0; i < CTOPICS; i++) { 

if (hszl == ahszTopics[i]) 
return TRUE; 1* establish a conversation *1 

return FALSE; 1* topic not supported; deny conversation *1 

. 1* Process other transaction types. * 1 

If the server returns TRUE in response to the XTYP _CONNECT 
transaction, the DDEML sends an XTYP _CONNECT_CONFIRM 
transaction to the server's DDE callback function. The server can 
obtain the handle for the conversation by processing this 
transaction. 

A client can establish a wildcard conversation by specifying 
NULL for the service-name string handle, the topic-name string 
handle, or both in a call to the DdeConnect function. When at 
least one of the string handles is NULL, the DDEML sends the 
XTYP _ WILDCONNECT transaction to the callback functions of 
all DDE applications (except those that filter the 
XTYP _ WILDCONNECT transaction). Each server application 
should respond by returning a data handle that identifies a 
null-terminated array of HSZPAIR structures. If the server 
application has not called the DdeNameService function to 
register its service names and filtering is on, the server does not 
receive XTYP _ WILDCONNECT transactions. For more 
information about data handles, see "Data management." 

Windows API Guide 



The array should contain one structure for each service/topic 
name pair that matches the pair specified by the client. The 
DDEML selects one of the pairs to establish a conversation and 
returns to the client a handle that identifies the conversation. The 
DDEML sends the XTYP _CONNECT_CONFIRM transaction to 
the server (unless the server filters this transaction). The 
following example shows a typical server response to the 
XTYP _ WILDCONNECT transaction: 

#define CTOPICS 2 

UINT type; 
UINT fmt; 
HSZPAIR ahp[(CTOPICS + 1)]; 
HSZ ahszTopicList[CTOPICS]; 
HSZ hszServ, hszTopic; 
WORD i, j; 

if (type == XTYF_WILDCONNECT) 

/* 
* Scan the topic list, and create array of HSZPAIR 
* structures. 
*/ 

j 0; 
for (i = 0; i < CTOPICS; H+) { 

/* 

if (hszTopic == (HSZ) NULL I I 
hszTopic == ahszTopicList[i]) 

ahp[j] .hszSvc = hszServ; 
ahp[j++] .hszTopic = ahszTopicList[i]; 

* End the list with an HSZPAIR structure that contains NULL 
* string handles as its members. 
*/ 

ahp[j] .hszSvc = NULL; 
ahp[j++] .hszTopic = NULL; 

/* 
* Return a handle to a global memory object containing the 
* HSZPAIR structures. 
*/ 

return DdeCreateDataHandle( 
idInst, /* instance identifier */ 
&ahp, /* points to HSZPAIR array */ 
sizeof(HSZ) * j, /* length of the array */ 
0, /* start at the beginning */ 
NULL, /* no item-name string */ 
fmt, /* return the same format */ 
0) ; /* let the system own it */ 

Chapter 2, Dynamic Data Exchange Management Library 51 



52 

Multiple 
conversations 

Either the client or the server can terminate a conversation at any 
time by calling the DdeDisconnect function. This causes the 
callback function of the partner in the conversation to receive the 
XTYP _DISCONNECT transaction (unless the partner specified 
the CBP _SKIP _DISCONNECTS filter flag). Typically, an 
application responds to the XTYP _DISCONNECT transaction by 
using the DdeQueryConvlnfo function to obtain information 
about the conversation that terminated. After the callback 
function returns from processing the XTYP _DISCONNECT 
transaction, the conversation handle is no longer valid. 

A client application that receives an XTYP _DISCONNECT 
transaction in its DDE callback function can attempt to reestablish 
the conversation by calling the DdeReconnect function. The 
client must call DdeReconnect from within its DDE callback 
function. 

A client application can use the DdeConnectList function to 
determine whether any servers of interest are available in the 
system. A client specifies a service name and topic name when it 
calls the DdeConnectList function, causing the DDEML to 
broadcast the XTYP _ WILDCONNECT transaction to the DDE 
callback functions of all servers that match the service name 
(except those that filter the transaction). A server's callback 
function should return a data handle that identifies a 
null-terminated array of HSZPAIR structures. The array should 
contain one structure for each service/topic name pair that 
matches the pair specified by the client. The DDEML establishes a 
conversation for each HSZPAIR structure filled by the server and 
returns a conversation-list handle to the client. The server 
receives the conversation handle by way of the 
XTYP _CONNECT_CONFIRM transaction (unless the server 
filters this transaction). 

A client can specify NULL for the service name, topic name, or 
both when it calls the DdeConnectList function. If the service 
name is NULL, all servers in the system that support the specified 
topic name respond. A conversation is established with each 
responding server, including multiple instances of the same 
server. If the topic name is NULL, a conversation is established 
on each topic recognized by each server that matches the service 
name. 

Windows API Guide 



A client can use the DdeQueryNextServer and 
DdeQueryConvlnfo functions to identify the servers that respond 
to the DdeConnectList function. The DdeQueryNextServer 
function returns the next conversation handle in a conversation 
list; the DdeQueryConvlnfo function fills a CONVINFO structure 
with information about the conversation. The client can keep the 
conversation handles that it needs and discard the rest from the 
conversation list. 

The following example uses the DdeConnectList function to 
establish conversations with all servers that support the System 
topic and then uses the DdeQueryNextServer and 
DdeQueryConvlnfo functions to obtain the servers' service-name 
string handles and store them in a buffer: 

HCONVLIST hconvList; /* 
DWORD idInst; /* 
HSZ hszSystem; 
HCONV hconv = NULL; 
CONVINFO ci; 
UINT cConv = 0; 
HSZ *pHsz, *aHsz; 

/* 
/* 
/* 
/* 
/* 

conversation list */ 
instance identifier */ 
System topic */ 
conversation handle */ 
holds conversation data */ 
count of conv. handles */ 
point to string handles */ 

/* Connect to all servers that support the System topic. * / 

hconvList=DdeConnectList(idInst,NULL,hszSystem,NULL,NULL); 

/* Count the number of handles in the conversation list. * / 

while ((heonv=DdeQueryNextServer (heonvList, heonv» !=NULL) eConv++; 

/* Allocate a buffer for the string handles. * / 

hconv = NULL; 
aHsz= (HSZ*) LocalAlloc(LMEM_FIXED, cConv*sizeof(HSZ)); 

/ * Copy the string handles to the buffer. * / 

pHsz = aHsz; 
while ( (hconv=DdeQueryNextServer (hconvList, hconv)) ! =NULL) { 

DdeQueryConvInfo(hconv, QID_SYNC, (PCONVINFO) &ci); 
DdeKeepStringHandle(idInst, ci.hszSvcPartner); 
*pHsz++ = ci.hszSvcPartner; 

/* Use the handles; converse with servers. * / 

/ * Free the memory, and terminate conversations. * / 

LocalFree«HANDL~Hsz); 

DdeDisconnectList(hconvList); 

Chapter 2, Dynamic Data Exchange Management Library 53 



An application can terminate an individual conversation in a 
conversation list by calling the DdeDisconnect function. An 
application can terminate all conversations in a conversation list 
by calling the DdeDisconnectList function. Both functions cause 
the DDEML to send XTYP _DISCONNECT transactions to each 
partner's DDE callback function. The DdeDisconnectList function 
sends a XTYP _DISCONNECT transaction for each conversation 
handle in the list. 

A client can use the DdeConnectList function to enumerate the 
conversation handles in a conversation list by passing an existing 
conversation-list handle to the DdeConnectList function. The 
enumeration process removes' the handles of terminated 
conversations from the list. 

If the DdeConnectList function specifies an existing 
conversation-list handle and a service name or topic name that is 
different from those used to create the existing conversation list, 
the function creates a new conversation list that contains the 
handles of any new conversations and the handles from the 
existing list. 

The DdeConnectList function attempts to prevent duplicate 
conversations in a conversation list. A duplicate conversation is a 
second conversation with the same server on the same service 
name and topic name. Two such conversations would have 
different handles, yet they would be duplicate conversations. 

Data management 

54 

Because DDE uses global memory to pass data from one 
application to another, the DDEML provides a set of functions 
that DDE applications can use to create and manage global 
memory objects. 

All transactions that involve the exchange of data require the 
application supplying the data to create a local buffer containing 
the data and then to call the DdeCreateDataHandle function. This 
function allocates a global memory object, copies the data from 
the buffer to the memory object, and returns a data handle of the 
application. A data handle is a doubleword value that the 
DDEML uses to provide access to data in the global memory 

Windows API Guide 



object. To share the data in a global memory object, an application 
passes the data handle to the DDEML, and the DDEML passes 
the handle to the DDE callback function of the application that is 
receiving the data transaction. 

The following example shows how to create a global memory 
object and obtain a handle of the object. During the 
XTYP _ADVREQ transaction, the callback function converts the 
current time to an ASCII string, copies the string to a local buffer, 
then creates a global memory object that contains the string. The 
callback function returns the handle of the global memory object 
to the DDEML, which passes the handle to the client application. 

typedef struct { /* tm * / 
int hour; 
int minute; 
int second; 

} TIME; 

TIMEtmTime; 
HSZhszTime; 
HSZhszNow; 
HDDEDATAEXPENTRYDdeProc(wType,wFmt,hConv,hsz1,hsz2, 

hData, dwData1, dwData2) 
WORDwType; 
WORDwFmt; 
HCONVhConv; 
HSZhsz1; 
HSZhsz2; 
HDDEDATAhData; 
DWORDdwData1 ; 
DWORDdwData2 ; 
{ 

char szBuf[32]; 

switch (wType) { 

case XTYP ADVREQ: 
if ((hsz1 == hszTime && hsz2 == hszNow) 

&& (wFmt == CF_TEXT)) { 

/* Copy formatted time string to buffer. */ 

itoa(tmTime.hour, szBuf, 10); 
strcat(szBuf, ":"); 
if (tmTime.minute < 10) 

strcat (szBuf, "0"); 
itoa(tmTime.minute, &szBuf[strlen(szBuf)], 10); 
strcat(szBuf, ":"); 
if (tmTime.second < 10) 

strcat(szBuf, "0"); 
itoa(tmTime.second, &szBuf[strlen(szBuf)], 10); 
szBuf[strlen(szBuf)] = '\0'; 

/* Create global object, and return data handle. */ 

Chapter 2, Dynamic Data Exchange Management Library 55 



56 

return (DdeCreateDataHandle( 
idlnst, /* instance identifier * / 
(LPBYTE) szBuf, /* source buffer */ 
strlen(szBuf) + 1, /* size of global object */ 
OL, /* offset from beginning */ 
hszNow, /* item-name string */ 
CF_TEXT, /* clipboard format */ 
0)); /* no creation flags */ 

else 
return (HDDEDATA) NULL; 

/* Process other transaction types. */ 

The receiving application obtains a pointer to the global memory 
object by passing the data handle to the DdeAccessData function. 
The pointer returned by DdeAccessData provides read-only 
access. The application should use the pointer to review the data 
and then call the DdeUnaccessData function to invalidate the 
pointer. The application can copy the data to a local buffer by 
using the DdeGetData function. 

The following example obtains a pointer to the global memory 
object identified by the hData parameter, copies the contents to a 
local buffer, and then invalidates the pointer: 

HDDEDATA hData; 
LPBYTE lpszAdviseData; 
DWORD cbDataLen; 
DWORD i; 
char szData[32]; 

case XTYF ADVDATA: 

lpszAdviseData = DdeAccessData(hData, &cbDataLen); 
for (i = 0; i < cbDataLen; i++) 

szData[i] = *lpszAdviseData++; 
DdeUnaccessData(hData); 
return (HDDEDATA) TRUE; 

Usually, when an application that created a data handle passes 
that handle to the DDEML, the handle becomes invalid in the 
creating application. This is fine if the application needs to share 
data with just a single application. If an application needs to share 
the same data with multiple applications, however, the creating 
application should specify the HDATA_APPOWNED flag in 
DdeCreateDataHandle. Doing so gives ownership of the memory 
object to the creating application and prevents the DDEML from 
invalidating the data handle. When the creating application 

Windows API Guide 



finishes using a memory object it owns, it should free the object 
by calling the DdeFreeDataHandle function. 

If an application, has not yet passed the handle of a global 
memory object to the DDEML, the application can add data to the 
object or overwrite data in the object by using the DdeAddData 
function. Typically, an application uses DdeAddData to fill an 
uninitialized global memory object. After an application passes a 
data handle to the DDEML, the global memory object identified 
by the handle cannot be changed; it can only be freed. 

The DDEML data-management functions can handle huge 
memory objects. A DDEML application should check the size of a 
global memory object and allocate a huge buffer of the 
appropriate size before copying the object. 

Transaction management 

Request 
transaction 

After a client has established a conversation with a server, the 
client can send transactions to obtain data and services from the 
server. The remaining topics in this section describe the types of 
transactions that clients can use to interact with a server. 

A client application can use the XTYP _REQUEST transaction to 
request a data item from a server application. The client calls the 
DdeClientTransaction function, specifying XTYP _REQUEST as 
the transaction type and specifying the data item the application 
needs. 

The DDEML passes the XTYP _REQUEST transaction to the 
server, specifying the topic name, item name, and data format 
requested by the client. If the server supports the requested topic, 
item, and data format, the server should return a data handle that 
identifies the current value of the item. The DDEML passes this 
handle to the client as the return value from the 
DdeClientTransaction function. The server should return NULL 
if it does not support the topic, item, or format requested. 

Chapter 2, Dynamic Data Exchange Management Library 57 



Poke transaction 

58 

The DdeClientTransaction function uses the lpdwResult parameter 
to return a transaction status flag to the client. If the server does 
not process the XTYP _REQUEST transaction, 
DdeClientTransaction returns NULL, and lpdwResult points to the 
DDE_FNOTPROCESSED or DDE_FBUSY flag. If the 
DDE_FNOTPROCESSED flag is returned, the client has no way 
to determine why the server did not process the transaction. 

If a server does not support the XTYP _REQUEST transaction, it 
should specify the CBF _FAIL_REQUESTS filter flag in the 
Ddelnitialize function. This prevents the DDEML from sending 
this transaction to the server. 

A client can send unsolicited data to a server by using the 
DdeClientTransaction function to send an XTYP _POKE 
transaction to a server's callback function. 

The client application first creates a buffer that contains the data 
to send to the server and then passes a pointer to the buffer as a 
parameter to the DdeClientTransaction function. Alternatively, 
the client can use the DdeCreateDataHandle function to obtain a 
data handle that identifies the data and then pass the handle to 
DdeClientTransaction. In either case, the client also specifies the 
topic name, item name, and data format when it calls 
DdeCI ientTransaction. 

The DDEML passes the XTYP _POKE transaction to the server, 
specifying the topic name, item name, and data format that the 
client requested. To accept the data item and format, the server 
should return DDE_FACK. To reject the data, the server should 
return DDE_FNOTPROCESSED. If the server is too busy to 
accept the data, the server should return DDE_FBUSY. 

When the DdeClientTransaction function returns, the client can 
use the lpdwResult parameter to access the transaction status flag. 
If the flag is DDE_FBUSY, the client should send the transaction 
again later. 

If a server does not support the XTYP _POKE transaction, it 
should specify the CBF _FAIL_POKES filter flag in the 
Ddelnitialize function. This prevents the DDEML from sending 
this transaction to the server. 

Windows API Guide 



Advise 
transaction A client application can use the DDEML to establish one or more 

links to items in a server application. When such a link is 
established, the server sends periodic updates about the linked 
item to the client (typically, whenever the value of the item 
associated with the server application changes). This establishes 
an advise loop between the two applications that remains in place 
until the client ends it. 

There are two kinds of advise loops: "hot" and "warm." In a hot 
advise loop, the server immediately sends a data handle that 
identifies the changed value. In a warm advise loop, the server 
notifies the client that the value of the item has changed but does 
not send the data handle until the client requests it. 

A client can request a hot advise loop with a server by specifying 
the XTYP _ADVSTART transaction type in a call to the 
DdeClientTransaction function. To request a warm advise loop, 
the client must combine the XTYPF _NODATA flag with the 
XTYP _ADVST ART transaction type. In either event, the DDEML 
passes the XTYP _ADVST ART transaction to the server's DDE 
callback function. The server's DOE callback function should 
examine the parameters that accompany the XTYP _ADVSTART 
transaction (including the requested format, topic name, and item 
name) and then return TRUE to allow the advise loop or FALSE 
to deny it. 

After an advise loop is established, the server application should 
call the DdePostAdvise function whenever the value of the item 
associated with the requested item name changes. This results in 
an XTYP _ADVREQ transaction being sent to the server's own 
DDE callback function. The server's DDE callback function 
should return a data handle that identifies the new value of the 
data item. The DDEML then notifies the client that the specified 
item has changed by sending the XTYP _ADVDATA transaction 
to the client's DDE callback function. 

If the client requested a hot advise loop, the DDEML passes the 
data handle for the changed item to the client during the 
XTYP _ADVDAT A transaction. Otherwise, the client can send an 
XTYP _REQUEST transaction to obtain the data handle. 

It is possible for a server to send updates faster than a client can 
process the new data. This can be a problem for a client that must 
perform long processing operations on the data. In this case, the 

Chapter 2, Dynamic Data Exchange Management Library 59 



60 

Execute 

client should specify the XTYPF _ACKREQ flag when it requests 
an advise loop. This causes the server to wait for the client to 
acknowledge that it has received and processed a data item 
before the server sends the next data item. Advise loops that are 
established with the XTYPF _ACKREQ flag are more robust with 
fast servers but may occasionally miss updates. Advise loops 
established without the XTYPF _ACKREQ flag are guaranteed not 
to miss updates as long as the client keeps up with the server. 

A client can end an advise loop by specifying the 
XTYP _ADVSTOP transaction type in a call to the 
DdeClientTransaction function. 

If a server does not support advise loops, it should specify the 
CBF _FAIL_ADVISES filter flag in the Ddelnitialize function. This 
prevents the DDEML from sending the XTYP _ADVSTART and 
XTYP _ADVSTOP transactions to the server. 

transaction A client can use the XTYP _EXECUTE transaction to cause a 
server to execute a command or series of commands. 

To execute a server command, the client first creates a buffer that 
contains a command string for the server to execute and then 
passes either a pointer to the buffer or a data handle identifying 
the buffer when it calls the DdeClientTransaction function. Other 
required parameters include the conversation handle, the 
item-name string handle, the format specification, and the 
XTYP _EXECUTE transaction type. When an application creates a 
data handle for passing execute data, the application must specify 
NULL for the hszItem parameter of the DdeCreateDataHandle 
function. 

The DDEML passes the XTYP _EXECUTE transaction to the 
server's DDE callback function specifying the format name, 
conversation handle, topic name, and data handle identifying the 
command string. If the server supports the command, it should 
use the DdeAccessData function to obtain a pointer to the 
command string, execute the command, and then return 
DDE_FACK. If the server does not support the command or 
cannot complete the transaction, it should return 
DDE_FNOTPROCESSED. The server should return DDE_FBUSY 
if it is too busy to complete the transaction. 

Windows API Guide 



Synchronous and 
asynchronous 

transactions 

When the DdeClientTransaction function returns, the client can 
use the IpdwResult parameter to access the transaction status flag. 
If the flag is DDE_FBUSY, the client should send the transaction 
again later. 

If a server does not support the XTYP _EXECUTE transaction, it 
should specify the CBF _FAIL_EXECUTES filter flag in the 
Ddelnitialize function. Doing so prevents the DDEML from 
sending this transaction to the server. 

A client can send either synchronous or asynchronous 
transactions. In a synchronous transaction, the client specifies a 
timeout value that indicates the maximum amount of time to wait 
for the server to process the transaction. The 
DdeClientTransaction function does not return until the server 
processes the transaction, the transaction fails, or the timeout 
value expires. The client specifies the timeout value when it calls 
DdeClientTransaction. 

During a synchronous transaction, the client enters a modal loop 
while waiting for the transaction to be processed. The client can 
still process user input but cannot send another synchronous 
transaction until the DdeClientTransaction function returns. 

A client sends an asynchronous transaction by specifying the 
TIMEOUT _ASYNC flag in the DdeClientTransaction function. 
The function returns after the transaction is begun, passing a 
transaction identifier to the client. When the server finishes 
processing the asynchronous transaction, the DDEML sends an 
XTYP _XACT_COMPLETE transaction to the client. One of the 
parameters that the DDEML passes to the client during the 
XTYP _XACT_COMPLETE transaction is the transaction 
identifier. By comparing this transaction identifier with the 
identifier returned by the DdeClientTransaction function, the 
client identifies which asynchronous transaction the server has 
finished processing. 

A client can use the DdeSetUserHandle function as an aid to 
processing an asynchronous transaction. This function makes it 
possible for a client to associate an application-defined 
doubleword value with a conversation handle and transaction 
identifier. The client can use the DdeQueryConvlnfo function 
during the XTYP _XACT_COMPLETE transaction to obtain the 

Chapter 2, Dynamic Data Exchange Management Library 61 



62 

Transaction 
control 

application-defined doubleword value. This saves an application 
from having to maintain a list of active transaction identifiers. 

If a server does not process an asynchronous transaction in a 
timely manner, the client can abandon the transaction by calling 
the DdeAbandonTransaction function. The DDEML releases all 
resources associated with the transaction and discards the results 
of the transaction when the server finishes processing it. 

The asynchronous transaction method is provided for 
applications that must send a high volume of DDE transactions 
while simultaneously performing a substantial amount of 
processing, such as calculations. The asynchronous method is 
also useful in applications that need to stop processing DDE 
transactions temporarily so they can complete other tasks without 
interruption. In most other situations, an application should use 
the synchronous method. 

Synchronous transactions are simpler to maintain and faster than 
asynchronous transactions. However, only one synchronous 
transaction can be performed at a time, whereas many 
asynchronous transactions can be performed simultaneously. 
With synchronous transactions, a slow server can cause a client to 
remain idle while waiting for a response. Also, synchronous 
transactions cause the client to enter a modal loop that could 
bypass message filtering in the application's own message loop. 

An application can suspend transactions to its DDE callback 
function-either those transactions associated with a specific 
conversation handle or all transactions regardless of the 
conversation handle. This is useful when an application receives a 
transaction that requires lengthy processing. In this case, an 
application can return CBR_BLOCK to suspend future 
transactions associated with that transaction's conversation 
handle, leaving the application free to process other 
conversa tions. 

When processing is complete, the application calls the 
DdeEnableCaliback function to resume transactions associated 
with the suspended conversation. Calling DdeEnableCaliback 
causes the DDEML to resend the transaction that resulted in the 
application suspending the conversation. Therefore, the 
application should store the result of the transaction in such a 

Windows API Guide 



Class 

Transaction 
classes 

way that it can obtain and return the result without reprocessing 
the transaction. 

An application can suspend all transactions associated with a 
specific conversa-tion handle by specifying the handle and the 
EC_DISABLE flag in a call to the DdeEnableCallback function. By 
specifying a NULL handle, an application can suspend all 
transactions for all conversations. 

When a conversation is suspended, the DDEML saves 
transactions for the conversation in a transaction queue. When 
the application reenables the conversation, the DDEML removes 
the saved transactions from the queue, passing each transaction 
to the appropriate callback function. Even though the capacity of 
the transaction queue is large, an application should reenable a 
suspended conversation as soon as possible to avoid losing 
transactions. 

An application can resume usual transaction processing by 
specifying the EC_ENABLEALL flag in the DdeEnableCallback 
function. For a more controlled resumption of transaction 
processing, the application can specify the EC_ENABLEONE flag. 
This removes one transaction from the transaction queue and 
passes it to the appropriate callback function; after the single 
transaction is processed, any conversations are again disabled. 

The DDEML has four classes of transactions. Each class is 
identified by a constant that begins with the XC LASS_ prefix. The 
classes are defined in the DDEML header file. The class constant 
is combined with the transaction-type constant and is passed to 
the DDE callback function of the receiving application. 

A transaction's class determines the return value that a callback 
function is expected to return if it processes the transaction. The 
following table shows the return values and transaction types 
associated with each of the four transaction classes: 

Return value 

TRUE or FALSE 

A data handle, CBR_BLOCK, or 
NULL 

Transaction 

XTYP _ADVSTART 
XTYP _CONNECT 
XTYP _ADVREQ XTYP _REQUEST 
XTYP _WILDCONNECT 

Chapter 2, Dynamic Data Exchange Management Library 63 



Class 

XCLASS_NOTIFICATION 

64 

Transaction 
summary 

Return value 

A transaction flag: DDE_FACK, 
DDE_FBUSY, or 
DDE_FNOTPROCESSED 
None 

Transaction 

XTYP _ADVDATA 
XTYP _EXECUTE XTYP _POKE 

XTYP _ADVSTOP 
XTYP _CONNECT_CONFIRM 
XTYP _DISCONNECT 
XTYP _E;RROR XTYP _REGISTER 
XTYP _UNREGISTER 
XTYP _XACT_COMPLETE 

The following list shows each DDE transaction type, the receiver 
of each type, and a description of the activity that causes the 
DDEML to generate each type: 

Transaction type Receiver 

XTYP _ADVDATA Client 

Server 

Server 

Server 

Server 

Cause 

A server responded to an 
XTYP _ADVREQ 
transaction by returning 
a data handle. 
A server called the 
DdePostAdvise 
function, indicating that 
the value of a data item 
in an ad vise loop had 
changed. 
A client specified the 
XTYP _ADVSTART 
transaction type in a call 
to the DdeClient­
Transaction function. 
A client specified the 
XTYP _ADVSTOP 
transaction type in a call 
to the DdeClient­
Transaction function. 
A client called the 
DdeConnect function, 
specifying a service 
name and topic name 
supported by the server. 

Windows API Guide 



Transaction type Receiver Cause 

XTYP _CONNECT_CONFIRM Server The server returned 
TRUE in response to an 
XTYP _CONNECT or 
XTYP _ WILD CONNECT 
transaction. 

XTYP _DISCONNECT Client/ A partner in a 
Server conversation called the 

DdeDisconnect function, 
causing both partners to 
receive this transaction. 

XTYP_ERROR Client/ A critical error has 
Server occurred. The DDEML 

may not have sufficient 
resources to continue. 

XTYP _EXECUTE Server A client specified the 
XTYP _EXECUTE 
transaction type in a call 
to the DdeClient-
Transaction function. 

XTYP _MONITOR DDE A DDE event occurred in 
monitoring the system. For more 
application information about DDE 

monitoring applications, 
see "Monitoring 
applications." 

XTYP_POKE Server A client specified the 
XTYP _POKE transaction 
type in a call to the 
DdeClientTransaction 
function. 

XTYP _REGISTER Client/ A server application 
Server used the DdeName-

Service function to 
register a service name. 

XTYP _REQUEST Server A client specified the 
XTYP _REQUEST 
transaction type in a call 
to the DdeClient-
Transaction function. 

XTYP _ UNREGISTER Client/ A server application 
Server used the DdeName-

Service function to 
unregister a service 
name. 

Chapter 2, Dynamic Data Exchange Management Library 65 



Error detection 

Transaction type Receiver 

XTYP _ WILDCONNECT Server 

XTYP _XACT _COMPLETE Client 

Cause 

A client called the 
DdeConnect or 
DdeConnectList 
function, specifying 
NULL for the service 
name, the topic name, or 
both. 
An asynchronous 
transaction, sent when 
the client specified the 
TIMEOUT_ASYNC flag 
in a call to the 
DdeClientTransaction 
function, has 
concluded. 

Whenever a DDEML function fails, an application can call the 
DdeGetLastError function to determine the cause of the failure. 
The DdeGetLastError function returns an error value that 
specifies the cause of the most recent error. 

Monitoring applications 

66 

Microsoft Windows DDESpy (DDESPY.EXE) monitors DDE 
activity in the system. You can use DDESpy as a tool for 
debugging your DDE applications. 

You can use the API elements of the DDEML to create your own 
DDE monitoring applications. Like any DDEML application, a 
DDE monitoring application contains a DDE callback function. 
The DDEML notifies a monitoring application's DDE callback 
function whenever a DDE event occurs, passing information 
about the event to the callback function. The application typically 
displays the information in a window or writes it to a file. 

To receive notifications from the DDEML, an application must 
have registered itself as a DDE monitor by specifying the 

Windows API Guide 



APPCLASS_MONITOR flag in a call to the Ddelnitialize function. 
In this same call, the application can specify one or more monitor 
flags to indicate the types of events of which the DDEML is to 
notify the application's callback function. The following table 
describes each of the monitor flags an application can specify: 

Flag 

MF _CALLBACKS 

MF_CONV 

Meaning 

Notifies the callback function whenever a 
transaction is sent to any DDE callback function 
in the system. 
Notifies the callback function whenever a 
conversation is established or terminated. 
Notifies the callback function whenever a 
DDEML error occurs. 
Notifies the callback function whenever a 
DDEML application creates, frees, or increments 
the use count of a string handle or whenever a 
string handle is freed as a result of a call to the 
DdeUninitialize function. 
Notifies the callback function whenever an 
advise loop is started or ended. 
Notifies the callback function whenever the 
system or an application posts a DDE message. 
Notifies the callback function whenever the 
system or an application sends a DDE message. 

The following example shows how to register a DDE monitoring 
application so that its DDE callback function receives notifications 
of all DDE events: 

DWORD idInst; 
PFNCALLBACK lpDdeProc; 
hInst = hInstance; 

lpDdeProc = (PFNCALLBACK) MakeProcInstance( 
(FARPROC) DDECallback, /* points to callback function */ 
hInstance); /* instance handle */ 

if(DdeInitialize ( 
(LPDWORD) &idInst, 
lpDdeProc, 
APPCLASS MONITOR 
MF CALLBACKS 
MF CONV 
MF ERRORS 
MF HSZ INFO 
MF LINKS 
MF POSTMSGS 
MF _ SENDMSGS, 
OL) ) 

return FALSE; 

/* instance identifier */ 
/* points to callback function */ 
/* this is a monitoring application */ 
/* monitor callback functions */ 
/* monitor conversation data 
/* monitor DDEML errors 
/* monitor data-handle activity 
/* monitor advise loops 
/* monitor posted DDE messages 
/* monitor sent DDE messages 
/* reserved 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

Chapter 2, Dynamic Data Exchange Management Library 67 



68 

The DDEML informs a monitoring application of a DDE event by 
sending an XTYP _MONITOR transaction to the application's 
DDE callback function. During this transaction, the DDEML 
passes a monitor flag that specifies the type of DDE event that has 
occurred and a handle of a global memory object that contains 
detailed information about the event. The DDEML provides a set 
of structures that the application can use to extract the 
information from the memory object. There is a corresponding 
structure for each type of DDE event. The following table 
describes each of these structures. 

Structure 

MONCBSTRUCT 
MONCONVSTRUCT 
MONERRSTRUCT 
MONLINKSTRUCT 

MONHSZSTRUCT 

MONMSGSTRUCT 

Description 

Contains information about a transaction. 
Contains information about a conversation. 
Contains information about the latest DDE error. 
Contains information about an advise loop. 
Contains information about a string handle. 
Contains information about a DDE message that 
was sent or posted. 

The following example shows the DDE callback function of a 
DDE monitoring application that formats information about each 
string handle event and then displays the information in a 
window. The function uses the MONHSZSTRUCT structure to 
extract the information from the global memory object. 

HDDEDATA CALLBACK DDECallback(wType, wFmt, hConv, hszl, hsz2, 
hData, dwDatal, dwData2) 

WORD wType; 
WORD wFmt; 
HCONV hConv; 
HSZ hszl; 
HSZ hsz2; 
HDDEDATA hData; 
DWORD dwDatal; 
DWORD dwData2; 
{ 

LPVOID lpData; 
char *szAction; 
char buf [256] ; 
DWORD cb; 

switch (wType) 
case XTYP MONITOR: 

/* Obtain a pointer of the global memory object. */ 

if (lpData = DdeAccessData(hData, &cb)) 

/* Examine the monitor flag. */ 

Windows API Guide 



switch (dwData2) { 
case MF HSZ INFO: 

#definePHSZS((MONHSZSTRUCTFAR*)lpData) 

1* 
* The global memory object contains 
* string-handle data. Use the MONHSZSTRUCT 
* structure to access the data. 
*1 

switch (PHSZS->fsAction) { 

1* 
* Examine the action flags to determine 
* the action performed on the handle. 
*/ 

case MH CREATE: 
szAction = "Created"; 
break; 

case MH KEEP: 
szAction "Incremented"; 
break; 

case MH DELETE: 
szAction = "Deleted"; 
break; 

case MH CLEANUP: 
szAction = "Cleaned up"; 
break; 

default: 
DdeUnaccessData(hData); 
return ((HDDEDATA) 0); 

1* write formatted output to a buffer. *1 

wsprintf (buf, 
"Handle %s, Task: %x, Hsz: %lx(%s)", 
(LPSTR) szAction, PHSZS->hTask, PHSZS->hsz, 
(LPSTR) PHSZS->str); 

1* Display text in window or write to file. *1 

#undefPHSZS 

break; 

1* Process other MF * flags. *1 

default: 
break; 

Chapter 2, Dynamic Data Exchange Management Library 69 



70 

/* Free the global memory object. */ 

DdeUnaccessData(hData); 
break; 

default: 
break; 

return ((HDDEDATA) 0); 

Windows API Guide 



c H A p T E R 

3 

Object linking and 
embedding libraries 

This chapter describes the implementation of object linking and 
embedding (OLE) for applications that run with the Microsoft 
Windows operating system. The chapter also describes how an 
application can use linked and embedded objects to create 
compound documents. The following topics are related to the 
information in this chapter: 

III Dynamic data exchange (DDE) 

EI Clipboard 

II Registration database 

13 Dynamic-link libraries 

\I Multiple document interface 

This chapter does not go into detail about the recommended user 
interface for applications that use linked and embedded objects. 

Basics of object linking and embedding 

This section explains some basic OLE concepts and compares 
OLE functionality to that of the Dynamic Data Exchange 
Management Library (DDEML). 

Chapter 3, Object linking and embedding libraries 71 



72 

Compound 
documents An application that uses OLE can cooperate with other OLE 

applications to produce a document containing different kinds of 
data, all of which can be easily manipulated by the user. The user 
editing such a document is able to improve the document by 
using the best features of many different applications. An 
application that implements OLE gives its users the ability to 
move away from an application-centered view of computing and 
toward a document-centered view. In application-centered 
computing, the tool used to complete a task is often a single 
application; whereas, in document-centered computing, a user 
can combine the advantages of many tools to complete a job. 

A document that uses linked and embedded objects can contain 
many kinds of data in many different formats; such a document is 
called a compound document. A compound document uses the 
facilities of different OLE applications to manipulate the different 
kinds of data it displays. Any kind of data format can be 
incorporated into a compound document; with little or no extra 
code, OLE applications can even support data formats that have 
not yet been invented. The user working with a compound 
document does not need to know which data formats are 
compatible with one another or how to find and start any 
applications that created the data. Whenever a user chooses to 
work with part of a compound document, the application 
responsible for that part of the document starts automatically. 

For example, a compound document could be a brochure that 
included text, charts, ranges of cells in a spreadsheet, and 
illustrations. The information could be embedded in the 
document, or the document could contain links to certain 
information instead of containing the information itself. The user 
working with the brochure could automatically switch between 
the applications that produced its components. 

The following illustration shows the relationships between a 
compound document and its linked and embedded objects. 

Windows API Guide 



-I Cha rt Server 
Cut or 

-I Clipboard 

[i 
Copy [i] 

-I Copy 

~ abc.doc 
OK 

r--

o To Clipboard 

Paste, 
Paste Link, or 
Paste Special Client Copy 

File Manager 

Paste, "-- ~ abc.doc 

Insert Object 
:;;::;;::;;::;;::;;::;;::;;: ~ .-

Paste Link, ~ xyz.doc . 
or Paste U 

-I Insert Object 

Select 
table object 
from list. 

:::.:::.:::,:::.:::.:::.:::. abc.doc 

~ 
xyz.doc 

Update or Exit 

Special 

Drag and 
Drop 

OK -I Tabl e Server 

Linked and 
embedded 

objects 

-

An object is any data that can be presented in a compound 
document and manipulated by a user. Anything from a single cell 
in a spreadsheet to an entire document can be an object. When an 
object is incorporated into a document, it maintains an association 
with the application that produced it. That association can be a 
link, or the object can be embedded in the file. 

If the object is linked, the document provides only minimal 
storage for the data to which the object is linked, and the object 
can be updated automatically whenever the data in the original 
application changes. For example, if a range of spreadsheet cells 
were linked to information in a text file, the data would be stored 

Chapter 3, Object linking and embedding libraries 73 



74 

in some other file and only a link to the data would be saved with 
the text file. 

If an object is embedded, all the data associated with it is saved as 
part of the file in which it is embedded. If a range of spreadsheet 
cells were embedded in a text file, the data in the cells would be 
saved with the text file, including any necessary formulas; the 
name of the server for the spreadsheet cells would be saved along 
with this data. The user could select this embedded object while 
working with the text file, and the spreadsheet application would 
be started automatically for editing those cells. The presentation 
and the behavior of the data is the same for a linked and an 
embedded object. 

Packages A package is a type of OLE object that encapsulates another 
object, a file, or a command line inside a graphic representation 
(such as an icon or bitmap). When the user double-clicks the 
graphic object, the OLE libraries activate the object inside the 
package. The package itself is always an embedded object, not a 
link. The contents of a package can be an embedded object, a link, 
or even a file dropped from Windows File Manager. 

Packages are useful for presenting compact token views of large 
files or OLE objects. An application could also use a package as it 
would use a hyperlink-that is, to connect information in 
different documents. 

Windows version 3.1 includes the application Microsoft 
Windows Object Packager (PACKAGER.EXE). With Packager, a 
user can associate a file or data selection with an icon or graphic. 

Verbs The types of actions a user can perform on an object are called 
verbs. Two typical verbs for an object are Play and Edit. 

The nature of an object determines its behavior when a user 
works with it. The most typical use for some objects, such as voice 
annotations and animated scripts, is to play them. For example, a 
user could play an animated script by double-clicking it. In this 
case, Play is the primary verb for the object. 

For other objects, the most typical use is to edit them. In the case 
of text produced by a word processor, for example, the primary 
verb could be Edit. 

Windows API Guide 



Benefits of object 
linking and 

embedding 

The client application typically specifies the primary verb when 
the user double-clicks an object. However, the server application 
determines the meaning of that verb. A user can invoke an 
object's subsidiary verbs by using the Class Name Object 
command or the Links dialog box. For more information about 
these topics, see "Client user interface." 

The action taken when a user double-clicks a package is that of 
the primary verb of the object inside the package. The secondary 
verb for a packaged object is Edit Package; when the user chooses 
this verb, Packager starts. The user can use Packager to gain 
access to the secondary verb for the object inside the package. 

Many objects support only one verb-for example, an object 
created by a text editor might support only Edit. If an object 
supports only one verb, that verb is used no matter what the 
client application specifies. For more information about verbs, see 
"Registration." 

OLE offers the following benefits: 

m An application can specialize in performing one job very well. 
For example, a drawing application that implements OLE does 
not need any text-editing tools; a user could put text into the 
drawing and edit that text by using any text editor that 
supports OLE. 

a An application is automatically extensible for future data 
formats, because the content of an object does not matter to the 
containing document. 

a A user can concentrate on the task instead of on any software 
required to complete the task. 

III A file can be more compact, because linking to objects allows a 
file to use an object without having to store that object's data. 

EI A document can be printed or transmitted without using the 
application that originally produced the document. 

I'l Linked objects in a file can be updated dynamically. 

Future implementations of this protocol could take advantage of 
a wide variety of object types. For example, the user of a 
voice-recorder application could dictate a comment, package the 
comment as an object with a visual representation, and embed the 

Chapter 3, Object linking and embedding libraries 75 



76 

Choosing 
between OLE 

and the DDEML 

graphic as an object in a text file. When a user double-clicked the 
graphic for this object (a pair of lips, perhaps), the voice-recorder 
application would play the recorded comment. Linked and 
embedded objects also lend themselves to implementations such 
as animated drawings, executable macro scripts, hypertext, and 
annotations. 

Applications can exchange data by using either OLE or the 
DDEML. Unless an application has a strong requirement for 
managing multiple items in a single conversation with another 
application, the application should use OLE instead of the 
DDEML. 

Both OLE and the DDEML are message-based systems supported 
by dynamic-link libraries. Developers are encouraged to use these 
libraries rather than using the underlying message-based 
protocols. For more information about the message-based OLE 
protocol, see "Direct use of Dynamic Data Exchange." 

Unlike OLE, the DDEML supports multiple items per 
conversation. With OLE, a client needing links to several objects 
in a document must establish a separate conversation for each 
object. 

OLE offers the following advantages that the DDEML does not: 

Advantage 

Extensibility to future 
enhancements 

Description 

The OLE libraries may be updated in future 
releases to support new data formats, link 
tracking, editing without exiting the client 
application, and other enhancements that will 
not be immediately available to applications 
that use the DDEML. 

Persistent embedding and The OLE libraries do most of the work of 
linking of objects activating objects when an embedded 

document is reopened, by reestablishing the 
conversation between a client and server. In 
contrast, establishing a DDE link (DDE advise 
loop) is the responsibility of either the user (if 
the link is not persistent) or of the application 
(if the link is persistent). 

Windows API Guide 



Using OLE for standard 
DDE operations 

Advantage 

Rendering of common 
data formats 

Server rendering of 
specialized data formats 

Activating embedded 
and linked objects 

Creating objects and links 
from the clipboard 

Creating objects and 
links from files 

Description 

The OLE libraries assume the burden of 
rendering common data formats on a display 
context. DOE applications, however, must do 
this work themselves. 
The OLE libraries facilitate the rendering of 
specialized data formats in the client's 
display context. (The server application or 
object handler actually performs the 
rendering.) The client application has to do 
very little work to render the embedded or 
linked data in its display context. Such 
rendering of embedded or linked data is 
beyond the scope of the DDEML alone. 
The OLE libraries support activating a server 
to edit a linked or embedded object or to 
render data. Activating servers for data 
rendering and editing is beyond the scope of 
theDDEML. 
The OLE libraries do most of the work when 
an application is using the clipboard to copy 
and paste links or exchange objects. In 
contrast, DOE applications must call the 
Windows clipboard functions directly to 
perform such operations. 
The OLE libraries provide direct support for 
using files to exchange data. No DOE 
protocol is defined for this purpose. 

The OLE libraries use DDE messages instead of the DDEML, 
because the libraries were written before the DDEML was 
available. 

Although most of the OLE application programming interface 
(API) was designed for linked and embedded objects, it can also 
be applied to standard DDE items. In particular, an application 
can use the OLE API to perform the following DDE tasks: 

II Initializing conversations based on application and topic 
names or wildcards. 

Ii3 Requesting data for named items in negotiated formats from a 
server. 

• Establishing an advise loop-that is, requesting that a DDE 
server notify the client of changes to the values of specified 

Chapter 3, Object linking and embedding libraries 77 



78 

items and, optionally, that the server send the data when the 
change occurs . 

• Sending data from a server to a client. 

• Poking data from a client to a server. 

• Sending a DOE command. (This is supported by the 
Ole Execute function.) 

An OLE client application receives a pointer to an OLEOBJECT 
structure; this structure includes class name, document name, 
and item name information. These names correspond exactly to 
DOE counterparts, as follows: 

OLE name 

Class name 
Document name 
Item name 

DOE name 

Service name (formerly called "application name") 
Topic name 
Item name 

The client can use the OleCreateFromFile function to make an 
object and specify all three names. If the client application needs 
multiple items from the same topic, it must have an OLEOBJECT 
structure for each item, which causes a DOE conversation to be 
created for each item. 

The client library maps OLE functions that work on the 
OLEOBJECT structure to DOE messages as follows: 

OLE function 

OleExecute 
OleRequestData 
OleSetData 

DOE message 

WM_DDE_EXECUTE 
WM_DDE_REQUEST 
WM_DDE_POKE 

Some functions (such as OleActivate) are too complicated for this 
one-to-one mapping of function to DOE message. For these 
functions, the DOE message depends on the circumstance. 

If a client application needs to duplicate the functionality of 
WM_DDE_ADVISE with OLE, the client must create the link with 
olerender_format for the renderopt parameter, specify the 
required format, and use the OleGetData function to retrieve the 
value when the callback function receives the OLE_CHANGED 
notification. If more than one item or format is required, the client 
must create an OLEOBJECT structure for each item/ format pair. 
Although this method creates a conversation for each advise 

Windows API Guide 



Using both OLE 
and the DDEML 

transaction, it may be inefficient if the client needs to create many 
such conversations. 

A server application can make itself accessible to DDE by calling 
the OleRegisterServer function to make the System topic 
available and the OleRegisterServerDoc function to make other 
topics available. When a client connects and asks for an item, the 
server library calls the GetObject function in the server's 
OLESERVERDOCVTBL structure, followed by other 
server-implemented functions that are appropriate to the client's 
request. (Usually, the library calls the GetData function in the 
server's OLEOBJECTVTBL structure.) As long as the object 
allocated by the call to GetObject has not been released, the 
server should send a notification when the item has changed, so 
that the OLE libraries can send data to clients that have sent 
WM_DDE_ADVISE. 

Some applications may need features supported only by OLE and 
may also need to use the DDEML to support simultaneous links 
for many items that are updated frequently. Client applications of 
this kind can use the OLE libraries to initiate conversations with 
OLE servers and the DDEML to initiate conversations with DDE 
servers. 

Server applications that need to support both OLE and the 
DDEML must use different service names (DDE application 
names) for OLE and DDE conversations; otherwise, the OLE and 
DDEML libraries cannot determine which library should respond 
when an initiation request is received. Typically, the application 
changes the service name for the OLE conversation in this case, 
because other applications and the user must use the service 
name for the DDE conversation, but the OLE service name is 
hidden. 

Data transfer in object linking and embedding 

This section gives a brief overview of how applications share 
information under OLE. Details of the implementation are given 
in later sections of this chapter. 

Chapter 3, Object linking and embedding libraries 79 



80 

Client 
applications 

Server 
applications 

Object handlers 

Applications use three dynamic-link libraries (DLLs), 
OLECLI.DLL, OLESVR.DLL, and SHELL.DLL, to implement 
object linking and embedding. Object linking and embedding is 
supported by OLECLI.DLL and OLESVR.DLL. The registration 
database is supported by SHELL.DLL. 

An OLE client application can accept, display, and store OLE 
objects. The objects themselves can contain any kind of data. A 
client application typically identifies an object by using a 
distinctive border or other visual cue. 

An OLE server is any application that can edit an object when the 
OLE libraries inform it that the user of a client application has 
selected the object. (Some servers can perform operations on an 
object other than editing.) When the user double-clicks an object 
in a client application, the server associated with that object starts 
and the user works with the object inside the server application. 
When the server starts, its window is typically sized so that only 
the object is visible. If the user double-clicks a linked object, the 
entire linked file is loaded and the linked portion of the file is 
selected. For embedded objects, the user chooses the Update 
command from the File menu to save changes to the object and 
chooses Exit when finished. 

Many applications are capable of acting as both clients and 
servers for linked and embedded objects. 

Some OLE server applications implement an additional kind of 
OLE library called an object handler. Object handlers are 
dynamic-link libraries that act as intermediaries between client 
and server applications. Typically, an object handler is supplied 
by the developers of a server application as a way of improving 
performance. For example, an object handler could be used to 
redraw a changed object if the presentation data for that object 
could not be rendered by the client library. 

Windows API Guide 



Communication 
between OLE 

libraries 

Clipboard 
conventions 

Client applications use functions from the OLE API to inform the 
client library, OLECLI.DLL, that a user wants to perform an 
operation on an object. The client library uses DOE messages to 
communicate with the server library, OLESVR.DLL. The server 
library is responsible for starting and stopping the server 
application, directing the interaction with the server's callback 
functions, and maintaining communication with the client library. 

When a server application modifies an embedded object, the 
server notifies the server library of changes. The server library 
then notifies the client library, and the client library calls back to 
the client application, informing it that the changes have 
occurred. Typically, the client application then forces a repaint of 
the embedded object in the document file. If the server changes a 
linked object, the server library notifies the client library that the 
object has changed and should be redrawn. 

When first embedding or linking an object, OLE client and server 
applications typically exchange data by using the clipboard. 
When a server application puts an object on the clipboard, it 
represents the object with data formats, such as Native data, 
OwnerLink data, ObjectLink data, and a presentation format. The 
order in which these formats are put on the clipboard is very 
important, because the order determines the type of object. For 
example, if the first format is Native and the second is 
OwnerLink, client applications can use the data to create an 
embedded object. If the first format is OwnerLink, however, the 
data describes a linked object. 

Native data completely defines an object for a particular server. 
The data can be meaningful only to the server application. The 
client application provides storage for Native data, in the case of 
embedded objects. 

OwnerLink data identifies the owner of a linked or embedded 
object. 

Presentation formats allow the client library to display the object 
in a document. CF _METAFILEPICT, CF _DIB, and CF _BITMAP 
are typical presentation formats. Native data can be used as a 
presentation format, typically when an object handler has been 

Chapter 3, Object linking and embedding libraries 81 



82 

defined for that class of data. Native data cannot be used twice in 
the definition of an object, however; if the server puts Native and 
OwnerLink data on the clipboard to describe an embedded 
object, it cannot use Native data as a presentation format for that 
object. The ability of object handlers to use Native data as the 
presentation data accounts for the significance of the order of the 
formats: the order is the only way to distinguish between an 
embedded object and a link that uses Native data for its 
presentation. 

ObjectLink data identifies a linked object's class and document 
and the item that is the source for the linked object. (If the item 
name specified in the ObjectLink format is NULL, the link refers 
to the entire server document.) 

The following table describes the contents of the ObjectLink, 
OwnerLink, and Native clipboard formats: 

Format name 

ObjectLink 

OwnerLink 

Native 

Contents 

Null-terminated string for class name, 
null-terminated string for document name, string 
for item name with two terminating null characters. 
Null-terminated string for class name, 
null-terminated string for document name, string 
for item name with two terminating null characters. 
Stream of bytes interpreted only by the server 
application or object-handler library. This format 
can be unique to the server application and must 
allow the server to load and work with the object. 

Although the ObjectLink and OwnerLink formats contain the 
same information, the OLE libraries use them differently. The 
libraries use OwnerLink format to identify the owner of an object 
(which can be different from the source of the object) and 
ObjectLink format to identify the source of the data for an object. 

The class name in the ObjectLink or OwnerLink format is a 
unique name for a class of objects that a server supports. Server 
applications register the class name or names they support in the 
registration database. (For example, the class name used by 
Windows Paintbrush ™ is PBrush.) An application can use the 
class name to look up information about a server in the 
registration database. (For more information about registration, 
see "Registration.") The document name is typically a fully 
qualified path that identifies the file containing a document. The 

Windows API Guide 



item name uniquely identifies the part of a document that is 
defined as an object. Item names are assigned by server 
applications; an item name can be any string that the server uses 
to identify part of a document. Items names cannot contain the 
forward-slash (I) character. 

Data in OwnerLink or ObjectLink format could look like the 
following example: 

MicrosoftExcel 
Worksheet\Oc:\directry\docnarne.xls\OR1Cl:R5C3\O\O 

The order in which various data formats are put on the clipboard 
depends on the type of data being copied to the clipboard and the 
capabilities of the server application. The following table shows 
the order of clipboard data formats for four different types of data 
selections. An object does not necessarily use all of the formats 
listed for it. 

Source selection 

Embedded object 

Linked object 

Clipboard contents, in order 

Native 
OwnerLink 
Picture or other presentation format (optional) 
ObjectLink (included only if the server also 
supports 

links) 
OwnerLink 
Picture or other presentation format (optional; for 

Pictorial data 

Structured da ta 

linked objects, this can be Native data) 
ObjectLink 
A pplica tion-specific formats 
Native 
OwnerLink 
Picture 
ObjectLink 
Structured data formats (if selection is structured 

data only) 
Native 
OwnerLink 
Picture, text, and so on 
ObjectLink 

Before copying data for an embedded or linked object to the 
clipboard, a server puts descriptions of the data formats on the 
clipboard. These data formats are listed in order of their level of 
description, from most descriptive to least. (For example, 

Chapter 3, Object linking and embedding libraries 83 



84 

Microsoft Word would put rich-text format (RTF) onto the 
clipboard first, then the CF _TEXT clipboard format.) 

When a user chooses the Paste command, the client application 
queries the formats on the clipboard and uses the first format that 
is compatible with the destination for the object. Because server 
applications put data onto the clipboard in order of their fidelity 
of description, the first acceptable format found by a client 
application is the best format for it to use. If the client application 
finds an acceptable format prior to the Native format, it 
incorporates the data into the target document without making it 
an embedded object. (For example, a Microsoft Word document 
would not make an embedded object from clipboard data that 
was in RTF format. Similarly, structured data or a structured 
document would be embedded into a drawing application but 
would be converted into the destination document's native data 
type if the destination were a worksheet or structured document.) 
If the client application cannot accept any of the data formats 
prior to Native and OwnerLink, it uses the Native and 
Owner Link formats to make an embedded object and then finds 
an appropriate presentation format. The destination application 
may require different formats depending on where the selection 
is to be placed in the destination document; for example, pasting 
into a picture frame and pasting into a stream of text could 
require different formats. 

When a user chooses the Paste Link command from the Edit 
menu, the client application looks for the ObjectLink format on 
the clipboard and ignores the Native and OwnerLink formats. 
The ObjectLink format identifies the source class, document, and 
object. If the application finds the ObjectLink format and a useful 
presentation format, it uses them to make an OLE link to the 
source document for the object. If the ObjectLink format is not 
available, the client application may look for the Link format and 
create a DOE link. This type of link does not support the OLE 
protocol. 

When an application that does not support OLE copies from an 
OLE item on the clipboard, it ignores the Native, Owner Link and 
ObjectLink formats; the behavior of the copying application does 
not change. 

Windows API Guide 



Registration 
The registration database supports linked and embedded objects 
by providing a systemwide source of information about whether 
server applications support the OLE protocol, the names of the 
executable files for these applications, the verbs for classes of 
objects, and whether an object-handler library exists for a given 
class of object. 

When a server application is installed, it registers itself as an OLE 
server with the registration database. (This database is supported 
by the dynamic-link library SHELL.DLL.) To register itself as an 
OLE server, a server application records in the database that it 
supports one or more OLE protocols. The only protocols 
supported by version l.x of the Microsoft OLE libraries are 
StdFileEditing and StdExecute. StdFileEditing is the current 
protocol for linked and embedded objects. StdExecute is used 
only by applications that support the Ole Execute function. (A 
third name, Static, describes a picture than cannot be edited by 
using standard OLE techniques.) 

When a client activates a linked or embedded object, the client 
library finds the command line for the server in the database, 
appends the IEmbedding or IEmbedding filename command-line 
option, and uses the new command line to start the server. 
Starting the server with either of these options differs from the 
user starting it directly. Either a slash (j) or a hyphen (-) can 
precede the word Embedding. For details about how a server 
reacts when it is started with these options, see "Opening and 
closing objects." 

The entries in the registration database are used whenever an 
application or library needs information about an OLE server. For 
example, client applications that support the Insert Object 
command refer to the database in order to list the OLE server 
applications that could provide a new object. The client 
application also uses the registration database to retrieve the 
name of the server application for the Paste Special dialog box. 

Registration database Applications typically add key and value pairs to the registration 
database by using Microsoft Windows Registration Editor 
(REGEDIT.EXE). Applications could also use the registration 
functions to add this information to the database. 

Chapter 3, Object linking and embedding libraries 85 



86 

The registration database stores keys and values as 
null-terminated strings. Keys are hierarchically structured, with 
the names of the components of the keys separated by backslash 
characters (\). The class name and server path should be 
registered for every class the server supports. (This class name 
must be the same string as the server uses when it calls the 
OleRegisterServer function.) If a class has an object-handler 
library, it should be registered using the handler keyword. An 
application should also register all the verbs its class or classes 
support. (An application's verbs must be sequential; for example, 
if an object supports three verbs, the primary verb is 0 and the 
other verbs must be 1 and 2.) 

To be available for OLE transactions, a server should register the 
key and value pairs shown in the following example when it is 
installed. This example shows the form of key and value pairs as 
they would be added to a database with Registration Editor. 
Although the text string sometimes wraps to the next line in this 
example, the lines should not include newline characters when 
they are added to the database. 

HKEY_CLASSES_ROOT\class name = readable version of class name 
HKEY _CLASSES _ROOT\ .ext = class name 
HKEY _CLASSES _ROOT\class name \ protocol \StdFileEditing \server = 

executable file name 
HKEY _ CLASSES_ROOT \ class name \ protocol \StdFileEditing \handler = 

dll name 
HKEY _CLASSES _ROOT\class name \ protocol \StdFileEditing \ verb \ a = 

primary verb 
HKEY _ CLASSES_ROOT \ class name \ protocol \StdFileEditing \ verb \ 1 = 

secondary verb 

Servers that support the Ole Execute function also add the 
following line to the database: 

HKEY _CLASSES _ROOT\class name \ protocol \StdExecute \server = 
executable file name 

An ampersand (&) can be used in the verb specification to 
indicate that the following character is an accelerator key. For 
example, if a verb is specified as &Edit, the E key is an accelerator 
key. 

Windows API Guide 



A server can register the entire path for its executable file, rather 
than registering only the filename and arguments. Registering 
only the filename fails if the application is installed in a directory 
that is not mentioned in the PATH environment variable. 
Usually, registering the path and filename is less ambiguous than 
registering only the filename. 

Servers can register data formats that they accept on calls to the 
OleSetData function or that they can return when a client calls the 
OleRequestData function. Clients can use this information to 
initialize newly created objects (for example, from data selected in 
the client) or when using the server as an engine (for example, 
when sending data to a chart and getting a new picture back). 
Client applications should not depend on the requested data 
format, because the calls can be rejected by the server. 

In the following example, format is the string name of the format 
as passed to the RegisterClipboardFormat function or is one of 
the system-defined clipboard formats (for example, 
CF _METAFILEPICT): 

HKEY _ CLASSES_ROOT \ class name \ protocol \StdFileEditing 
\SetDataFormats = format[,format] 

HKEY _CLASSES _ROOT \ class name \ protocol \StdFileEditing 
\RequestDataFormats = format[,format] 

For compatibility with earlier applications, the system 
registration service also reads and writes registration information 
in the [embedding] section of the WIN.lNI initialization file. 

In the following example, the keyword picture indicates that the 
server can produce metafiles for use when rendering objects: 

[embedding] 
classname=comment,textual class name, path/ arguments,picture 

Version control Server applications should store version numbers in their Native 
for servers data formats. N~w versions of servers that are intended to replace 

old versions should be capable of dealing with data in Native 
format that was created by older versions. It is sometimes 
important to give the user the option of saving the data in the old 
format, to support an environment with a mixture of new and old 
versions, or to permit data to be read by other applications that 
can interpret only the old format. 

Chapter 3, Object linking and embedding libraries 87 



88 

Client user 
interface 

New and changed 
commands 

There can be only one application at a time (on one workstation) 
registered as a server for a given class name. The class name 
(which is stored with the Native data for objects) and the server 
application are associated in the registration database when the 
server application registers during installation. 

If a new version of a server application allows the user to keep 
the old version available, a new class name should be allocated 
for the new server. A good way to do this is to append a version 
number to the class name. This allows the user to easily 
differentiate between the two versions when necessary. (The OLE 
libraries do not check these numbers.) 

When the new version of the server is installed, the user should 
be given the option of either mapping the old objects to the new 
server (registering the new server as the server for both class 
names) or keeping them separate. When the user keeps them 
separate, the user will be aware of two kinds of object (for 
example, Graphl and Graph2). 

The user should be able to discard the old server version at a later 
time by remapping the registration database, typically with the 
help of the server setup program. To remap the database, the old 
and new objects are given the same value for readable version of 
class name (although their class names remain distinct). The OLE 
client library removes duplicate names when it produces the list 
in the Insert Object dialog box. When a client application 
produces a list by enumerating the registration database, the 
application must do this filtering itself. 

When a user opens a document that contains a linked or 
embedded object, the client application uses the OLE functions to 
communicate with OLECLI.DLL. This library assists the client 
application with such tasks as loading and drawing objects, 
updating objects (when necessary), and interacting with server 
applications. 

An OLE client application typically implements the following 
new or changed commands as part of its Edit menu. (Although 
this user interface is not mandatory, it is recommended for 
consistency with existing OLE applications.) 

Windows API Guide 



Command 

Copy 
Cut 

Paste 
Paste Link 

Class Name Object 

Links 

Insert Object 

Paste Special 

Description 

Copies an object from a document to the clipboard. 
Removes an object from a document and places it 
on the clipboard. 
Copies an object from the clipboard to a document. 
Inserts a link between a document and the file that 
contains an object. 
Makes it possible for the user to activate the verbs 
for a linked or embedded object. The actual text 
used instead of the Class Name placeholder 
depends upon the selected object. 
Makes it possible for the user to change link 
updating options, update linked objects, cancel 
links, repair broken links, and activate the verbs 
associated with linked objects. 
Starts the server application chosen by the user 
from a dialog box and embeds in a document the 
object produced by the server. This command is 
optionaL 
Transfers an object from the clipboard to a 
document or inserts a link to the object, using the 
data format chosen by the user from a dialog box. 
This command is optional. 

In addition to the listed menu changes, client applications must 
also implement changes to their Copy and Cut commands. When 
a linked or embedded object is selected in the client application, 
the application can use the OleCopyToClipboard function to 
implement the Cut and Copy commands. 

When the user chooses the Paste command, a client application 
should insert the contents of the clipboard at the current position 
in a document. If the clipboard contains an object, choosing this 
command typically embeds the object in the document. 

When the user chooses the Paste Link command, the client library 
typically inserts a linked object at the current position in a 
document. The object is displayed in the document, but the 
Native data that defines that object is stored elsewhere. 

If a user copies a linked object to the clipboard, other documents 
can use this object to produce a link to the original data. 

The Class Name Object command allows the user to choose one of 
an object's verbs. If the selection in the document is an embedded 
object, the Class Name placeholder is typically replaced by the 

Chapter 3, Object linking and embedding libraries 89 



90 

class and name of the object; for example, if a user selects an 
object that is a range of spreadsheet cells for Microsoft Excel, the 
text of the command might be "Microsoft Excel Worksheet 
Object." If an object supports only one verb, the name of the verb 
should precede the class name in the menu item; for example, if 
the only verb for a text object is Edit, the text of the command 
might be "Edit WPDocument Object." When an object supports 
more than one verb, choosing the Class Name Object command 
brings up a cascading menu listing each of the verbs. 

For more information about verbs, see "Verbs." 

Choosing the Links command brings up a Links dialog box, 
which lists the selected links and their source documents and 
gives the user the opportunity to change how the links are 
updated, cancel the link, change the link, or activate the verbs for 
the link. A user can use this dialog box to repair links to objects 
that have been moved or renamed. 

When the user chooses the Paste Special command, a client 
application should bring up a dialog box listing the data formats 
the client supports that are presently on the clipboard. The Paste 
Special dialog box makes if possible for the user to override the 
default behaviors of the Paste and Paste Link commands. For 
example, if the first format on the clipboard can be edited by the 
client application, the default behavior is for the client to copy the 
data into the document without making it into an object. The user 
could override this default behavior and create an object from 
such data by using the Paste Special command. 

When the user chooses the Insert Object command, a client 
application should allow the user to insert an object of a specified 
class at the current position in a document. For example, to insert 
a range of spreadsheet cells in a text document, a user could 
choose the Insert Object command and select "Microsoft Excel 
Worksheet" from the dialog box. Selecting this item would start 
Microsoft Excel. The user would use Microsoft Excel to create the 
object to be embedded in the text document. When finished, the 
user would quit Microsoft Excel; the range of spreadsheet cells 
would automatically be embedded in the text document. 

The Insert Object command is optional because a user could 
achieve the same results without it, although the procedure is less 
convenient. To use the same example as that shown in the 
preceding paragraph, the user could leave the client application, 

Windows API Guide 



start Microsoft Excel, and use the Microsoft Excel Cut or Copy 
command to transfer data to the clipboard. After returning to the 
client application, the user could choose the Paste command to 
move the data from the clipboard into the text document. 

If the user chooses the Undo command after activating an object, 
all the changes made since the object was last updated (or since 
the object was activated, if it has not been updated) are discarded 
and the object returns to its state prior to the update. The Undo 
command closes the connection to the server. 

Using packages A package is an embedded graphical object that contains another 
object, which can be linked or embedded. For example, a user can 
package a file in an icon and embed the icon in an OLE 
document. Most of the packaging capabilities are provided by the 
dynamic-link library SHELL.DLL. 

A user can put a package into an OLE document in a number of 
different ways: 

IJ Copy a file from File Manager to the clipboard, and then 
choose the Paste or Paste Link command from the Edit menu 
in the client application. 

IJ Drag a file from File Manager and drop it in the open window 
for a document in a client application. 

IJ Select Package from the list of objects in the Insert Object 
dialog box. This starts Object Packager, with which the user 
can associate a file or data selection with an icon or graphic. 
Choosing Update and then Exit from Object Packager's File 
menu puts the package in the client document. 

IJ Run Packager directly, following the steps outlined in the 
previous list item. 

A user whose system does not include the Windows version 3.1 
File Manager can follow these steps to create a package by using 
Object Packager: 

IJ Copy to the clipboard the data to be packaged. 

IJ Open Object Packager and paste the data into it. (At this point, 
the user could modify the default icon, the default label 
identifying the icon, or both.) 

Chapter 3, Object linking and embedding libraries 91 



Server user 
interface 

Updating objects from 
mUltiple-instance servers 

92 

• Choose Copy Package from the Object Packager Edit menu to 
copy the package to the clipboard. 

• Choose the Paste command from the Edit menu in the client 
application to embed the package. 

A server for linked and embedded objects is any application that 
can be used to edit an object when the OLE libraries inform it that 
the user of a client application has activated the object. (Some 
servers can use verbs other than Edit to work with an object.) 
Although client applications implement many changes to the user 
interface to support OLE, the user interface does not change 
significantly for server applications. 

OLE servers typically implement changes to the following 
commands in the Edit menu. (Although this user interface is not 
mandatory, it is recommended for consistency with existing OLE 
applications.) 

Command 

Cut 

Copy 

Description 

Transfers data from the application to the clipboard, 
deleting the data from the source document. A client 
application can use this data to create an embedded 
object. 
Transfers a copy of the data from the application to the 
clipboard. A client application can use this data to create 
an embedded object and may be able to establish a link 
to the source document. 

Some menu items change names or behave differently when a 
server is started as part of activating an object from within a 
compound document. The exact behavior of the server depends 
on whether the server supports the multiple document interface 
(MDI). 

When an embedded object is edited or played by a multiple­
instance server-that is, a server that does not support the 
multiple document interface (MDI), the Save command on the 
File menu should change to Update. (This change does not occur 
when a server starts for a linked object.) When the user chooses 
the Update command, the object in the client is updated but the 
focus remains with the server window. To close the server 
window, the user chooses the Exit command. 

Windows API Guide 



Updating objects from 
single-instance servers 

Object storage 
formats 

When the user chooses the Save As, New, or Open command, the 
application should display a warning message asking the user 
whether to update the object in the compound document before 
performing the action. The New and Open commands break the 
link between the client and server applications. The Save As 
command also breaks the link between the client and server if the 
server was editing an embedded object. 

The same rules for updating objects from multiple-instance 
servers apply to single-instance (MOl) servers, with the following 
differences: 

C When the focus in an MOl server changes from a window in 
which an embedded object was activated to a window in 
which a document that does not contain an embedded object is 
being edited, the Update command should change back to 
Save. 

Il When the user chooses the New or Open command, the 
window containing the embedded object remains open. (This 
eliminates the need to prompt the user to update the object.) 

The presentation data in linked or embedded objects can be 
thought of as a presentation object. A presentation objects can be 
standard, generic, or NULL. A standard presentation object is 
used when the format is metafile, bitmap, or device-independent 
bitmap (OIB). The client library supports the presentation objects, 
including drawing them. Neither client applications nor object 
handlers can use the presentation objects; they are solely for the 
use of the client library. 

The following list gives the storage format for strings in OLE. The 
items appear in the order listed. 

Type Description 

LONG Length of string, including terminating null character. 
Variable Null-terminated stream of bytes. 

Chapter 3, Object linking and embedding libraries 93 



94 

The following list gives the storage format for the standard 
presentation object used for linked and embedded objects. The 
items appear in the order listed. 

Type Description 

LONG OLE version number. 
LONG Format identifier. This value is 5. 
Variable Class string. For standard presentation objects, this string is 

METAFILEPICT, BITMAP, or DIB. 
LONG Width of object, in MM_HIMETRIC units. 
LONG Height of object, in MM_HIMETRIC units. 
LONG Size of presentation data, in bytes. 
Variable Presentation data. 

The following list gives the storage format for the generic 
presentation object used for linked and embedded objects. 
Generic objects are used when the clipboard format is other than 
metafile, bitmap, or DIB. The items appear in the order listed. 

Type 

LONG 
LONG 
Variable 
LONG 

LONG 

LONG 
Variable 

Description 

OLE version number. 
Format identifier. This value is 5. 
Class string. 
Clipboard format value. If this value exists, the next item in 
storage is the size of the presentation data. 
Clipboard format name. This value exists only if the 
clipboard format value is NULL. 
Size of presentation data, in bytes. 
Presentation data. 

The following list gives the storage format for embedded objects. 
The items appear in the order listed. 

Type 

LONG 
LONG 
Variable 
Variable 
Variable 
LONG 
Variable 
Variable 

Description 

OLE version number. 
Format identifier. This value is 2. 
Class string. 
Topic string. 
Item string. 
Size of Native data, in bytes. 
Native data. 
Presentation object (standard, generic, or NULL). 

Windows API Guide 



The following list gives the storage format for linked objects. The 
items appear in the order listed. 

Type 

LONG 
LONG 
Variable 
Variable 
Variable 
Variable 
short 

short 

LONG 
Variable 

Description 

OLE version number. 
Format identifier. This value is 1. 
Class string. 
Topic string. 
Item string. 
Network name string. 
Network type 
Network driver version number. 
Link update options. 
Presentation object (standard, generic, or NULL). 

The following list gives the storage format for static objects. The 
only difference between the format for static objects and the 
format for standard presentation objects is the value of the format 
identifier. The items appear in the order listed. 

Type Description 

OLE version number. 
Format identifier. This value is 3. 

LONG 
LONG 
Variable Class string. For static objects, this string is METAFILEPICT, 

BITMAP, or DIB. 
LONG 
LONG 
LONG 
Variable 

Client applications 

Width of object, in MM_HIMETRIC units. 
Height of object, in MM_HIMETRIC units. 
Size of presentation data, in bytes. 
Presentation data. 

A client application uses a server application to activate and 
render an object contained by a compound document. A client 
application provides storage for embedded objects, such 
contextual information as the target printer and page position, 
and a means for the user to activate the object and the server 
application associated with that object. Client applications also 
provide ways of putting embedded and linked objects into a 
document and taking them out again. 

Chapter 3, Object linking and embedding libraries 95 



96 

Starting a client 

Client applications must provide permanent storage for objects in 
the compound document's file. When an item being saved is an 
embedded object, the client library stores the object's Native data, 
the presentation data for the object (for example, a metafile), and 
the OwnerLink information. When the item being saved is a link 
to another document, the client library stores the presentation 
data and the ObjectLink format. 

Client applications accommodate asynchronous operations by 
defining a callback function to which the library sends 
notifications about current operations. As long as the client 
continues to dispatch messages, it can react to the notifications 
being sent to the callback function and to input from the user. For 
more information about asynchronous operations, see 
"Asynchronous operations." 

application When a client application starts, it should follow these steps: 

1. Register the clipboard formats that it requires. 

2. Allocate and initialize as many OLECLIENT structures as 
required. 

3. Allocate and initialize an OLESTREAM structure. 

A client application can register the clipboard formats by calling 
the RegisterClipboardFormat function for each format, specifying 
such formats as Native, OwnerLink, ObjectLink, and any other 
formats it requires. 

A client application uses two structures to receive information 
from the client library: OLECLIENT and OLESTREAM. 

The OLECLIENT structure points to an OLECLlENTVTBL 
structure, which in turn points to a callback function supplied by 
the client application. The OLE libraries use this callback function 
to notify the client of any changes to an object. The parameters for 
the callback function are a pointer to the client structure, a pointer 
to the relevant object, and a value giving the reason for the 
notification. Typically, an application creates one OLECLIENT 
structure for each OLEOBJECT structure. Having a separate 
OLECLIENT structure for each object allows an application to take 
object-specific action in response to the OLE_QUERY _PAINT 
callback notification. 

Windows API Guide 



Opening a 
compound 
document 

The OLECLIENT structure can also point to data that describes 
the state of an object. This data, when present, is supplied and 
used only by the client application. The client application 
allocates a separate OLECLIENT structure for each object and 
stores state information about that object in the structure. Because 
one argument to the callback function is a pointer to the 
OLECLIENT structure, this is an efficient method of retrieving the 
object's state information when the callback function is called. 

The OLESTREAM structure points to an OLESTREAMVTBL 
structure, which is a table of pointers to client-supplied functions 
for stream input and output. The client libraries use these 
functions when loading and saving objects. A client can 
customize functions for particular situations, and a client can 
make such changes as varying the permanent storage for an 
object; for example, a client could store an object in a database, 
instead of in a file with the rest of the document. 

The client application should create a pointer to the callback 
function in the OLECLlENTVTBL structure and pointers to the 
functions in the OLESTREAMVTBL structure by using the 
MakeProclnstance function. Callback functions should be 
exported in the module-definition file. 

To open a compound document, a client application should take 
the following steps: 

1. Register the document with the client library. 

2. Load the document data from a file. 

3. For each object in the document, call the 
OleLoadFromStream function. 

4. List any objects with manual links so that the user can update 
them. Automatically update any automatic links. 

The OleRegisterClientDoc function registers a document with the 
client library and returns a handle that is used in object-creation 
functions and document-management functions. (This 
registration does not involve the registration database.) 

Chapter 3, Object linking and embedding libraries 97 



98 

Document 
management 

A client application should call the OleLoadFromStream function 
for each object in the document that will be shown on the screen 
or otherwise activated. (It is often not necessary to load every 
object in a document immediately when the document is 
opened.) Parameters for this function include a pointer to the 
OLECLIENT structure, which is used to locate the client's callback 
function (and which is sometimes used by the client to store 
private state information for the object), and a pointer to the 
OLESTREAM structure. The library calls the Get function in the 
OLESTREAMVTBL structure to load the object. 

A client application should notify the library when it opens, 
closes, saves, or renames a document, or causes a document to 
revert to a previously saved state. A client application can use the 
following functions to accomplish these tasks: 

Function 

OleRegisterClientDoc 

OleRenameClientDoc 

OleRevertClientDoc 

OleRevokeClientDoc 

OleSavedClientDoc 

Description 

Registers an opened document with the 
library. 
Informs the library that a document has been 
renamed. 
Informs the library that a document has 
reverted to a previously saved state. 
Informs the library that a document should 
be closed or no longer exists. 
Informs the library that a document has been 
saved. 

A client application should also maintain a persistent name for 
each object. This name should be unique within the scope of the 
client document and should be stored with the document. This 
name is specified when the object is created and should persist 
when the document is saved and reopened. When a client uses 
the OleRename function to change the name of an object, the new 
name must also be unique and must be stored with the document. 

Windows API Guide 



Saving a 
document A client application should follow these steps to save a document: 

Closing a 
document 

Asynchronous 
operations 

1. Save the data for the document in the document's file. 

2. For each object in the document, call the OleSaveToStream 
function. 

3. When the library confirms that all objects have been saved, 
call the OleSavedClientDoc function. 

A client application can call the OleQuerySize function to 
determine the size of the buffer required to store an object before 
calling OleSaveToStream. 

A client application should follow these steps to close a 
document: 

1. For each object in the document, call the Ole Release function. 

2. Use either the OleRevertClientDoc or the OleSavedClientDoc 
function to register the current state of the document with the 
library. 

3. When the library confirms that all objects have been closed, 
call the OleRevokeClientDoc function. 

When a client application calls a function that invokes a server 
application, actions taken by the client and server can be 
asynchronous. For example, the actions of updating a document 
and closing a server are asynchronous. Whenever an 
asynchronous operation begins, the client library returns 
OLE_WAIT_FOR_RELEASE. When a client application receives 
this notification, it must wait for the OLE_RELEASE notification 
before it quits. If the client cannot take further action until the 
asynchronous operation finishes, it should enter a 
message-dispatch loop and wait for OLE_RELEASE. Otherwise, it 
should allow the main message loop to continue dispatching 
messages so that processing can continue. 

An application can run only one asynchronous operation at a 
time for an object; each asynchronous operation must end with 

Chapter 3, Object linking and embedding libraries 99 



100 

the OLE_RELEASE notification before the next one begins. The 
client's callback function must receive OLE_RELEASE for all 
pending asynchronous operations before calling the 
OleRevokeClientDoc function. 

Some of the object-creation functions return 
OLE_WAIT_FOR_RELEASE. The client application can continue 
to work with the document while waiting for OLE_RELEASE, but 
some functions (for example, OleActivate) cannot be called until 
the asynchronous operation has been completed. 

If an application calls a function for an object before receiving 
OLE_RELEASE for that object, the function may return 
OLE_BUSY. The server also returns OLE_BUSY when processing 
a new request would interfere with the processing of a current 
request from a client application or user. When a function returns 
OLE_BUSY, the client application can display a message 
reporting the busy condition at this point or it can enter a loop to 
wait for the function to return OLE_OK. (The 
OLE_QUERY_RETRY notification is also sent to the client's 
callback function when the server is busy; when the callback 
function returns FALSE, the transaction with the server is ended.) 
Note that if the server uses the OleBlockServer function to 
postpone OLE activities, the OLE_QUERY_RETRY notification is 
not sent to the client. 

The following example shows a message-dispatch loop that 
allows a client application to transact messages while waiting for 
the OLE_RELEASE notification: 

while ((olestat = OleQueryReleaseStatus(lpObject)) == OLE_BUSY) 
if (GetMessage(&msg, NULL, NULL, NULL)) { 

TranslateMessage(&msg)i 
DispatchMessage(&msg)i 

if (olestat == OLE_ERROR_OBJECT) 

/* The lpObject parameter is invalid. */ 

else { /* if olestat == OLE_OK */ 

/* The object is released, or the server has terminated. */ 

Windows API Guide 



A server application could end unexpectedly while a client is 
waiting for OLE_RELEASE. In this case, the client library 
recovers properly only if the client uses the 
OleQueryReleaseStatus function, as shown in the preceding 
example. 

The following table shows which OLE functions can return the 
OLE_ WAIT_FaR_RELEASE or OLE_BUSY value to a client 
application: 

Function OLE_BUSY OLE_WAIT_FOR_RELEASE 

OleActivate Yes Yes 
OleClose Yes Yes 
OleCopyFromLink Yes Yes 
OleCreate No Yes 
OleCreateFromClip No Yes 
OleCreateFromFile No Yes 
OleCreateFromTemplate No Yes 
OleCreateLinkFromClip No Yes 
OleCreateLinkFromFile No Yes 
OleDelete Yes Yes 
OleExecute Yes Yes 
OleLoadFromStream No Yes 
OleObjectConvert Yes No 
OleReconnect Yes Yes 
OleRelease Yes Yes 
OleRequestData Yes Yes 
OleSetBounds Yes Yes 
OleSetColorScheme Yes Yes 
OleSetData Yes Yes 
OleSetHostNames Yes Yes 
OleSetLinkUpdateOptions Yes Yes 
OleSetTargetDevice Yes Yes 
OleUnlockServer No Yes 
OleUpdate Yes Yes 

Chapter 3, Object linking and embedding libraries 101 



102 

Displaying and 
printing objects 

Opening and 
closing objects 

When an object has been loaded and, if necessary, brought up to 
date, the object can be displayed or printed with the container 
document. To display an object, the client application should set 
up the device context and bounding rectangle (ensuring that they 
use the same mapping mode) and then call the OleDraw function. 
The client application can use the OleQueryBounds function to 
retrieve the size of the bounding rectangle on the target device. 

An object handler can be used to draw an object. If an object 
handler exists for an object, the call to the OleDraw function is 
received and processed by the object handler. If there is no object 
handler, the client library uses the object's presentation data to 
display or print the object. 

If the presentation data for an object is a metafile, the library 
periodically sends an OLE_QUERY_PAINT notification to the 
client's callback function while drawing the object. If the callback 
function returns FALSE, the OleDraw function returns 
immediately and the drawing is ended. A client could also use 
the OLE_QUERY_PAINT notification to take some actions within 
the callback function and then return TRUE to indicate that 
drawing should continue. Any actions the client takes at this time 
should not interfere with the drawing operation; for example, the 
client should not scroll the window. 

If the target device for an object changes (for example, when the 
user changes printers), the client application should call the 
OleSetTargetDevice function. The client should also call 
OleSetTargetDevice whenever an object is created or loaded. 

If the size of the presentation rectangle for the object changes (for 
example, through action by the user) the client application should 
call the OleSetBounds function. After calling OleSetBounds, the 
client should call the OleUpdate function to update the object and 
then OleDraw to redisplay it. 

When the user requests the client application to activate an object, 
the client should check whether the object is busy by calling the 
OleQueryReleaseStatus function. If the object is busy, the client 
should either refuse the request to open the object or enter a 

Windows API Guide 



Deleting objects 

Client Cut and 
Copy commands 

message-dispatch loop, waiting for the OLE_RELEASE 
notifica tion. 

If the object to be activated is not busy, the client should call the 
OleActivate function. The library notifies the client when the 
server is open or when an error occurs. 

The OleActivate function allows the client application to specify 
whether to display the activated object in a window of the server 
application. A client might hide the server window if an object is 
updated automatically. 

A client application can use the OleQueryOpen function to 
determine whether a specified object is open. The OleClose 
function allows the client to close an open object. Closing an 
object terminates the connection with the server. To reestablish a 
terminated connection between a linked object and an open 
server, the client can use the Ole Reconnect function. To close an 
open object and release it from memory, a client application can 
call the Ole Release function. 

The first time a client application activates a particular embedded 
object, the client should call the OleSetHostNames function, 
specifying the string the server window should display in its title 
bar. This string should be the name of the client document 
containing the object. The client does not need to call 
OleSetHostNames every time an embedded object is activated, 
because the library maintains a record of the specified names. 

To permanently delete an object from a document, the client 
should call the Ole Delete function. OleDelete closes the specified 
object, if necessary, before deleting it. 

A client application can copy an object to the clipboard by simply 
opening the clipboard, calling the OleCopyToClipboard function, 
and closing the clipboard again. If the client supports delayed 
rendering, however, it should follow these steps to cut or copy an 
object to the clipboard: 

1. Open and empty the clipboard. 

Chapter 3, Object linking and embedding libraries 103 



104 

2. Put the preferred data formats on the clipboard. 

3. Call the OleEnumFormats function to retrieve the formats for 
the object. 

4. Call the SetClipboardData function to put the formats on the 
clipboard, specifying NULL for the handle of the data. 

If the call to the OleEnumFormats function retrieves the 
ObjectLink format, the client should call SetClipboardData 
with OwnerLink instead of ObjectLink format. (For more 
information, see the following description of the 
OleCopyToClipboard function.) 

5. Put any additional presentation data formats on the clipboard. 

6. Close the clipboard. 

To support the Cut command on the Edit menu, an application 
can call OleCopyToClipboard and then delete the object by using 
the OleDelete function. (The client can put only one of the 
selected objects on the clipboard, even when the user has selected 
and cut or copied multiple objects. In this case, the client typically 
puts the first object in the selection onto the clipboard.) 

The OleCopyToClipboard function always copies OwnerLink 
format, not ObjectLink format, to the clipboard. For embedded 
objects, Native data always precedes the OwnerLink format. If a 
linked object uses Native data, OwnerLink format always 
precedes the Native data. If an application uses the OleGetData 
function to retrieve data from a linked object that has been copied 
by using OleCopyToClipboard, it should specify ObjectLink 
format, not OwnerLink format, even if OwnerLink format was 
put on the clipboard. 

When an application that can act as both a client and server 
copies a selection to the clipboard that contains one or more 
objects, it should first allocate enough memory for the selection. 
To discover how much memory is required for each object, the 
application can call the OleQuerySize function. When memory 
has been allocated, the application should call the 
OleRegisterClientDoc function, specifying Clipboard for the 
document name. (In this case, the handle returned by the call to 
OleRegisterClientDoc identifies a document that is used only 
during the copy operation.) To save each object to memory, the 
application calls the OleClone function, calls the 
OleSaveToStream function for the cloned object, and then calls 

Windows API Guide 



Creating objects 

Object-creation 
functions 

the Ole Release function to free the memory for the cloned object. 
When the selection has been saved to the stream, the application 
can call the SetClipboardData function. If SetClipboardData is 
successful, the application should call the OleSavedClientDoc 
function. The application then calls the OleRevokeClientDoc 
function, specifying the handle retrieved by the call to 
OleRegisterClientDoc. For more information about the Cut and 
Copy commands, see "Server Cut and Copy commands." 

A client application can put linked and embedded objects in a 
document by pasting them from the clipboard, creating them 
from a file, copying them from other objects, or by starting a 
server application to create them directly. 

Each of the following functions creates an embedded or linked 
object in a specified document: 

Function 

OleClone 
OleCopyFromLink 

OleCreate 

OleCreateFromClip 

OleCreateFromFile 

OleCreateFromTemplate 

OleCreatelnvisible 

OleCreateLinkFromClip 

OleCreateLinkFromFile 

OleObjectConvert 

Description 

Creates an exact copy of an object. 
Creates an embedded object that is a copy 
of a linked object. 
Creates an embedded object of a specified 
class. 
Creates an object from the clipboard. This 
function typically creates an embedded 
object. 
Creates an object by using the contents of a 
file. This function typically creates an 
embedded object. 
Creates an embedded object by using 
another object as a template. 
Creates an object without displaying the 
server application to the user. 
Creates an object by using information on 
the clipboard. This function typically 
creates a linked object. 
Creates an object by using the contents of a 
file. This function typically creates a linked 
object. 
Creates an object that supports a specified 
protocol by converting an existing object. 

Chapter 3, Object linking and embedding libraries 105 



106 

Each of these functions requires a parameter that points to an 
OLEOBJECT structure when the function returns. Server 
applications often create an OLEOBJECT structure whenever an 
object is created; OLEOBJECT points to functions that describe 
how the server interacts with the object. Before the client library 
gives the client application a pointer to this structure, the library 
includes with the structure some internal information 
corresponding to the OwnerLink or ObjectLink data. This internal 
information allows the client library to identify the correct server 
when an OLE function such as OleActivate passes it a pointer to 
an OLEOBJECT structure. For more information about the 
OLEOBJECT structure, see "Starting a server application." 

Each new object must have a name that is unique to the client 
document. Although meaningful object names can be helpful, 
some applications assign unique object names simply by 
incrementing a counter for each new object. For more information 
about object names, see "Document management." 

If a client application implements the Insert Object command, it 
should use the registration database to find out what OLE servers 
are available and then list those servers for the user. When the 
user selects one of the servers and chooses the OK button, the 
client can use the OleCreate function to create an object at the 
current position. 

The OleCopyFromLink, OleCreate, and OleCreateFromTemplate 
functions always create an embedded object. The other 
object-creation functions can create either an embedded object or 
a linked object, depending on the order and type of available 
data. 

If a client application's callback function receives the 
OLE_RELEASE notification after the client calls the OleCreate or 
OleCreateFromFile function, the client should respond by calling 
the OleQueryReleaseError function. If OleQueryReleaseError 
shows that there was an error when the object was created, the 
client application should delete the object. 

Whenever an object-creation function returns 
OLE_ WAIT_FaR_RELEASE, the calling application should either 
wait for the OLE_RELEASE notification or notify the user that the 
object cannot be created. For more information, see 
"Asynchronous operations." 

Windows API Guide 



If a client application accepts files dropped from File Manager, it 
should respond to the WM_DROPFILES message by calling the 
OleCreateFromFile function and specifying Packager for the 
IpszClass parameter. 

Paste and Paste Link A client application should follow these steps to create an 
commands embedded or linked object by pasting from the clipboard: 

1. Call the OleQueryCreateFromClip function to determine 
whether to enable the Paste command. If this function fails 
when StdFileEditing is specified for the IpszProtocol 
parameter, call it again, specifying Static. 

2. Call the OleQueryLinkFromClip function to determine 
whether to enable the Paste Link command. 

Il If the user chooses the Paste command, open the clipboard 
and call the OleCreateFromClip function. 

Il If the user chooses Paste Link, open the clipboard and call 
the OleCreateLinkFromClip function. 

3. Close the clipboard. 

4. Call the OleQueryType function to determine the kind of 
object created by the creation function. (Depending on the 
order of clipboard data, OleCreateFromClip can sometimes 
create a linked object and OleCreateLinkFromClip can 
sometimes create an embedded object.) 

The client application should put the pasted data or object into 
the document at the current position. The client should select the 
object so that the user can work with it immediately. If both the 
OleQueryCreateFromClip and OleQueryLinkFromClip functions 
fail but there is data on the clipboard that the client can interpret, 
the client should enable the Paste command. 

If the information on the clipboard is incomplete-for example, if 
Native data is not accompanied by the OwnerLink format-the 
Paste command should insert a static object into the document. (A 
static object consists of the presentation data for an object; it 
cannot be edited by using standard OLE techniques. Attempts to 
open static objects fail and generate no notifications.) 

If the client application implements the Paste Special command, it 
should use the EnumClipboardFormats function to produce a list 
of data formats on the clipboard. The client should also check the 

Chapter 3, Object linking and embedding libraries 107 



Undo command 

108 

registration database to find the full name of the server 
application. The Paste Link button in the Paste Special dialog box 
works in exactly the same way as the Paste Link command on the 
Edit menu. 

If the DOE Link format is available on the clipboard instead of 
ObjectLink format, the client application should perform the 
same link operation that it supported prior to the implementation 
of OLE. 

A client application can use the OleClone function to support the 
Undo command. A cloned object is identical to the original except 
for connections to the server application; the cloned object is not 
automatically connected to the server. When the server is closed 
and the object is updated, the saved copy of the object gives the 
user the opportunity to undo all of the changes made in the 
server. Support for the Undo command is provided by the client 
application, because the server cannot maintain a record of the 
prior states of objects. 

The Undo command restores an object to its condition prior to the 
last update from the server. To support this behavior, the client 
application must clone the object when it is first activated and 
then clone the updated object when an update occurs; the client 
must maintain two clones of the object. The clone of the original 
object must be maintained so that an updated object can be 
restored if the user chooses the Undo command. The clone of the 
updated object must be maintained to support the Undo 
command if the updated object is updated again. Because the 
data changes when the update occurs, the clone for supporting 
the Undo command must be made before any updates occur. 

Because the client application cannot distinguish between 
different types of object activation, the client must clone an object 
for verbs that do not edit the object, even though no updates can 
occur in those cases. 

Windows API Guide 



Class Name 
Object command 

Links command 

A client application can implement the Class Name Object 
command by using the OleActivate function. OleActivate 
includes a parameter that allows the client to specify the verb 
chosen by the user. 

When a user chooses the Links command, a dialog box appears 
listing every linked object in the document. The selected links are 
highlighted in the dialog box. The dialog box makes it possible 
for the user to invoke the verbs for an object, select whether link 
updating should be automatic or manual, update a link 
immediately, cancel a link, and repair broken links. 

The Links dialog box includes buttons that allow the user to 
activate the primary and secondary verbs for an object. A client 
application can implement these buttons by using the OleActivate 
function. 

A client application can use the OleGetLinkUpdateOptions and 
OleSetLinkUpdateOptions functions to support the link-update 
radio buttons in the Links dialog box. The following are the three 
possible update options: 

Option Description 

oleupdate_always Update the linked object whenever possible. This 
option supports the Automatic link-update radio 
button in the Links dialog box. 

oleupdate_onsave Update the linked object when the source 
document is saved by the server. 

oleupdate_oncall Update the linked object only on request from the 
client application. This option supports the 
Manual link-update radio button in the Links 
dialog box. 

These update options control when updates to the presentation of 
an object occur. The contents of the source document are used to 
update the presentation whenever the link is activated. 

To support the Update Now button in the Links dialog box, an 
application can call the OleUpdate function. When a user chooses 
Update Now, the client application should update the links the 
user selected. 

Chapter 3, Object linking and embedding libraries 109 



110 

Closing a client 
application 

A user's choosing the Cancel Link button in the Links dialog box 
changes an object into a picture that an application cannot edit by 
using standard OLE techniques. An application can implement 
the Cancel Link button by using the OleObjectConvert function. 

A client application should activate the Change Link button in the 
Links dialog box only if all the selected links are to the same 
source document. When the client has the correct information, it 
can repair the link by using the OleGetData and OleSetData 
functions. To retrieve the link information for an object, a client 
can call the OleGetData function, specifying the ObjectLink 
format. (The call to OleGetData fails if ObjectLink is specified and 
the object is not a link.) A client can retrieve class information by 
using OleGetData and specifying either the OwnerLink format 
(for embedded objects) or the ObjectLink format (for linked 
objects). The client can make it possible for the user to edit the 
link information and store it in the object by using the OleSetData 
function, specifying the ObjectLink format. 

A client application should use the Ole Release function to 
remove all objects from memory when it shuts down. If the 
library returns the value OLE_WAIT _FOR_RELEASE instead of 
OLE_OK, the client should not quit. The client can perform many 
cleanup tasks while waiting for the OLE_RELEASE 
notification-for example, it can close files, free memory, and 
hide windows. 

The OLE_RELEASE notification to the client's callback function 
indicates that an operation has finished in a server application, 
but it does not identify the operation or indicate whether the 
operation was successful. A client application can call the 
OleQueryReleaseStatus function to determine whether an 
operation has been completed for a specified object. The 
OleQueryReleaseMethod function indicates the nature of the 
operation that has finished for a specified object. To discover the 
error value for the operation, the client can call the 
OleQueryReleaseError function. 

If a client owns the clipboard when it quits, it should make sure 
that the data on the clipboard is complete and in the correct order. 

Windows API Guide 



Server applications 

An OLE server supplies functions that the server library calls 
when a user works with an object. The server library, 
OLESVR.DLL, uses DOE commands to communicate with the 
client library. When the client application calls one of the 
functions in the OLE API, the client library informs the server 
library and the server library routes the request to the 
appropriate function in the server-supplied list of function 
pointers. 

In addition to the specialized functions that the server creates and 
which are called by the server library, there are ten OLE functions 
that allow a server to control the library's ability to gain access to 
the server and the documents and objects it controls: 

Function 

OleBlockServer 

OleRegisterServer 

OleRegisterServerDoc 

OleRenameServerDoc 

OleRevertServerDoc 

OleRevokeObject 

OleRevokeServer 

OleRevokeServerDoc 

OleSavedServerDoc 

OleUnblockServer 

Description 

Queues requests to the server until the server 
calls the OleUnblockServer function. 
Registers the specified server with the library. 
Information registered includes the class 
name and instance and whether the server 
supports single or multiple instances. 
Registers a document with the server library. 
Renames the specified document. 
Restores a document to a previously saved 
state, without closing the document. 
Revokes access to the specified object. 
Revokes access to the specified server, closing 
any documents and ending communication 
with client applications. 
Revokes access to the specified document. 
Informs the library that a document has been 
saved. Calling this function is equivalent to 
sending the OLE_SAVED notification. 
Processes a request from a queue created 
when the server application called the 
OleBlockServer function. 

The OleRevokeServer and OleRevokeServerDoc functions can 
return OLE_ WAIT_FaR_RELEASE. When a server application 
receives this error value, it should take the same action as a client 
application, dispatching messages until the server library calls the 
corresponding Release function. 

Chapter 3, Object linking and embedding libraries 111 



112 

Starting a server 
application When a server application starts, it should follow these steps: 

1. Register window classes and window procedures for the 
main window, documents, and objects. 

2. Initialize the function tables for the OLESERVERVTBL, 
OLESERVERDOCVTBL, and OLEOBJECTVTBL structures. 

3. Register the clipboard formats. 

4. Allocate memory for the OLESERVER structure. 

5. Register the server with the library by calling the 
OleRegisterServer function. 

6. Check for the IEmbedding and IEmbedding filename options 
on the command line and act according to the following 
guidelines. (Applications should also check for -Embedding 
whenever they check for these options.) 

• If neither IEmbedding nor IEmbedding filename is present, call 
the OleRegisterServerDoc function, specifying an untitled 
document. 

• If the IEmbedding option is present, do not register a 
document or display a window. (In this case, the server takes 
actions only in response to calls from the server library.) 

• If the IEmbedding filename option is present, do not display a 
window. Process the filename string and call the 
OleRegisterServerDoc function. 

The OLESERVERVTBL, OLESERVERDOCVTBL, and 
OLEOBJECTVTBL structures are tables of function pointers. The 
server library uses these structures to route requests from the 
client application to the server. The server application should 
create the function pointers in these structures by using the 
MakeProclnstance function. The functions should also be 
exported in the application's module-definition file. 

The OLESERVER structure contains a pointer to an 
OLESERVERVTBL structure. The OLESERVERVTBL structure 
contains pointers to functions that control such fundamental 
server tasks as opening files, creating objects, and terminating 
after an editing session. Several of the functions pointed to by the 
OLESERVERVTBL structure cause the server to allocate and 
initialize an OLESERVERDOC structure. 

Windows API Guide 



The OLESERVERDOC structure contains a pointer to an 
OLESERVERDOCVTBL structure. The OLESERVERDOCVTBL 
structure contains pointers to functions that control such tasks as 
saving or closing documents or setting document dimensions. 
The OLESERVERDOCVTBL structure also contains a function 
that causes the server to allocate and initialize an OLEOBJECT 
structure. 

The OLEOBJECT structure contains a pointer to an 
OLEOBJECTVTBL structure. The OLEOBJECTVTBL structure 
contains pointers to functions that operate on objects. After the 
server application creates an OLEOBJECT structure, the server 
library gives information about the structure to the client library. 
The client library then creates a parallel OLEOBJECT structure 
(including internal information identifying the server application, 
the document, and the item for the object) and passes a pointer to 
that structure to the client application. 

This hierarchy of structures-OLESERVER, OLESERVERDOC, 
and OLEOBJECT -makes it possible for a server to open as many 
documents as the library requests and for each document to 
contain as many objects as necessary. 

A server application can register the clipboard formats by calling 
the RegisterClipboardFormat function for each format, specifying 
Native, OwnerLink, ObjectLink, and any other formats it 
requires. 

When the server application starts, it creates an OLESERVER 
structure and then registers it with the library by calling the 
OleRegisterServer function. When this function returns, one of 
its parameters points to a server handle. The library uses this 
handle of refer to the server, and the server uses it in calls to the 
server-specific OLE functions. 

If an OLE server application is also a DDE server, the class name 
specified in the call to the OleRegisterServer function cannot be 
the same as the name of the executable file for the application. 

When a client working with a compound document opens a 
linked or embedded object for editing, the client library starts the 
server using the IEmbedding command-line option. The server 
uses this option to determine whether the object has been opened 
directly by a user or as part of an editing session for linked and 
embedded objects. (If the object is a linked object, the IEmbedding 

Chapter 3, Object linking and embedding libraries 113 



114 

Opening a 
document or 

object 

option is followed by a filename.) When a server is started for an 
embedded object with the IEmbedding option, the server should 
not create a document or show a window. Instead, it should call 
the OleRegisterServer function and then enter a 
message-dispatch loop. (If the server is started with the 
IEmbedding filename option, it should also call the 
OleRegisterServerDoc function.) The server then takes actions in 
response to calls from the library. The server should not make 
itself visible until the library calls the Show or DoVerb function in 
the OLEOBJECTVTBL structure. (Server applications should 
check for both -Embedding and IEmbedding.) 

By calling the OleBlockServer function, a server application can 
cause requests from the client library to be saved in a queue. 
When the server is ready for the server library to process the 
requests, it can call the OleUnblockServer function. It is best to 
use the OleUnblockServer function prior to the GetMessage 
function in a message loop, so that all blocked requests are 
unblocked before getting the next message. (Often a server 
returns OLE_BUSY instead of calling OleBlockServer. Returning 
OLE_BUSY has two advantages: It allows the client to decide 
whether to retry the message or discontinue the operation, and it 
allows the server to choose which requests to process.) 

When an error occurs in a server-supplied function, the server 
should return the OLESTATUS error value that best describes the 
error. The OLE libraries use these error values to help determine 
the appropriate behavior in error situations. However, the client 
application does not necessarily receive the error values the 
server returns; the OLE libraries may change error values before 
passing them to the client application. 

Whenever the server library calls the Open, Create, 
CreateFromTemplate, or Edit function in the OLESERVERVTBL 
structure, the server creates an OLESERVERDOC structure. If the 
document is opened by a call from the server library, the server 
application returns the OLESERVERDOC structure to the library. 
If the document is opened directly by a user, however, the server 
should call the OleRegisterServerDoc function to register the 
document with the library. The library then uses the GetObject 
function in the OLESERVERDOCVTBL structure to request the 

Windows API Guide 



Server Cut and 
Copy commands 

server to create an OLEOBJECT structure for each object 
requested by the client application. 

A new instance of the server application is typically started when 
the client activates a linked or embedded object. This new 
instance is unnecessary if the object is already open in an instance 
of the server or if the server is a single-instance (MOl) server that 
is already open. 

Whether the server library starts a new instance of a server to edit 
an embedded or linked object depends upon the value specified 
when the server calls the OleRegisterServer function. 

A server application should follow these steps to cut or copy onto 
the clipboard data that a client can then use to create an 
embedded or linked object: 

1. Open and empty the clipboard. 

2. Put the data formats that describe the selection on the 
clipboard, using the SetClipboardData function. 

3. Close the clipboard. 

If the server cuts data onto the clipboard, rather than copying it, 
the server typically does not offer ObjectLink or Link formats, 
because the source for the data has been removed from the 
document. 

The server should put data on the clipboard in the order given in 
"Clipboard conventions." 

Typically, the server puts server-specific formats, Native format, 
OwnerLink format, and presentation formats on the clipboard. If 
it can support links, the server also puts ObjectLink format and, 
when appropriate, Link format on the clipboard. The server must 
provide a presentation format (CF _METAFILE, CF _BITMAP, or 
CF _OIB) if the server does not have an object handler. Native 
data can be used as a presentation format only if the server has an 
object handler that can use the Native data. 

If a user copies onto the clipboard a selection that includes an 
embedded object or a link, the data formats the server should 
copy depend upon whether the container document modifies the 

Chapter 3, Object linking and embedding libraries 115 



Update, Save As, 
and New 

commands 

116 

object or link. If the document does not modify the object or link, 
the best formats are the Native and OwnerLink formats from the 
original source of the object. If the document modifies the object 
or link-for example, by recoloring it-the best formats are the 
Native and OwnerLink formats from the container document. 

If a server uses a metafile as the presentation format for an object, 
the mapping mode for that metafile must be 
MM_ANISOTROPIC. When a server application uses fonts in 
these metafiles, it can improve performance by using TrueType 
fonts. (Metafiles scale better when they use TrueType fonts.) To 
use TrueType fonts exclusively, the server should set bit 2 (04h) 
of the IpPitchAndFamily member of the LOGFONT structure. 

The OLE libraries express the size of every object in 
MM_HIMETRIC units. Neither the width nor height of an object 
should exceed 32,767 MM_HIMETRIC units. 

When a server is started as part of editing an object from within a 
compound document, the server application should change the 
Save command on the File menu to Update. When the user 
chooses the Update command, the server should call the 
OleSavedServerDoc function. 

When the user chooses the Save As, New, or Open command in a 
single-document server, the application should display a message 
asking the user whether to update the object in the compound 
document before performing the action. When the user chooses 
the Save As command, the server should call the OleRename­
ServerDoc function. If the user responds to the message by 
choosing to save changes in the object before renaming the 
document, the server should call the OleSavedServerDoc 
function before calling OleRenameServerDoc. For embedded 
objects, choosing the Save As command causes the connection 
with the client to be broken, because this command reassociates a 
document in memory with the specified new file. For linked 
objects, calling OleRenameServerDoc when the user chooses 
Save As makes it possible for the client to associate the link with 
the new file. 

Most server applications maintain a "dirty" flag that records 
whether changes have been made to each open document in an 
instance. The following table shows the rules that apply to this 

Windows API Guide 



Closing a server 
application 

flag when the server edits an embedded object. By following 
these rules, a server can ensure that this flag is TRUE when the 
document being edited in the server matches the embedded 
object in the client and that, otherwise, this flag is FALSE. 

Flag 

TRUE 

TRUE 

TRUE 
FALSE 
FALSE 

Condition 

Library calls the Create function in the OLESERVERVTBL 
structure. 
Library calls the CreateFromTemplate function in 
OLESERVERVTBL. 

Document is changed in server. 
Library calls the Edit function in OLESERVERVTBL. 

Library calls the GetData function in OLEOBJECTVTBL with 
the Native data format. (The flag should not change for any 
other formats.) 

A server following these rules displays the message asking 
whether to update the object whenever it destroys a document 
that was editing an embedded object and the "dirty" flag is TRUE. 

In an MOl server application, the New and Open commands on 
the File menu simply open a new window, and the connection 
with the client application remains unchanged. The user can 
continue to work with the server application after choosing one of 
these commands, but when the user exits the server application, 
the focus does not necessarily return to the client application. 

Typically, a server can call the OleSavedServerDoc function 
whenever an object needs to be updated in the client document, 
including when the server closes the document. When the server 
closes the document and the object should be updated, the server 
sends the OLE_CLOSED notification. Client applications receive 
the OLE_CLOSED notification for embedded objects but not for 
linked objects, because the server library intercepts the 
notification for linked objects. 

The server library calls the Exit function in the OLESERVERVTBL 
structure when the server must quit. The server library calls the 
Release function to inform the server that it is safe to quit; the 
server does not necessarily stop when the library calls Release. 

The server must exit when it is invisible and the library calls 
Release. (The only exception is when an application supports 

Chapter 3, Object linking and embedding libraries 117 



118 

multiple servers; in this case, an invisible server is sometimes not 
revocable when the library calls Release.) If the server has no 
open documents and it was started with the IEmbedding option 
(indicating that it was started by a client application), the server 
should exit when the library calls the Release function. If the user 
explicitly loads a document into a single-instance (MDl) server, 
however, the server should not exit when the library calls 
Release. 

When the user closes a server that has edited an embedded object 
without updating changes to the client application, the server 
should display a message asking whether to save the changes. If 
the user chooses to save the changes, the server should send the 
OLE_CLOSED notification and call the OleRevokeServerDoc 
function. (Because sending OLE_CLOSED prompts the server 
library to send data to the client library, it is not necessary to send 
OLE_CHANGED or OLE_SAVED. If the user chooses not to save 
the changes, the server should simply call the OleRevoke­
ServerDoc function (without sending OLE_CLOSED). 

A server can use the OleRevokeObject function to revoke a 
client's access to an object-for example, if the user destroys the 
object. Similarly, the OleRevokeServerDoc function revokes a 
client's access to a document. (Because OleRevokeServerDoc 
revokes a client's access to all objects in a document, an 
application that uses OleRevokeServerDoc does not need to call 
the OleRevokeObject function for objects in that document.) To 
terminate all conversations with client applications, the server can 
call the OleRevokeServer function. These functions inform the 
server library that the specified items are no longer available. 

A server application can receive 
OLE_ WAIT_FOR_RELEASE-for example, the 
OleRevokeServerDoc function can return this value. Although a 
server can enter a message-dispatch loop and wait for the library 
to call the server's Release function, servers should never enter 
message-dispatch loops inside any of the server-supplied 
functions that are called by the server library. 

The client application should not instruct the server to close the 
document or exit when the server is editing a linked object, unless 
the server is updating the link without displaying the object to the 
user. Because a linked object exists independently of the client, 
the user controls saving and closing the document by using the 
server application. 

Windows API Guide 



Object handlers 

Implementing 
object handlers 

If a server application owns the clipboard when it closes, it 
should make sure that the data on the clipboard is complete and 
in the correct order. For example, any Native data should be 
accompanied by the OwnerLink format. 

An application developer can use object handlers to introduce 
customized features into implementations of linked and 
embedded objects. When an object handler exists for a class of 
object, the object handler supplants some or all of the 
functionality that is usually provided by the client library and the 
server application. The object handler can take specialized action 
for any of the functions it intercepts. The object handler passes 
functions that it does not take action on to the client library, 
which then implements the default processing for that class. 

An application might use an object handler to render Native data 
as the presentation data for an object, instead of using metafiles or 
bitmaps. Object handlers could also be used to implement special 
behavior when an object is opened. 

A server installing an object handler registers the handler with 
the registration database, using the keyword handler. Whenever 
a client application calls one of the object-creation functions, the 
client library uses the class name specified for the object and the 
handler keyword to search the registration database. If the library 
finds an object handler, the client library loads the handler and 
calls it to create the object. The handler can create an object for 
which all of the creation functions and methods are defined by 
the handler, or it can call default object-creation functions in the 
client library. 

The client library exports the object-creation OLE functions with 
new names; in each case, the prefix "Ole" is changed to "Def" (for 
"default"). Object handlers can import any of these functions and 
use them when creating objects. 

Chapter 3, Object linking and embedding libraries 119 



120 

Object handlers must import the following functions: 

OLE function 

OleCreate 
OleCreateFromClip 
OleCreateFrom File 
OleCreateFromTemplate 
OleCreateLinkFromCllp 
OleCreateLinkFrom File 
OleLoadFromStream 

Name exported by client library 

DefCreate 
DefCreateFromClip 
DefCreateFromFile 
DefCreateFrom Template 
DefCreateLinkFromClip 
DefCreateLinkFromFile 
DefLoadFromStream 

When an object handler defines a function that is to be called by 
the client application, it should use the same name as the 
corresponding OLE function the client calls, with the prefix "Ole" 
replaced by "011". For example, when an object handler uses the 
DefCreate function exported by the client library, the handler 
should use it inside a function named DIiCreate. When the client 
library finds an object handler for a class of object, it calls 
handler-specific object-creation functions by specifying this "011" 
prefix. 

When the handler calls one of the default object-creation 
functions, it receives a handle of an OLEOBJECT structure, which 
in turn points to the OLEOBJECTVTBL structure containing the 
current object-management functions. The object handler should 
copy this OLEOBJECTVTBL structure and customize the 
structure by replacing any function pointers in the structure with 
pointers to functions of its own. (If the object handler saves the 
pointers to the default functions, any of the replacement functions 
can also call the default functions in the table of function 
pointers.) When the object handler has finished customizing the 
structure, it should replace the pointer to the old 
OLEOBJECTVTBL structure with a pointer to the modified 
OLEOBJECTVTBL structure. 

When the client makes a call to a function in the client library, the 
call is dispatched through the object handler's OLEOBJECTVTBL 
structure. If the object handler has replaced the function pointer, 
the call is routed to the function supplied by the handler. 
Otherwise, the call is routed to the client library. 

Each OLECLIENT, OLEOBJECT, OLESERVER, 
OLESERVERDOC, or OLESTREAM structure contains a pointer 
to a structure that contains a table of function pointers. 

Windows API Guide 



(Structures containing tables of function pointers are identified 
with the "VTBL" suffix.) Each of the structures containing a 
pointer to a "VTBL" structure can also contain extra 
instance-specific information. This information is meaningful 
only to the application that supplies it and should not be used by 
other applications; for example, an object handler should not 
attempt to use any instance-specific information in an 
OLECLIENT structure. 

The object handler should use the "Oef" and "011" renaming 
conventions when it defines specialized functions. For example, if 
an object handler modifies the Draw function from an object's 
OLEOBJECTVTBL structure, it should copy that Draw function to 
a function named DefDraw and replace the Draw function with a 
specialized function named DIiDraw. Inside the DIiDraw function, 
the object handler can call DefDraw if the default drawing 
operation is appropriate in a particular case. 

The following example demonstrates this process of copying and 
replacing pointers to functions. Functions with the "011" prefix 
should be exported in the module-definition file. 

/* Declare the DllDraw and DefDraw functions. */ 

OLESTATUSFARPASCALDllDraw(LPOLEOBJECT,HDC, LPRECT,LPREC T,HDC); 
OLESTATUS (FARPASCAL *DefDraw) (LPOLEOBJECT, HDC, LPRECT, LPRECT, HDC) ; 

/ * Copy the Draw function from OLEOBJECTVTBL to DefDraw. * / 

DefDraw = lpobj->lpvtbl->Drawi 

/* Copy DllDraw to OLEOBJECTVTBL. */ 

*lpobj->lpvtbl->Draw = DllDrawi 

OLESTATUSFARPASCALDllDraw(lpObject,hdc,lpBounds,lpWBounds, 
hdcFormat) 

LPOLEOBJECT lpObjecti 
HDC hdci 
LPRECT 
LPRECT 
HDC 

{ 

lpBoundsi 
lpWBoundsi 
hdcFormati 

/* Return DefDraw if Native data is not available. */ 

if ((*lpobj->lpvtbl->GetData) (lpobj, cfNative, &hData) != OLE_OK) 
return (*DefDraw) (lpobj, hdc, lpBounds, lpWBounds, hdcFormat); 

Chapter 3, Object linking and embedding libraries 121 



Creating objects 
in an object 

handler 

DefCreateFromClip and 
DllCreateFromClip 

122 

Most of the object-creation functions in the OLE API work in 
exactly the same way when they are renamed and used by 
object-handler DLLs. Two functions are somewhat different, 
however: OleCreateFromClip and OleLoadFromStream. 

When the client library calls the DIiCreateFromClip function, the 
library includes a parameter that is not specified in the original 
call to the OleCreateFromClip function. This parameter, objtype, 
specifies whether the object being created is an embedded object 
or a link; its value can be either aT_LINK or aT_EMBEDDED. 

The following syntax block shows the objtype parameter when an 
object handler uses the DefCreateFromClip function. The 
DIiCreateFromClip function has exactly the same syntax as 
DefCreateFromCIi p. 

OLE STATUS DefCreateFromClip(lpszProtocol, lpclient, lhclientdoc, 
lpszObjname, lplpobject, renderopt, cfFormat, objtype); 

LPSTR lpszProtocol; 
LPOLECLIENT lpclient; 
LHCLIENTDOC lhclientdoc; 
LPSTR lpszObjname; 
LPOLEOBJECT FAR * lplpobjecti 
OLEOPT_RENDER renderopt; 
OLECLIPFORMAT cfFormat; 
LONG objtype; 

/* address of string for protocol name */ 
/* address of client structure */ 
/* long handle of client document */ 
/* string for object name */ 
/* address of pointer to object */ 
/* rendering options 
/* clipboard format 
/* OT_LINKED or OT_EMBEDDED 

*/ 
*/ 
*/ 

If DIiCreateFromClip calls DefCreateFromClip, 
DIiCreateFromClip should pass it the objtype parameter along 
with the other parameters from the version of DefCreateFromClip 
that was exported by the client library. DIiCreateFromClip can 
modify some of these parameters before passing them back to 
DefCreateFromClip. For example, the object handler could 
specify a different value for the renderopt parameter when it calls 
DefCreateFromClip. If the client calls this function with 
olerender_draw for renderopt and the handler performs the 
drawing with Native data, the handler could change 
olerender_draw to olerender_none. If the client calls this function 
with olerender_draw for renderopt and the handler calls the 
GetData function and performs the drawing based on a 
class-specific format, the handler could change olerender_draw to 
olerender_format. If the handler needed a different rendering 
format than the format specified by the client application, the 
object handler could also change the value of the cfFormat 
parameter in the call to DefCreateFromClip. 

Windows API Guide 



DefLoadFromStream 
and DIlLoadFromStream 

If an object handler uses Native data to render an embedded 
object, the handler can call the library and specify 
olerender_none. If a handler uses Native data to render a linked 
object, it can use olerender_format and specify Native data. When 
the handler's Draw function is called, the handler calls the 
Get Data function, specifying Native data, to do the rendering. If a 
handler uses a private data format, the procedure is the 
same-except that the private format is specified with the 
olerender_format option and with the GetData function. 

When the client library calls the DIILoadFromStream function, 
the library includes three parameters that are not specified in the 
original call to the OleLoadFromStream function. One of the 
additional parameters is objtype, as described for 
DefCreateFromClip and DIICreateFromClip. The other two 
parameters are aClass, which is an atom containing the class name 
for the object, and cfFormat, which specifies a private clipboard 
format that the object handler can use for rendering the object. 

The following syntax block shows the objtype, aClass, and cfFormat 
parameters when an object handler uses the DefLoadFromStream 
function. The DIILoadFromStream function has exactly the same 
syntax as DefLoadFromStream. 

OLESTATUS DefLoadFromStream(lpstream, lpszProtocol, lpclient, 
lhclientdoc, lpszObjname, lplpobject, objtype, aClass, cfFormat); 

LPOLESTREAM lpstream; /* address of stream for object */ 
LPSTR lpszProtocol; 
LPOLECLIENT lpclient; 
LHCLIENTDOC lhclientdoc; 

/* address of string for protocol name */ 
/* address of client structure */ 
/* long handle of client document */ 

LPSTR lpszObjname; /* string for object name */ 
LPOLEOBJECT FAR * lplpobject; /* address of pointer to object */ 
LONG objtype; /* OT_LINKED or OT_EMBEDDED */ 
ATa.1 aClass; 
OLECLIPFORMAT cfFormat; 

/* atom containing object's class name */ 
/* private data format for rendering */ 

If DIILoadFromStream calls DefLoadFromStream, 
DIILoadFromStream should pass it the three additional 
parameters along with the other parameters from the version of 
DefLoadFromStream that was exported by the client library. 

DIILoadFromStream can modify some of these parameters before 
passing them back to DefLoadFromStream. For example, the 
object handler could modify the value of the cfFormat parameter 
to specify a private data format it would use to render the object. 

Chapter 3, Object linking and embedding libraries 123 



When the client calls the object handler with 
DefLoadFromStream, the handler uses the Get function from the 
OLESTREAMVTBL structure to obtain the data for the object. 

Direct use of Dynamic Data Exchange 

Client 
applications and 

direct use of 
Dynamic Data 

Exchange 

124 

The OLE libraries, OLECLI.DLL and OLESVR.DLL, use DDE 
messages to communicate with each other. Although client and 
server applications can use DDE directly, without employing 
OLECLLDLL or OLESVR.DLL, this method of implementing 
OLE is not recommended. Future enhancements to the OLE 
libraries will benefit applications that use the libraries but will not 
benefit applications that use DDE directly. 

The following information about the DDE-based OLE protocol is 
provided for applications that must implement DDE directly, 
despite losing the ability to take advantage of future 
enhancements to the system. 

Implementation of the OLE protocol requires implementation of 
the underlying DDE protocol. All the standard DDE rules and 
facilities apply. Applications that conform to this protocol must 
also conform to the DDE specification. Conforming to this 
specification implies supporting the System topic and the 
standard items in that topic. 

When opening a link or an embedded document, the client 
application should look up the class name in the registration 
database, as described in "Registration." 

The following pseudocode illustrates the chain of events for a 
client implementing OLE through DDE. Whenever a client that 
attempts to establish a conversation with a server receives 
responses from more than one server, the client should accept the 
first server and reject the others. 

Windows API Guide 



Linked object: 

WM_DDE_INITIATE class name, document name 
if not found { 

WM_DDE_INITIATE class name, OLESystem 
if not found { 

/* 

WM_DDE_INITIATE class name, System 
if not found { 

launch application name, /Embedding 
fLaunched = true 
WM_DDE_INITIATE class name, OLESystem 
if not found { 

WM_DDE_INITIA TE class name, System 
if not found 

return error 

* Now there is a conversation with the server on the 
* System or OLESystem topic. 
*/ 

WM_DDE_EXECUTE StdOpenDocument(DocumentName) 
WM_DDE_INITIATE class name, document name 
if not found { 

if(fLaunched) WM_DDE_EXECUTE StdExit /* clean up * / 
return error 

/* 
* Now there is a conversation with the correct document. 
*/ 

Chapter 3, Object linking and embedding libraries 125 



126 

Embedded object: 

WM_DDE_INITIATE class name, OLE System 
if not found { 

/* 

WM_DDE_INITIATE class name, System 
if not found { 

launch application name, /Embedding 
fLaunched = true 
WM_DDE_INITIA TE class name, OLESystem 
if not found { 

WM_DDE_INITIATE class name, System 
if not found 

return error 

* Now there is a conversation with the server on the system or 
* OLE System topic. 
*/ 

DDE_EXECUTE StdEditDocument(DocumentN arne) 

/* 
* Or StdCreateDoc if this is an Insert Object command 
*/ 

WM_DDE_INITIATE class name, document name 
if not found { 

if(fLaunched) DDE_EXECUTE StdExit /* clean up * / 
return error 

/* Now there is a conversation with the correct document. * / 

Windows API Guide 



Server 
applications and 

direct use of 
Dynamic Data 

Exchange 

When a server receives the IEmbedding command-line argument, 
it should not create a new default document. Instead, it should 
wait until the client sends either the StdOpenDocument 
command or the StdEditDocument command followed by the 
Native data and then instructs the server to show the window. 
The server can use the StdHostNames item to display the client's 
name in the window title. 

The following pseudocode illustrates the chain of events for a 
server implementing OLE through DDE. The example shows two 
cases: one in which the server reuses a single instance for editing 
all objects (in MDI child windows), and another in which a new 
instance is used for each object. Applications that use a new 
instance for each object should reject requests to open or create a 
new document when they already have a document open. 

MDI application: 

case WM_DDE_INITIATE: 

System) 

if class name == this class { 
if (DocumentName == OLESystem I I DocumentName == 

WM_DDE_ACK 
else if DocumentName == name of some open document 

WM_DDE_ACK 

Multiple-instance application: 

case WM_DDE_INITIATE: 
if class name == this class { 

System) { 
if (DocumentName == OLESystem I I DocumentName == 

if no documents are open 
WM_DDE_ACK 

else if DocumentName == name of some open document 
WM_DDE_ACK 

Chapter 3, Object linking and embedding libraries 127 



128 

Conversations 

Items for the 
system topic 

Document operations are performed during conversations with 
an application's OLESystem or System topic. The document's 
class name is used to establish the conversation. 

Data transfer and negotiation operations are performed during 
conversations with the document (that is, the topic). The 
document name is used to establish the conversation. 

Note that the topic name is used only in initiating conversations 
and is not fixed throughout the conversation; permitting the 
document to be renamed does not mean that there will be two 
names. Therefore, it is reasonable to tie the topic name to the 
document name. 

An application using DDE-based OLE can use three new items 
for the System topic: the Topics item, the Protocols item, and the 
Status item. 

The Topics item returns a list of DDE topic names that the server 
application has open. Where topics correspond to documents, the 
topic name is the document name. 

The Protocols item returns a list of protocol names supported by 
the application. The list is returned in tab-separated text format. 
A protocol is a defined set of DDE execute strings and item and 
format conventions that the application understands. The 
protocol currently defined for linked and embedded objects is the 
following: 

Protocol: StdFileEditing commands/items / formats 

For compatibility with client applications that were written before 
the implementation of the OLE protocol, server applications that 
use the DDE protocol directly should also include the string 
Embedding in the list of protocols. 

The Status item is a text item that returns Ready if the server is 
prepared to respond to DDE requests; otherwise, it returns Busy. 
This item can be queried to determine if the client should offer 
such functions as one that gives the user an opportunity to 
update the object. Because it is possible that a server could reject 

Windows API Guide 



Standard item 
names and 
notification 

control 

or defer a request even if Status returns Ready, client applications 
should not depend solely on the Ready item. 

Applications supporting OLE with direct DDE use four clipboard 
formats in addition to the regular data and picture formats. These 
are ObjectLink, OwnerLink, Native, and Binary. Binary format is 
a stream of bytes whose interpretation is implicit in the item; for 
example, the EditEnvltems, StdTargetDevice, and StdHostNames 
items are in Binary format. The ObjectLink, OwnerLink, and 
Native formats are described in "Clipboard conventions." 

New items available on each topic other than the System topic are 
defined for this protocol. These items are the following: 

Item 

StdDocumentName 

EditEnvltems 

StdHostNames 

Description 

Contains the permanent document name 
associated with the topic. If no permanent 
storage is associated with the topic, this item is 
empty. This item supports both request and 
advise transactions and can be used to detect the 
renaming of open documents. 
Returns a list in tab-separated text format of the 
items that contain environmental information 
supported by the server for its documents. 
Currently defined items are StdHostNames, 
StdDocDimensions, and StdTargetDevice. 
Applications can declare other items (and define 
their interpretations if Binary format is used) to 
permit clients that are informed of these items to 
provide more detailed information. Servers that 
cannot use particular items should omit their 
names from the EditEnvItems item. Clients 
should use the WM_DDE_REQUEST message 
with this item to find out which items the server 
can use and should supply the data through a 
WM_DDE_POKE message. 
Accepts information about the client application, 
in Binary format interpreted as the following 
structure: 

struct { 
WORD clientNameOffseti 
WORD documentNameOffseti 
BYTE data [ 1 i 

}StdHostNames i 

Chapter 3, Object linking and embedding libraries 129 



130 

Item 

StdTargetDevice 

StdDocDimensions 

StdColorScheme 

null 

Description 

The offsets are relative to the start of the data 
array. They indicate the starting point for the 
appropriate information in the array. 
Accepts information about the target device that 
the client is using. This information is in Binary 
format, interpreted as the following structure. 
Offsets are relative to the start of the data array. 

typedefstruct_OLETARGETDEVICE{ 
WORD otdDeviceNameOffset; 
WORD otdDriverNameOffset; 
WORD otdPortNameOffset; 
WORD otdExtDevrnodeOffset; 
WORD otdExtDevrnodeSize; 
WORD otdEnvironmentOffset; 
WORD otdEnvironmentSize; 
BYTE otdData [ 1 ; 

pLETARGETDEVICE; 

Accepts information about the size of a 
document. This information is in Binary format, 
interpreted as the following structure. These 
values are specified in MM_HIMETRIC units. 

struct { 
int iXContainer; 
int iYContainer; 

BtdDocDimensions; 

Returns the colors that the server is currently 
using and accepts information about the colors 
that the client requests the server to use. This 
information is in Binary format, interpreted as a 
LOG PALETTE structure. 
Specifies a request or advise transaction on all 
data contained in the topic. This item is a 
zero-length item name. 

The update method used for advise transactions on items follows 
a convention in which an update specifier is appended to the 
actual item name. The item is encoded as follows: 

itemnamelupdate type 

Windows API Guide 



Standard 
commands in 
DDE execute 

strings 

For backward compatibility, omitting the update type has the 
same result as specifying IChange. The update type placeholder 
may be filled with one of the following values: 

Value 

/Change 

/Close 
/Save 

Meaning 

Notify for each change. 
Notify when document is closed. 
Notify when document is saved. 

DDE server applications are required to save each occurrence of a 
WM_DDE_ADVISE message that specifies a unique combination 
of item name, update type, format, and conversation. A notification is 
disabled by a WM_DDE_UNADVISE message with 
corresponding parameters. If the WM_DDE_ UNADVISE 
message does not specify a format, it disables the oldest 
notification in first in, first out (FIFO) rotation. 

The syntax for standard commands sent in execute strings is the 
same as for other DDE commands: 

command(argumentl,argument2, .. .)[ command2 (argumentl ,argument2, .. .) J 

Commands without arguments do not require parentheses. String 
arguments must be enclosed in double quotes. 

International execute DDE execute strings are typically sent from a macro language in 
commands an external application and are typically localized. OLE execute 

commands, however, are sent by application programs for their 
own purposes, need not be localized, and must be commonly 
recognized. 

The OLE standard execute commands should not be localized; 
the U.S. spelling and separator characters are used. Therefore, the 
following rules apply: 

III Client applications and the client library send standard execute 
commands in U.S. form. 

II The server library must receive the U.S. form for these 
commands. 

1\1 Servers written directly to the DDE-Ievel protocol should parse 
the U.s. form, if they have no additional commands. 

Chapter 3, Object linking and embedding libraries 131 



132 

• Servers that support both OLE and localized DDE execute 
commands should first parse the string by using localized 
separators. If this fails, they should parse it again using the 
U.S. form and, if successful, should execute the command. 
Optionally, if the command is received in the U.S. form, the 
server can check that the command is one of the valid standard 
commands. 

Required commands This section lists commands that must be supported by server 
applications. 

The StdNewDocument, StdNewFromTemplate, 
StdEditDocument, and StdOpenDocument commands all make 
the document available for DOE conversations with the name 
DocumentName. They do not show any window associated with 
the document; the client must send the StdShowltem and 
StdDoVerbltem commands, or the StdDoVerbltem command 
alone to make the window visible. This enables the client to 
negotiate additional parameters with the server (for example, the 
StdTargetDevice item) without causing unnecessary repaints. 

StdNewDocument( ClassName, DocumentName) 
Creates a new, empty document of the given class, with the 
given name, but does not save it. The server should return an 
error value if the document name is already in use. When the 
client receives this error, it should generate another name and 
try again. 

The server should not show the window until it receives a 
StdShowltem command. Waiting for the client to send the 
StdShowltem and StdDoVerbltem commands makes it 
possible for the client to negotiate additional parameters (for 
example, by using StdTargetDevice) without forcing the 
window to repaint. 

StdNewFromTemplate( ClassName, DocumentName, TemplateName) 
Creates a new document of the given class with the given 
document name, using the template with the given permanent 
name (that is, filename). 

The server should not show the window until it receives a 
StdShowltem command. Waiting for the client to send a 
StdShowltem command makes it possible for the client to 
negotiate additional parameters (for example, by using 
StdTargetDevice) without forcing the window to repaint. 

Windows API Guide 



StdEditDocument(DocumentName) 
Creates a document with the given name and prepares to 
accept data that is poked into it with WM_DDE_POKE. The 
server should return an error if the document name is already 
in use. When the client receives this error, it should generate 
another name and try again. 

The server should not show the window until it receives a 
StdShowltem command. Waiting for the client to send a 
StdShowltem command makes it possible for the client to 
negotiate additional parameters (for example, by using 
StdTargetDevice) without forcing the window to repaint. 

StdOpenDocument(DocumentName) 
Sent to the System topic. This command opens an existing 
document with the given name. 

The server should not show the window until it receives a 
StdShowltem command. Waiting for the client to send a 
StdShowltem command makes it possible for the client to 
negotiate additional parameters (for example, by using 
StdTargetDevice) without forcing the window to repaint. 

StdCloseDocument(DocumentName) 
Sent to the System topic. This command closes the window 
associated with the document. Following acknowledgment, the 
server terminates any conversations associated with the 
document. The server should not activate the window while 
closing it. 

StdShowltem(DocumentName, ItemName [, fDoNotTakeFocusJ) 
Sent to the System topic. This command makes the window 
containing the named document visible and scrolls to show the 
named item (if any). The optional third argument indicates 
whether the server should take the focus and bring itself to the 
front. This argument should be TRUE if the server should not 
take the focus; otherwise, it should be FALSE. The default 
value is FALSE. 

StdExit 
Shuts down the server application. This command should be 
used only by the client application that launched the server. 
This command is available in the System topic only. 

StdExit is sent to shut down an application if an error occurs 
during the startup phase or if the client started the server for 
an invisible update. If servers have unsaved data opened by 
the user, they should ignore this command. 

Chapter 3, Object linking and embedding libraries 133 



134 

Variants on required 
commands 

The following variants of the above commands may be sent to the 
document topic rather than the System topic. This allows a client 
that already has a conversation with the document to avoid 
opening an additional conversation with the system. The 
document name is omitted from these commands because it is 
implied by the conversation topic and because it may have been 
changed by the server. This kind of name change does not 
invalidate the conversation. The client should not be forced to 
keep track of the name change unnecessarily. However, the 
server must be able to use the conversation information to 
identify the document on which to operate. 

StdCloseDocument 
Sent to the document conversation. This command closes the 
document associated with the conversation without activating 
it. This command causes a WM_DDE_TERMINATE message 
to be posted by the server window following the 
acknowledgment. 

StdDoVerbltem(ItemName, iVerb, fShow, fDoNotTakeFocus) 
Sent to the document conversation. This command is similar to 
the StdShowltem command, except that it includes an integer 
indicating which of the registered operations to perform and a 
flag indicating whether to show the window. The server can 
ignore the fShow flag, if necessary. 

StdShowltem(ItemName [, fDoNotTakeFocusJ) 
Sent to the document conversation. This command shows the 
document window, scrolling if necessary to bring the item into 
view. If the item name is NULL, scrolling does not occur. The 
optional second argument indicates whether the server should 
take the focus and bring itself to the front. This argument 
should be TRUE if the server should not take the focus; 
otherwise, it should be FALSE. The default value is FALSE. 

Windows API Guide 



c H A p T E R 

4 

Functions 

AbortDoc 3. 1 

Syntax int AbortDodhdc) 

function AbortDoc(DC: HDC): Integer; 

The AbortDoc function terminates the current print job and erases 
everything drawn since the last call to the StartDoc function. This function 
replaces the ABORTDOC printer escape for Windows version 3.1. 

Parameters hdc Identifies the device context for the print job. 

Return Value The return value is greater than or equal to zero if the function is 
successful. Otherwise, it is less than zero. 

Comments Applications should call the AbortDoc function to terminate a print job 
because of an error or if the user chooses to cancel the job. To end a 
successful print job, an application should use the EndDoc function. 

If Print Manager was used to start the print job, calling the AbortDoc 
function erases the entire spool job-the printer receives nothing. If Print 
Manager was not used to start the print job, the data may have been sent 
to the printer before AbortDoc was called. In this case, the printer driver 
would have reset the printer (when possible) and closed the print job. 

See Also End Doc, SetAbortProc, StartDoc 

Chapter 4, Functions 135 



AbortProc 

AbortProc 3.1 

Syntax BOOL CALLBACK AbortProc(hdc, error) 

TAbortProc = function(OC: HOC; Error: Integer): Bool; 

The AbortProc function is an application-defined callback function that is 
called when a print job is to be canceled during spooling. 

Parameters hdc Identifies the device context. 

error Specifies whether an error has occurred. This parameter is 
zero if no error has occurred; it is SP _ OUTOFDISK if Print 
Manager is currently out of disk space and more disk 
space will become available if the application waits. If this 
parameter is SP _OUTOFDISK, the application need not 
cancel the print job. If it does not cancel the job, it must 
yield to Print Manager by calling the PeekMessage or 
GetMessage function. 

Return Value The callback function should return TRUE to continue the print job or 
FALSE to cancel the print job. 

Comments An application installs this callback function by calling the SetAbortProc 
function. AbortProc is a placeholder for the application-defined function 
name. The actual name must be exported by including it in an EXPORTS 
statement in the application's module-definition file. 

See Also GetMessage, PeekMessage, SetAbortProc 

AllocDiskSpace 3.1 

136 

Syntax #include <stress.h> 
int AllocOiskSpace(lLeft, uOrive) 

function AllocOiskSpace(1Left: Longint; wOrive: Word): Integer; 

The AllocDiskSpace function creates a file that is large enough to ensure 
that the specified amount of space or less is available on the specified disk 
partition. The file, called STRESS. EAT, is created in the root directory of 
the disk partition. 

If STRESS.EAT already exists when AllocDiskSpace is called, the function 
deletes it and creates a new one. 

Windows API Guide 



Parameters lLeft 

uDrive 

AllocFileHandles 

Specifies the number of bytes to leave available on the disk. 

Specifies the disk partition on which to create the 
STRESS.EAT file. This parameter must be one of the 
following values: 

Value 

EDS_WIN 
EDS_CUR 
EDS_TEMP 

Meaning 

Creates the file on the Windows partition. 
Creates the file on the current partition. 
Creates the file on the partition that contains 
the TEMP directory. 

Return Value The return value is greater than zero if the function is successful; it is zero 
if the function could not create a file; or it is -1 if at least one of the 
parameters is invalid. 

Comments In two situations, the amount of free space left on the disk may be less 
than the number of bytes specified in the lLeft parameter: when the 
amount of free space on the disk is less than the number in lLeft when an 
application calls AllocDiskSpace, or when the value of lLeft is not an exact 
multiple of the disk cluster size. 

The UnAllocDiskSpace function deletes the file created by 
AllocDiskSpace. 

See Also UnAllocDiskSpace 

AllocFileHandles 

Syntax #include <stress.h> 
int AllocFileHandles(Left) 

function AllocFileHandles(left: Integer): Integer; 

3.1 

The AllocFileHandles function allocates file handles until only the 
specified number of file handles is available to the current instance of the 
application. If this or a smaller number of handles is available when an 
application calls AllocFileHandles, the function returns immediately. 

Before allocating new handles, this function frees any handles previously 
allocates by AllocFileHandles. 

Parameters Left Specifies the number of file handles to leave available. 

Chapter 4, Functions 137 



AllocGDIMem 

Return Value The return value is greater than zero if AllocFileHandles successfully 
allocates at least one file handle. The return value is zero if fewer than the 
specified number of file handles were available when the application 
called AllocFileHandles. The return value is -1 if the Left parameter is 
negative. 

Comments AllocFileHandles will not allocate more than 256 file handles, regardless 
of the number available to the application. 

The UnAllocFileHandles function frees all file handles previously 
allocated by AllocFileHandles. 

See Also UnAllocFileHandles 

AllocGDIMem 3.1 

Syntax #inc1ude <stress.h> 
BaaL AllocGDIMem(uLeft) 

function AllocGDIMem(wLeft: Word): Bool; 

The AllocGDIMem function allocates memory in the graphics device 
interface (GDI) heap until only the specified number of bytes is available. 
Before making any new memory allocations, this function frees memory 
previously allocated by AllocGDIMem. 

Parameters uLeft Specifies the amount of memory, in bytes, to leave 
available in the GDI heap. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The FreeAIIGDIMem function frees all memory allocated by AllocGDIMem. 

See Also FreeAIIGDIMem 

138 Windows API Guide 



AliocUserMem 

AllocMem 3.1 

Syntax #include <stress.h> 
BOOL AllocMem(dwLeft) 

function AllocMem(dwLeft: Longint): Bool; 

The AllocMem function allocates global memory until only the specified 
number of bytes is available in the global heap. Before making any new 
memory allocations, this function frees memory previously allocated by 
AllocMem. 

Parameters dwLeft Specifies the smallest size, in bytes, of memory allocations 
to make. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The FreeAIiMem function frees all memory allocated by AllocMem. 

See Also FreeAIIMem 

AllocUserMem 3.1 

Syntax #include <stress.h> 
BOOL AllocUserMem(uContig) 

function AllocUserMem( wContig: Word): Bool; 

The AllocUserMem function allocates memory in the USER heap until 
only the specified number of bytes is available. Before making any new 
allocations, this function frees memory previously allocated by 
AllocUserMem. 

Parameters uContig Specifies the smallest size, in bytes, of memory allocations 
to make. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The FreeAIiUserMem function frees all memory allocated by AllocUserMem. 

See Also FreeAIiUserMem 

Chapter 4, Functions 139 



CallNextHookEx 

Call NextHookEx 3.1 

Syntax LRESULT CallNextHookEx(hHook, nCode, wParam, IParam) 

function CallNextHookEx(Hook: HHook; Code: Integer; wParam: Word; 
IParam: Longint): Longint; 

The CaliNextHookEx function passes the hook information to the next 
hook function in the hook chain. 

Parameters hHook 

nCode 

wParam 

IParam 

Identifies the current hook function. 

Specifies the hook code to pass to the next hook function. 
A hook function uses this code to determine how to 
process the message sent to the hook. 

Specifies 16 bits of additional message-dependent 
information. 

Specifies 32 bits of additional message-dependent 
information. 

Return Value The return value specifies the result of the message processing and 
depends on the value of the nCode parameter. 

Comments Calling the CaliNextHookEx function is optional. An application can call 
this function either before or after completing any processing in its own 
hook function. If an application does not call CaliNextHookEx, Windows 
will not call the hook functions that were installed before the application's 
hook function was installed. 

See Also SetWindowsHookEx, UnhookWindowsHookEx 

CallWndProc 3.1 

140 

Syntax LRESULT CALLBACK CallWndProc(code, wParam, IParam) 

The CallWndProc function is a library-defined callback function that the 
system calls whenever the Send Message function is called. The system 
passes the message to the callback function before passing the message to 
the destination window procedure. 

Parameters code Specifies whether the callback function should process the 
message or call the CaliNextHookEx function. If the code 
parameter is less than zero, the callback function should 

Windows API Guide 



wParam 

IParam 

CBTProc 

pass the message to CaliNextHookEx without further 
processing. 

Specifies whether the message is sent by the current task. 
This parameter is nonzero if the message is sent; 
otherwise, it is NULL. 

Points to a structure that contains details about the 
message. The following shows the order, type, and 
description of each member of the structure: 

Member 

IParam 
wParam 
uMsg 
hWnd 

Description 

Contains the IParam parameter of the message. 
Contains the wParam parameter of the message. 
Specifies the message. 
Identifies the window that will receive the 
message. 

Return Value The callback function should return zero. 

Comments The CallWndProc callback function can examine or modify the message 
as necessary. Once the function returns control to the system, the 
message, with any modifications, is passed on to the window procedure. 

This callback function must be in a dynamic-link library. 

An application must install the callback function by specifying the 
WH_CALLWNDPROC filter type and the procedure-instance address of 
the callback function in a call to the SetWindowsHookEx function. 

CallWndProc is a placeholder for the library-defined function name. The 
actual name must be exported by including it in an EXPORTS statement 
in the library's module-definition file. 

See Also CaliNextHookEx, Send Message, SetWindowsHookEx 

CBTProc 3.1 

Syntax LRESULT CALLBACK CBTProc(code, wParam, IParam) 

Chapter 4, Functions 

The CBTProc function is a library-defined callback function that the 
system calls before activating, creating, destroying, minimizing, 
maximizing, moving, or sizing a window; before completing a system 
command; before removing a mouse or keyboard event from the system 
message queue; before setting the input focus; or before synchronizing 
with the system message queue. 

141 



CBTProc 

The value returned by the callback function determines whether to allow 
or prevent one of these operations. 

Parameters code Specifies a computer-based-training (CBT) hook code that 
identifies the operation about to be carried out, or a value 
less than zero if the callback function should pass the code, 
wParam, and IParam parameters to the CallNextHookEx 
function. The code parameter can be one of the following: 

142 

Code 

HCBT_ACTIVATE 

HCBT _ CLICKSKIPPED 

HCBT_CREATEWND 

HCBT_DESTROYWND 
HCBT_KEYSKIPPED 

HCBT_MOVESIZE 

Meaning 

Indicates that the system is about to activate a 
window. 
Indicates that the system has removed a mouse 
message from the system message queue. A CBT 
application that must install a journaling playback 
filter in response to the mouse message should do 
so when it receives this hook code. 
Indicates that a window is about to be created. The 
system calls the callback function before sending 
the WM_ CREATE or WM_NCCREATE message to 
the window. If the callback function returns TRUE, 
the system destroys the window-the 
CreateWindow function returns NULL, but the 
WM_DESTROY message is not sent to the window. 
If the callback function returns FALSE, the window 
is created normally. 
At the time of the HCBT_CREATEWND 
notification, the window has been created, but its 
final size and position may not have been 
determined, nor has its parent window been 
established. 
It is possible to send messages to the newly created 
window, although the window has not yet received 
WM_NCCREATE or WM_CREATE messages. 
It is possible to change the Z-order of the newly 
created window by modifying the hwndlnsertAfter 
member of the CBT_CREATEWND structure. 
Indicates that a window is about to be destroyed. 
Indicates that the system has removed a keyboard 
message from the system message queue. A CBT 
application that must install a journaling playback 
filter in response to the keyboard message should 
do so when it receives this hook code. 
Indicates that a window is about to be minimized 
or maximized. 
Indicates that a window is about to be moved or 
sized. 

Windows API Guide 



CBTProc 

Code 

HCBT_QS 

HCBT_SETFOCUS 

HCBT _SYSCOMMAND 

Meaning 

Indicates that the system has retrieved a 
WM_ QUEUESYNC message from the system 
message queue. 
Indicates that a window is about to receive the 
input focus. 
Indicates that a system command is about to be 
carried out. This allows a CBT application to 
prevent task switching by hot keys. 

wParam This parameter depends on the code parameter. See the 
following Comments section for details. 

IParam This parameter depends on the code parameter. See the 
following Comments section for details. 

Return Value For operations corresponding to the following CBT hook codes, the 
callback function should return zero to allow the operation, or 1 to 
prevent it: 

HCBT_ACTIVATE 
HCBT _ CREATEWND 
HCBT_DESTROYWND 
HCBT_MINMAX 
HCBT_MOVESIZE 
HCBT_SYSCOMMAND 

The return value is ignored for operations corresponding to the following 
CBT hook codes: 

HCBT _ CLICKSKIPPED 
HCBT_KEYSKIPPED 
HCBT_QS 

Comments The callback function should not install a playback hook except in the 
situations described in the preceding list of hook codes. 

This callback function must be in a dynamic-link library. 

An application must install the callback function by specifying the 
WH_CBT filter type and the procedure-instance address of the callback 
function in a call to the SetWindowsHookEx function. 

CBTProc is a placeholder for the library-defined function name. The 
actual name must be exported by including it in an EXPORTS statement 
in the library's module-definition file. 

Chapter 4, Functions 143 



CBTProc 

The following table describes the wParam and IParam parameters for each 
HCBr _ constant. 

Constant 

HCBT_ACTIVATE 

HCBT _ CLICKSKIPPED 

HCBT _ CREATEWND 

HCBT _DESTROYWND 

HCBT _KEYSKIPPED 

HCBT _MOVE SIZE 

HCBT_QS 

HCBT_SETFOCUS 

144 

wParam 

Specifies the handle of the 
window about to be activated. 

Identifies the mouse message 
removed from the system 
message queue. 

Specifies the handle of the new 
window. 

Specifies the handle of the 
window about to be destroyed. 
Identifies the virtual key code. 

Specifies the handle of the 
window being minimized or 
maximized. 

Specifies the handle of the 
window to be moved or sized. 

IParam 

Specifies a long pointer to a 
CBTACTIVATESTRUCT structure that 
contains the handle of the currently active 
window and specifies whether the 
activation is changing because of a mouse 
click. 
Specifies a long pointer to a MOUSE· 
HOOKSTRUCT structure that contains the 
hit-test code and the handle of the 
window for which the mouse message is 
intended. For a list of hit-test codes, see 
the description of the WM_NCHITTEST 
message. 
Specifies a long pointer to a 
CBT_CREATEWND data structure that 
contains initialization parameters for the 
window. 
This parameter is undefined and should 
be set to OL. 
Specifies the repeat count, scan code, 
key-transition code, previous key state, 
and context code. For more information, 
see the description of the WM_KEYUP or 
WM_KEYDOWN message. 
The low-order word specifies a show­
window value (SW _) that specifies the 
operation. For a list of show-window 
values, see the description of the 
ShowWindow function. The high-order 
word is undefined. 
Specifies a long pointer to a RECT 
structure that contains the coordinates of 
the window. 

This parameter is undefined; it This parameter is undefined and should 
should be set to o. be set to OL. 
Specifies the handle of the The low-order word specifies the handle 
window gaining the input focus. of the window losing the input focus. The 

high-order word is undefined. 

Windows API Guide 



ChooseColor 

Constant wParam IParam 

HCBT_SYSCOMMAND Specifies a system-command 
value (SC_) that specifies the 
system command. For more 
information about system 
command values, see the 
description of the 
WM_SYSCOMMAND message. 

If wParam is SC_HOTKEY, the low-order 
word of IParam contains the handle of the 
window that task switching will bring to 
the foreground. If wParam is not 
SC_HOTKEY and a System-menu 
command is chosen with the mouse, the 
low-order word of IParam contains the 
x-coordinate of the cursor and the 
high-order word contains the 
y-coordinate. If neither of these 
conditions is true, IParam is undefined. 

See Also CaliNextHookEx, SetWindowsHookEx 

ChooseColor 3. 1 

Syntax #include <commdlg.h> 
BOOL ChooseColor(lpcc) 

function ChooseColor(var CC: TChooseColor): Bool; 

The ChooseColor function creates a system-defined dialog box from 
which the user can select a color. 

Parameters [pee Points to a CHOOSECOLOR structure that initially 
contains information necessary to initialize the dialog box. 
When the ChooseColor function returns, this structure 
contains information about the user's color selection. The 
CHOOSECOLOR structure has the following form: 

Chapter 4, Functions 

#include <commdlg.h> 

typedef struct tagCHOOSECOLOR 
DWORD lStructSize; 
HWND hwndOwner; 
HWND hInstance; 
COLORREF rgbResult; 
COLORREF FAR* lpCustColors; 
DWORD Flags; 
LPARAM lCustData; 

/* cc * / 

UINT (CALLBACK* IpfnHook) (HWND, UINT, WPARAM, LPARAM); 

LPCSTR lpTemplateName; 
}CHOOSECOLOR; 

145 



ChooseColor 

146 

Return Value The return value is nonzero if the function is successful. It is zero if an 
error occurs, if the user chooses the Cancel button, or if the user chooses 
the Close command on the System menu (often called the Control menu) 
to close the dialog box. 

Errors Use the CommDlgExtendedError function to retrieve the error value, 
which may be one of the following: 

CDERR_FINDRESFAILURE 
CDERR_INITIALIZATION 
CDERR_LOCKRESFAILURE 
CDERR_LOADRESFAILURE 
CDERR_LOADSTRFAILURE 
CDERR_MEMALLOCFAILURE 
CDERR_MEMLOCKFAIL URE 
CDERR_NOHINSTANCE 
CDERR_NOHOOK 
CDERR_NOTEMPLATE 
CDERR_STRUCTSIZE 

Comments The dialog box does not support color palettes. The color choices offered 
by the dialog box are limited to the system colors and dithered versions of 
those colors. 

If the hook function (to which the IpfnHook member of the 
CHOOSECOLOR structure points) processes the WM_ CTLCOLOR 
message, this function must return a handle for the brush that should be 
used to paint the control background. 

Example The following example initializes a CHOOSECOLOR structure and then 
creates a color-selection dialog box: 

/* Color variables */ 

CHOOSE COLOR cc; 
COLORREF clr; 
COLORREF aclrCust[16]; 
int i; 

/* Set the custom-color controls to white. * / 

for (i = 0; i < 16; i++) 
aclrCust[i] = RGB(255, 255, 255); 

/* Initialize clr to black. */ 

clr = RGB (0, 0, 0); 

/* Set all structure fields to zero. * / 

Windows API Guide 



memset(&cc, 0, sizeof(CHOOSECOLOR)); 

/* Initialize the necessary CHOOSE COLOR members. */ 

cc.1StructSize = sizeof(CHOOSECOLOR); 
cc.hwndOwner = hwnd; 
cc.rgbResult = clr; 
cc.lpCustColors = aclrCust; 
cc.Flags = CC_PREVENTFULLOPEN; 

i~ChooseColor(&cc)) 

ChooseFont 

/* Use cc.rgbResult to select the user-requested color. */ 

ChooseFont 3. 1 

Syntax #include <commdlg.h> 
BOOL ChooseFont(lpcf) 

function ChooseFont(var ChooseFont: TChooseFont): Bool; 

The ChooseFont function creates a system-defined dialog box from 
which the user can select a font, a font style (such as bold or italic), a point 
size, an effect (such as strikeout or underline), and a color. 

Parameters [pct Points to a CHOOSEFONT structure that initially contains 
information necessary to initialize the dialog box. When 
the ChooseFont function returns, this structure contains 
information about the user's font selection. The 
CHOOSEFONT structure has the following form: 

#include <commdlg.h> 

typedef struct tagCHOOSEFONT { /* cf */ 
DWORD lStructSize; 
HWND hwndOwner; 
HDC hDC; 
LOGFONT FAR* lpLogFont; 
int iPointSize; 
DWORD Flags; 
COLORREF rgbColors; 
LPARAM lCustData; 
UINT (CALLBACK* lpfnHook) (HWND, UINT, WPARAM, LPARAM); 
LPCSTR lpTemplateName; 
HINSTANCE hInstance; 
LPSTR lpszStyle; 
UINT nFontType; 
int nSizeMin; 
int nSizeMax; 

}CHOOSEFONT; 

Chapter 4, Functions 147 



ClassFirst 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Errors Use the CommDlgExtendedError function to retrieve the error value, 
which may be one of the following: 

CDERR_FINDRESFAILURE 
CDERR_INITIALIZATION 
CDERR_LOCKRESFAILURE 
CDERR_LOADRESFAILURE 
CDERR_LOADSTRFAILURE 
CDERR_MEMALLOCFAILURE 
CDERR_MEMLOCKFAILURE 
CDERR_NOHINSTANCE 
CDERR_NOHOOK 
CDERR_NOTEMPLATE 
CDERR_STRUCTSIZE 
CFERR_MAXLESSTHANMIN 
CFERR_NOFONTS 

Example The following example initializes a CHOOSEFONT structure and then 
displays a font dialog box: 

LOGFONT If; 
CHOOSEFONT cf; 

/* Set all structure fields to zero. * / 

memset(&cf, 0, sizeof(CHOOSEFONT»; 

cf.1StructSize = sizeof(CHOOSEFONT); 
cf.hwndOwner = hwnd; 
cf.lpLogFont = &If; 
cf.Flags = CF SCREENFONTS I CF EFFECTS; 
cf.rgbColors ~ RGB(O, 255, 255); /* light blue */ 
cf.nFontType = SCREEN_FONTTYFE; 

ChooseFont(&cf); 

ClassFirst 3. 1 

148 

Syntax #include <toolhelp.h> 
BOOL ClassFirst(lpce) 

function ClassFirst(lpClass: PClassEntry): Bool; 

The ClassFirst function fills the specified structure with general 
information about the first class in the Windows class list. 

Windows API Guide 



ClassNext 

Parameters lpee Points to a CLASSENTRY structure that will receive the 
class information. The CLASSENTRY structure has the 
following form: 

#include <toolhelp.h> 

typedef struct tagCLASSENTRY { /* ce */ 
DWORD dwSize; 
HMODULE hlnst; 
char szClassName[MAX_CLASSNAME + 1]; 
WORD wNext; 

}CLASSENTRY; 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The ClassFirst function can be used to begin a walk through the 
Windows class list. To examine subsequent items in the class list, an 
application can use the ClassNext function. 

Before calling ClassFirst, an application must initialize the CLASSENTRY 
structure and specify its size, in bytes, in the dwSize member. An 
application can examine subsequent entries in the Windows class list by 
using the Class Next function. 

For more specific information about an individual class, use the 
GetClasslnfo function, specifying the name of the class and instance 
handle from the CLASSENTRY structure. 

See Also Class Next, GetClasslnfo 

ClassNext 3, 1 

Syntax #include <toolhelp.h> 
BOOL ClassNext(lpce) 

Chapter 4, Functions 

function ClassNext(lpClass: PClassEntry): Bool; 

The ClassNext function fills the specified structure with general 
information about the next class in the Windows class list. 

149 



CloseDriver 

Parameters lpce Points to a CLASSENTRY structure that will receive the 
class information. The CLASSENTRY structure has the 
following form: 

#include <toolhelp.h> 

typedef struct tagCLASSENTRY { /* ce */ 
DWORD dwSize; 
HMODULE hlnst; 
char szClassName[MAX_CLASSNAME + 1]; 
WORD wNext; 

}CLASSENTRY; 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The Class Next function can be used to continue a walk through the 
Windows class list started by the Class First function. 

For more specific information about an individual class, use the 
GetClasslnfo function with the name of the class and instance handle 
from the CLASSENTRY structure. 

See Also ClassFirst 

CloseDriver 3.1 

150 

Syntax LRESULT CloseDriver(hdrvr, IParaml, IParam2) 

function CloseDriver(Driver: THandle; IParaml, IParam2: Longint): 
Longint; 

The CloseDriver function closes an installable driver. 

Parameters hdrvr 

IParaml 

IParam2 

Identifies the installable driver to be closed. This 
parameter must have been obtained by a previous call to 
the Open Driver function. 

Specifies driver-specific data. 

Specifies driver-specific data. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Windows API Guide 



CommDlgExtendedError 

Comments When an application calls CloseDriver and the driver identified by hdrvr 
is the last instance of the driver, Windows calls the DriverProc function 
three times. On the first call, Windows sets the third DriverProc 
parameter, wMessage, to DRV _CLOSE; on the second call, Windows sets 
wMessage to DRV _DISABLE; and on the third call, Windows sets 
wMessage to DRV _FREE. When the driver identified by hdrvr is not the 
last instance of the driver, only DRV _CLOSE is sent. The values specified 
in the IParaml and IParam2 parameters are passed to the IParaml and 
IParam2 parameters of the DriverProc function. 

See Also DriverProc, Open Driver 

CommDlgExtendedError 3.1 

Syntax #include <commdlg.h> 
DWORD CommDlgExtendedError(void) 

function CommDlgExtendedError: Longint; 

The CommDlgExtendedError function identifies the cause of the most 
recent error to have occurred during the execution of one of the following 
common dialog box procedures: 

a ChooseColor 

IJ Choose Font 

C FindText 

tI GetFileTitie 

a GetOpenFileName 

ril GetSaveFileName 

a PrintDlg 

Il ReplaceText 

Parameters This function has no parameters. 

Return Value The return value is zero if the prior call to a common dialog box 
procedure was successful. The return value is CDERR_DIALOGFAILURE 
if the dialog box could not be created. Otherwise, the return value is a 
nonzero integer that identifies an error condition. 

Chapter 4, Functions 151 



CommDlgExtendedError 

152 

Comments Following are the possible CommDlgExtendedError return values and the 
meaning of each: 

Value 

CDERR_FINDRESFAILURE 

CDERR_INITIALIZATION 

CDERR_LOADRESFAILURE 

CDERR_LOCKRESFAILURE 

CDERR_LOADSTRFAILURE 

CDERR_MEMALLOCFAILURE 

CDERR_MEMLOCKFAILURE 

CDERR_NOHINSTANCE 

CDERR_NOTEMPLATE 

CDERR_REGISTERMSGFAIL 

CDERR_STRUCTSIZE 

CFERR_NOFONTS 
CFERR_MAXLESSTHANMIN 

Meaning 

Specifies that the common dialog box 
procedure failed to find a specified resource. 
Specifies that the common dialog box 
procedure failed during initialization. This ' 
error often occurs when insufficient memory 
is available. 
Specifies that the common dialog box 
procedure failed to load a specified resource. 
Specifies that the common dialog box 
procedure failed to lock a specified resource. 
Specifies that the common dialog box 
procedure failed to load a specified string. 
Specifies that the common dialog box 
procedure was unable to allocate memory for 
internal structures. 
Specifies that the common dialog box 
procedure was unable to lock the memory 
associated with a handle. 
Specifies that the EN ABLETEMPLATE flag 
was set in the Flags member of a structure for 
the corresponding common dialog box but 
that the application failed to provide a 
corresponding instance handle. 
Specifies that the EN ABLEHOOK flag was set 
in the Flags member of a structure for the 
corresponding common dialog box but that 
the application failed to provide a pointer to a 
corresponding hook function. 
Specifies that the ENABLETEMPLATE flag 
was set in the Flags member of a structure for 
the corresponding common dialog box but 
that the application failed to provide a 
corresponding template. 
Specifies that the RegisterWindowMessage 
function returned an error value when it was 
called by the common dialog box procedure. 
Specifies as invalid the IStructSize member of 
a structure for the corresponding common 
dialog box. 
SpeCifies that no fonts exist. 
Specifies that the maximum size given for the 
dialog box is less than the specified minimum 
size. 

Windows API Guide 



CommDlgExtendedError 

Value Meaning 

FNERR_BUFFERTOOSMALL Specifies that the buffer for a filename is too 
small. (This buffer is pointed to by the 
IpstrFile member of the structure for a 
common dialog box.) 

FNERR_INVALIDFILENAME Specifies that a filename is invalid. 
FNERR_SUBCLASSFAILURE Specifies that an attempt to subclass a list box 

failed due to insufficient memory. 
FRERR_BUFFERLENGTHZERO Specifies that a member in a structure for the 

corresponding common dialog box points to 
an invalid buffer. 

PDERR_CREATEICFAILURE Specifies that the PrintDlg function failed 
when it attempted to create an information 
context. 

PDERR_DEFAULTDIFFERENT Specifies that an application has called the 
PrintDlg function with the 
DN_DEFAULTPRN flag set in the wDefault 
member of the DEVNAMES structure, but the 
printer described by the other structure 
members does not match the current default 
printer. (This happens when an application 
stores the DEVNAMES structure and the user 
changes the default printer by using Control 
Panel.) 
To use the printer described by the 
DEVNAMES structure, the application should 
clear the DN_DEFAULTPRN flag and call the 
PrintDlg function again. To use the default 
printer, the application should replace the 
DEVNAMES structure (and the DEVMODE 
structure, if one exists) with NULL; this 
selects the default printer automatically. 

PDERR_DNDMMISMATCH Specifies that the data in the DEVMODE and 
DEVNAMES structures describes two different 
printers. 

PDERR_ GETDEVMODEFAIL Specifies that the printer driver failed to 
initialize a DEVMODE structure. (This error 
value applies only to printer drivers written 
for Windows versions 3.0 and later.) 

PDERR_INITFAILURE Specifies that the PrintDlg function failed 
during initialization. 

PDERR_LOADDRVFAILURE Specifies that the PrintDlg function failed to 
load the device driver for the specified printer. 

PDERR_NODEFAULTPRN Specifies that a default printer does not exist. 
PDERR_NODEVICES Specifies that no printer drivers were found. 

Chapter 4, Functions 153 



CopyCursor 

Value Meaning 

PDERR_PARSEFAILURE Specifies that the PrintDig function failed to 
parse the strings in the [devices] section of the 
WIN .INI file. 

PDERR_PRINTERNOTFOUND Specifies that the [devices] section of the 
WIN.INI file did not contain an entry for the 
requested printer. 

PDERR_RETDEFFAILURE Specifies that the PD_RETURNDEFAULT 
flag was set in the Flags member of the 
PRINTDLG structure but that either the 
hDevMode or hDevNames member was 
nonzero. 

PDERR_SETUPFAILURE Specifies that the PrintDig function failed to 
load the required resources. 

See Also ChooseColor, ChooseFont, FindText, GetFileTitle, GetOpenFileName, 
GetSaveFileName, PrintDlg, ReplaceText 

CopyCursor 3. 1 

Syntax HCURSOR CopyCursor(hinst, hcur) 

function CopyCursor(hlnst: THandle; hCur: HCursor): HCursor; 

The CopyCursor function copies a cursor. 

Parameters hinst 

hcur 

Identifies the instance of the module that will copy the 
cursor. 

Identifies the cursor to be copied. 

Return Value The return value is the handle of the duplicate cursor if the function is 
successful. Otherwise, it is NULL. 

Comments When it no longer requires a cursor, an application must destroy the 
cursor, using the DestroyCursor function. 

The CopyCursor function allows an application or dynamic-link library to 
accept a cursor from another module. Because all resources are owned by 
the module in which they originate, a resource cannot be shared after the 
module is freed. CopyCursor allows an application to create a copy that 
the application then owns. 

See Also Copylcon, DestroyCursor, GetCursor, SetCursor, ShowCursor 

154 Windows API Guide 



CopyLZFile 

Copylcon 3. 1 

Syntax HICON Copy Icon(hinst, hicon) 

function CopyIcon(hInst: THandle; Icon: HIcon): HIcon; 

The Copylcon function copies an icon. 

Parameters hinst Identifies the instance of the module that will copy the icon. 

hicon Identifies the icon to be copied. 

Return Value The return value is the handle of the duplicate icon if the function is 
successful. Otherwise, it is NULL. 

Comments When it no longer requires an icon, an application should destroy the 
icon, using the Destroylcon function. 

The Copylcon function allows an application or dynamic-link library to 
accept an icon from another module. Because all resources are owned by 
the module in which they originate, a resource cannot be shared after the 
module is freed. Copy Icon allows an application to create a copy that the 
application then owns. 

See Also CopyCursor, Destroylcon, Drawlcon 

CopyLZFile 3.1 

Syntax #inc1ude <lzexpand.h> 
LONG CopyLZFile(hfSource, hfDest) 

function CopyLZFile(Source, Dest: Integer): Longint; 

The CopyLZFile function copies a source file to a destination file. If the 
source file is compressed, this function creates a decompressed 
destination file. If the source file is not compressed, this function 
duplicates the original file. 

Parameters hfSource 

hfDest 

Identifies the source file. 

Identifies the destination file. 

Return Value The return value specifies the size, in bytes, of the destination file if the 
function is successful. Otherwise, it is an error value less than zero; it may 
be one of the following: 

Chapter 4, Functions 155 



CopyLZFile 

156 

Value 

LZERROR_BADINHANDLE 

LZERROR_BADOUTHANDLE 

LZERROR_READ 

LZERROR_ WRITE 
LZERROR_GLOBALLOC 

LZERROR_UNKNOWNALG 

Meaning 

The handle identifying the source file was not 
valid. 
The handle identifying the destination file 
was not valid. 
The source file format was not valid. 
There is insufficient space for the output file. 
There is insufficient memory for the required 
buffers. 
The file was com pressed with an 
unrecognized compression algorithm. 

Comments The CopyLZFile function is designed for copying or decompressing 
multiple files, or both. To allocate required buffers, an application should 
call the LZStart function prior to calling CopyLZFile. To free these buffers, 
an application should call the LZDone function after copying the files. 

If the function is successful, the file identified by hfDest is decompressed. 

If the source or destination file is opened by using a C run-time function 
(rather than by using the _Iopen or Open File function), it must be opened 
in binary mode. 

Example The following example uses the CopyLZFile function to create copies of 
four text files: 

#define STRICT 

#include <windows.h> 
#include <lzexpand.h> 

#define NUM_FILES 4 

char *szSrc[NUM_FILES] 
{"readme. txt", "data. txt", "update. txt", "list. txt"}; 

char*szDest[NUM_FILES]= 
{"readme.bak", "data.bak", "update.bak", "list.bak"}; 

OFSTRUCT ofStrSrc; 
OFSTRUCT ofStrDest; 
HFILE hfSrcFile, hfDstFile; 
int i; 

/* Allocate internal buffers for the CopyLZFile function. */ 

LZStart(); 

/* Open, copy, and then close the files. * / 

for (i = 0; i < NUM FILES; i++) { 
hfSrcFile = LZopenFile(szSrc[i], &ofStrSrc, OF READ); 
hfDstFile = LZOpenFile(szDest[i], &ofStrDest, OF_CREATE); 

Windows API Guide 



CreateScalableFontResource 

CopyLZFile(hfSrcFile, hfDstFile); 
LZClose(hfSrcFile); 
LZClose(hfDstFile); 

LZDone () ; /* free the internal buffers * / 

See Also _Iopen, LZCopy, LZOone, LZStart, OpenFile 

CPIAppiet 3.1 

Syntax LONG CALLBACK* CPIApplet(hwndCPI, iMessage, IParaml, IParam2) 

TApplet_Proc = function(hWndCpl: HWnd; msg: Word; IParaml, 
IParam2: Longint): Longint; 

The CPIAppiet function serves as the entry point for a Control Panel 
dynamic-link library (OLL). This function is supplied by the application. 

Parameters hwndCPl 

iMessage 

IParaml 

IParam2 

Identifies the main Control Panel window. 

Specifies the message being sent to the OLL. 

Specifies 32 bits of additional message-dependent 
information. 

Specifies 32 bits of additional message-dependent 
information. 

Return Value The return value depends on the message. 

Comments Use the hwndCPl parameter for dialog boxes or other windows that 
require a handle of a parent window. 

CreateScalableFontResource 3.1 

Syntax BOOL CreateScalableFontResource(fHidden, IpszResourceFile, 
IpszFontFile,lpszCurrentPath) 

function CreateScalableFontResource(fHidden: HOC; IpszResourceFile, 
IpszFontFile, IpszCurrentPath: PChar): Bool; 

The CreateScalableFontResource function creates a font resource file for 
the specified scalable font file. 

Chapter 4, Functions 157 



CreateScalableFontResource 

158 

Parameters [Hidden 

IpszResourceFile 

IpszFontFile 

IpszCurrentPath 

Specifies whether the font is a read-only 
embedded font. This parameter can be one of the 
following values: 

Value Meaning 

a The font has read-write permission. 
1 The font has read-only permission and 

should be hidden from other applications in 
the system. When this flag is set, the font is 
not enumerated by the EnumFonts or 
EnumFontFamilies function. 

Points to a null-terminated string specifying the 
name of the font resource file that this function 
creates. 

Points to a null-terminated string specifying the 
scalable font file this function uses to create the 
font resource file. This parameter must specify 
either the filename and extension or a full path 
and filename, including drive and filename 
extension. 

Points to a null-terminated string specifying either 
the path to the scalable font file specified in the 
IpszFontFile parameter or NULL, if IpszFontFile 
specifies a full path. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments An application must use the CreateScalableFontResource function to 
create a font resource file before installing an embedded font. Font 
resource files for fonts with read-write permission should use the .FOT 
filename extension. Font resource files for read-only fonts should use a 
different extension (for example, .FOR) and should be hidden from other 
applications in the system by specifying 1 for the [Hidden parameter. The 
font resource files can be installed by using the AddFontResource 
function. 

When the IpszFontFile parameter specifies only a filename and extension, 
the IpszCurrentPath parameter must specify a path. When the IpszFontFile 
parameter specifies a full path, the IpszCurrentPath parameter must be 
NULL or a pointer to NULL. 

When only a filename and extension is specified in the IpszFontFile 
parameter and a path is specified in the IpszCurrentPath parameter, the 

Windows API Guide 



CreateScalableFontResource 

string in IpszFontFile is copied into the .FOT file as the .TTF file that 
belongs to this resource. When the AddFontResource function is called, 
the system assumes that the .TTF file has been copied into the SYSTEM 
directory (or into the main Windows directory in the case of a network 
installation). The .TTF file need not be in this directory when the 
CreateScalableFontResource function is called, because the 
IpszCurrentPath parameter contains the directory information. A resource 
created in this manner does not contain absolute path information and 
can be used in any Windows installation. 

When a path is specified in the IpszFontFile parameter and NULL is 
specified in the IpszCurrentPath parameter, the string in IpszFontFile is 
copied into the .FOT file. In this case, when the AddFontResource 
function is called, the .TTF file must be at the location specified in the 
IpszFontFile parameter when the CreateScalableFontResource function 
was called; the IpszCurrentPath parameter is not needed. A resource 
created in this manner contains absolute references to paths and drives 
and will not work if the .TTF file is moved to a different location. 

The CreateScalableFontResource function supports only TrueType 
scalable fonts. 

Example The following example shows how to create a TrueType font file in the 
SYSTEM directory of the Windows startup directory: 

CreateScalableFontResource(O, "c:\\windows\\system\\font.fot", 
"font.ttr", "c:\\windows\\system"); 

AddFontResource("c:\\windows\\system\\font.fot"); 

The following example shows how to create a TrueType font file in a 
specified directory: 

CreateScalableFontResource (0, "c: \ \windows\ \system\ \ font. fot", 
"c:\\fontdir\\font.ttr", NULL); 

AddFontResource("c:\\windows\\system\\font.fot"); 

Chapter 4, Functions 159 



DdeAbandonTransaction 

The following example shows how to work with a standard embedded 
font: 

HFONThfonti 

1* Extract. TTF file into C: \MYDIR\FONT. TTR. * 1 

CreateScalableFontResource (O~\ font. fot "~\c: \ \mydir\ \font. ttr"~ULL) i 

AddFontResource("font.fot"); 

hfont=CreateFont( ... ,CLIP_DEFAULT_PRECIS, ... ,"FONT"); 

. 1* Use the font. *1 

DeleteObject(hfont)i 

RemoveFontResource("font.fot")i 

1* Delete C:\MYDIR\FONT.FOT and C:\MYDIR\FONT.TTR. *1 

The following example shows how to work with a read-only embedded 
font: 

HFONThfonti 

I*Extract.TTFfileintoC:\MYDIR\FONT.TTR.*1 

CreateScalableFontResource(l~font.for"~c:\\mydir\\font.ttr"~ULL)i 

AddFontResource("font.for")i 

hfont=CreateFont ( ... , CLIP_EMBEDDED, ... , "FONT"); 

. 1* Use the font. *1 

DeleteObject(hfont)i 

RemoveFontResource("font.for")i 

1* Delete C:\MYDIR\FONT.FOR and C:\MYDIR\FONT.TTR. *1 

See Also AddFontResource 

DdeAbandon Transaction 3.1 

Syntax #inc1ude <ddeml.h> 
BOOL DdeAbandonTransaction(idInst, hConv, idTransaction) 

160 Windows API Guide 



DdeAbandonTransaction 

function DdeAbandonTransaction(lnst: Longint; Conv: HConv; 
Transaction: Longint): Bool; 

The DdeAbandonTransaction function abandons the specified 
asynchronous transaction and releases all resources associated with the 
transaction. 

Parameters idlnst Specifies the application-instance identifier obtained by a 
previous call to the Ddelnitialize function. 

hConv Identifies the conversation in which the transaction was 
initiated. If this parameter is NULL, all transactions are 
abandoned (the idTransaction parameter is ignored). 

idTransaction Identifies the transaction to terminate. If this parameter is 
NULL, all active transactions in the specified conversation 
are abandoned. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT _INITIALIZED 
DMLERR_INV ALIDPARAMETER 
DMLERR_NO_ERROR 
DMLERR_UNFOUND_QUEUE_ID 

Comments Only a dynamic data exchange (DDE) client application should call the 
DdeAbandonTransaction function. If the server application responds to 
the transaction after the client has called DdeAbandonTransaction, the 
system discards the transaction results. This function has no effect on 
synchronous transactions. 

See Also DdeClientTransaction, DdeGetLastError, Ddelnitialize, 
DdeQueryConvlnfo 

Chapter 4, Functions 161 



OdeAccessOoto 

DdeAccessData 3.1 

162 

Syntax #include <ddeml.h> 
BYfE FAR* DdeAccessData(hData, IpcbData) 

function DdeAccessData(Data: HDDEData; DataSize: PLongint): Pointer; 

The DdeAccessData function provides access to the data in the given 
global memory object. An application must call the DdeUnaccessData 
function when it is finished accessing the data in the object. 

Parameters hData Identifies the global memory object to access. 

lpcbData Points to a variable that receives the size, in bytes, of the 
global memory object identified by the hData parameter. If 
this parameter is NULL, no size information is returned. 

Return Value The return value points to the first byte of data in the global memory 
object if the function is successful. Otherwise, the return value is NULL. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT _INITIALIZED 
DMLERR_INV ALIDPARAMETER 
DMLERR_NO _ERROR 

Comments If the hData parameter has not been passed to a Dynamic Data Exchange 
Management Library (DDEML) function, an application can use the 
pointer returned by DdeAccessData for read-write access to the global 
memory object. If hData has already been passed to a DDEML function, 
the pointer can only be used for read-only access to the memory object. 

Example The following example uses the DdeAccessData function to obtain a 
pointer to a global memory object, uses the pointer to copy data from the 
object to a local buffer, then frees the pointer: 

HDDEDATA hData; 
LPBYTE IpszAdviseData; 
DWORD cbDataLen; 
DWORD i; 
char szData[128]; 

IpszAdviseData = DdeAccessData(hData, &cbDataLen); 
for (i = 0; i < cbDataLen; i++) 

szData[i] = *lpszAdviseData++; 
DdeUnaccessData(hData) ; 

Windows API Guide 



DdeAddData 

See Also DdeAddData, DdeCreateDataHandle, DdeFreeDataHandle, 
DdeGetLastError, DdeUnaccessData 

DdeAddData 3.1 

Syntax #include <ddeml.h> 
HDDEDATA DdeAddData(hData, IpvSrcBuf, cbAddData, offObj) 

function DdeAddData(Data: HDDEData; Src: Pointer; cb, Off: Longint): 
HDDEData; 

The DdeAddData function adds data to the given global memory object. 
An application can add data beginning at any offset from the beginning of 
the object. If new data overlaps data already in the object, the new data 
overwrites the old data in the bytes where the overlap occurs. The 
contents of locations in the object that have not been written to are 
undefined. 

Parameters hData 

IpvSrcBuf 

cbAddData 

offObj 

Identifies the global memory object that receives additional 
data. 

Points to a buffer containing the data to add to the global 
memory object. 

Specifies the length, in bytes, of the data to be added to the 
global memory object. 

Specifies an offset, in bytes, from the beginning of the 
global memory object. The additional data is copied to the 
object beginning at this offset. 

Return Value The return value is a new handle of the global memory object if the 
function is successful. The new handle should be used in all references to 
the object. The return value is zero if an error occurs. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT_INITIALIZED 
DMLERR_INVALIDP ARAMETER 
DMLERR_MEMORY_ERROR 
DMLERR_NO_ERROR 

Chapter 4, Functions 163 



DdeAddData 

Comments After a data handle has been used as a parameter in another Dynamic 
Data Exchange Management Library (DDEML) function or returned by a 
DDE callback function, the handle may only be used for read access to the 
global memory object identified by the handle. 

If the amount of global memory originally allocated is not large enough to 
hold the added data, the DdeAddData function will reallocate a global 
memory object of the appropriate size. 

Example The following example creates a global memory object, uses the 
DdeAddData function to add data to the object, and then passes the data 
to a client with an XTYP _POKE transaction: 

DWORD idInst; 
HDDEDATA hddeStrings; 
HSZ hszMyItem; 
DWORD offObj = 0; 
char szMyBuf[16]; 
HCONV hconv; 
DWORD dwResult; 
BOOL fAddAString; 

1* instance identifier *1 
*1 

item-name string handle *1 
offset in global object *1 
temporary string buffer *1 
conversation handle *1 

1* data handle 
1* 
1* 
1* 
1* 
1* 
1* 

transaction results 
TRUE if strings to add 

*1 
*1 

1* Create a global memory object. *1 

hddeStrings=DdeCreateDataHandle (idInst, NULL, 0, 0, 
hszMyItem, CF_TEXT, 0); 

1* 
* If a string is available, the application-defined function 
* IsThereAString () copies it to szMyBuf and returns TRUE. Otherwise, 
* it returns FALSE. 
*1 

while((fAddAString=IsThereAString())) { 

1* Add the string to the global memory object. *1 

DdeAddData(hddeStrings, 
&szMyBuf, 
(DWORD) strlen(szMyBuf) + 1, 
offObj) ; 

1* data handle *1 
1* string buffer *1 
1* character count *1 
1* offset in object *1 

offObj = (DWORD) strlen(szMyBuf) + 1; 1* adjust offset *1 

1* No more data to add, so poke it to the server. *1 

DdeClientTransaction((voidFAR*)hddeStrings,-lL,hconv,hszMyItem, 
CF_TEXT, XTYF_POKE, 1000, &dwResult); 

See Also DdeAccessData, DdeCreateDataHandle, DdeGetLastError, 
DdeUnaccessData 

164 Windows API Guide 



OdeCallback 

DdeCallback 3.1 

Syntax #include <ddeml.h> 
HDDEDAT A CALLBACK DdeCallback(type, fmt, hconv, hszl, hsz2, 
hData, dwDatal, dwData2) 

TCallback = function(CallType, Fmt: Word; Conv: HConv; hszl, hsz2: 
HSZ; Data: HDDEData; Datal, Data2: Longint): HDDEData; 

The OdeCaliback function is an application-defined dynamic data 
exchange (DDE) callback function that processes DDE transactions sent to 
the function as a result of DDE Management Library (DDEML) calls by 
other applications. 

Parameters type 

Value 

Chapter 4, Functions 

Specifies the type of the current transaction. This 
parameter consists of a combination of transaction-class 
flags and transaction-type flags. The following table 
describes each of the transaction classes and provides a list 
of the transaction types in each class. 

Meaning 

A DDE callback function should return TRUE or 
FALSE when it finishes processing a transaction 
that belongs to this class. Following are the 
XCLASS_BOOL transaction types: 
XTYP _ADVSTART 
XTYP _CONNECT 
A DDE callback function should return a DDE data 
handle, CBR_BLOCK, or NULL when it finishes 
processing a transaction that belongs to this class. 
Following are the XCLASS_DATA transaction 
types: 
XTYP _ADVREQ 
XTYP _REQUEST 
XTYP _ WILDCONNECT 
A DDE callback function should return 
DDE_FACK, DDE_FBUSY, or 
DDE_FNOTPROCESSED when it finishes 
processing a transaction that belongs to this class. 
Following are the XCLASS_FLAGS transaction 
types: 
XTYP _ADVDATA 
XTYP_EXECUTE 
XTYP_POKE 

165 



OdeCaliback 

Value Meaning 

XC LASS_NOTIFICATION The transaction types that belong to this class are 
for notification purposes only. The return value 
from the callback function is ignored. Following are 
the XC LASS_NOTIFICATION transaction types: 

fmt 

hconv 

hszl 

hsz2 

hData 

dwDatal 

dwData2 

XTYP _ADVSTOP 
XTYP _CONNECT_CONFIRM 
XTYP _DISCONNECT 
XTYP_ERROR 
XTYP _MONITOR 
XTYP _REGISTER 
XTYP _XACT_COMPLETE 
XTYP _ UNREGISTER 

Specifies the format in which data is to be sent or received. 

Identifies conversation associated with the current transaction. 

Identifies a string. The meaning of this parameter depends 
on the type of the current transaction. For more 
information, see the description of the transaction type. 

Identifies a string. The meaning of this parameter depends 
on the type of the current transaction. For more 
information, see the description of the transaction type. 

Identifies DOE data. The meaning of this parameter 
depends on the type of the current transaction. For more 
information, see the description of the transaction type. 

Specifies transaction-specific data. For more information, 
see the description of the transaction type. 

Specifies transaction-specific data. For more information, 
see the description of the transaction type. 

Return Value The return value depends on the transaction class. 

Comments The callback function is called asynchronously for transactions that do not 
involve creating or terminating conversations. An application that does 
not frequently accept incoming messages will have reduced DOE 
performance because DDEML uses messages to initiate transactions. 

An application must register the callback function by specifying its 
address in a call to the Ddelnitialize function. DdeCaliback is a 
placeholder for the application- or library-defined function name. The 
actual name must be exported by including it in an EXPORTS statement 
in the application's module-definition file. 

See Also DdeEnableCaliback, Ddelnitialize 

166 Windows API Guide 



DdeClientTransaction 

DdeClientTransaction 3.1 

Syntax #include <ddeml.h> 
HDDEDATA DdeClientTransaction(lpvData, cbData, hConv, hszltem, 
uFmt, uType, uTimeout, IpuResult) 

function DdeClientTransaction(Data: Pointer; DataLen: Longint; Conv: 
HConv; Item: HSZ; Fmt, DataType: Word; Timeout: Longint; Result: 
PLongint): HDDEData; 

The DdeClientTransaction function begins a data transaction between a 
client and a server. Only a dynamic data exchange (DDE) client 
application can call this function, and only after establishing a 
conversation with the server. 

Parameters IpvData 

cbData 

hConv 

hszltem 

uFmt 

uType 

Chapter 4, Functions 

Points to the beginning of the data that the client needs to 
pass to the server. 

Optionally, an application can specify the data handle 
(HDDEDATA) to pass to the server, in which case the 
cbData parameter should be set to -1. This parameter is 
required only if the uType parameter is XTYP _EXECUTE 
or XTYP _POKE. Otherwise, this parameter should be 
NULL. 

Specifies the length, in bytes, of the data pointed to by the 
IpvData parameter. A value of -1 indicates that IpvData is a 
data handle that identifies the data being sent. 

Identifies the conversation in which the transaction is to 
take place. 

Identifies the data item for which data is being exchanged 
during the transaction. This handle must have been 
created by a previous call to the DdeCreateStringHandle 
function. This parameter is ignored (and should be set to 
NULL) if the uType parameter is XTYP _EXECUTE. 

Specifies the standard clipboard format in which the data 
item is being submitted or requested. 

Specifies the transaction type. This parameter can be one of 
the following values: 

167 



DdeClientTransaction 

168 

Value Meaning 

XTYP _ADVSTART Begins an advise loop. Any number of distinct advise 
loops can exist within a conversation. An application 
can alter the advise loop type by combining the 
XTYP _ADVSTART transaction type with one or more of 
the following flags: 

Value 

XTYPF _NODATA 

Meaning 

Instructs the server to notify the 
client of any data changes 
without actually sending the 
data. This flag gives the client 
the option of ignoring the 
notification or requesting the 
changed data from the server. 

Instructs the server to wait until 
the client acknowledges that it 
received the previous data item 
before sending the next data 
item. This flag prevents a fast 
server from sending data faster 
than the client can process it. 

XTYP _ADVSTOP 
XTYP_EXECUTE 
XTYP_POKE 
XTYP _REQUEST 

Ends an advise loop. 
Begins an execute transaction. 
Begins a poke transaction. 
Begins a request transaction. 

uTimeout 

IpuResult 

Specifies the maximum length of time, in milliseconds, that 
the client will wait for a response from the server 
application in a synchronous transaction. This parameter 
should be set to TIMEOUT _ASYNC for asynchronous 
transactions. 

Points to a variable that receives the result of the 
transaction. An application that does not check the result 
can set this value to NULL. For synchronous transactions, 
the low-order word of this variable will contain any 
applicable DDE_ flags resulting from the transaction. This 
provides support for applications dependent on 
DDE_APPST ATUS bits. (It is recommended that 
applications no longer use these bits because they may not 
be supported in future versions of the DDE Management 
Library.) For asynchronous transactions, this variable is 
filled with a unique transaction identifier for use with the 

Windows API Guide 



DdeClientTransaction 

DdeAbandonTransaction function and the 
XTYP _XACT_COMPLETE transaction. 

Return Value The return value is a data handle that identifies the data for successful 
synchronous transactions in which the client expects data from the server. 
The return value is TRUE for successful asynchronous transactions and 
for synchronous transactions in which the client does not expect data. The 
return value is FALSE for all unsuccessful transactions. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_ADVACKTIMEOUT 
DMLERR_BUSY 
DMLERR_DATAACKTIMEOUT 
DMLERR_DLL_NOT_INITIALIZED 
DMLERR_EXECACKTIMEOUT 
DMLERR_INV ALIDP ARAMETER 
DMLERR_MEMORY_ERROR 
DMLERR_NO_CONV _ESTABLISHED 
DMLERR_NO_ERROR 
DMLERR_NOTPROCESSED 
DMLERR_POKEACKTIMEOUT 
DMLERR_POSTMSG _FAILED 
DMLERR_REENTRANCY 
DMLERR_SERVER_DIED 
DMLERR_UNADVACKTIMEOUT 

Comments When the application is finished using the data handle returned by the 
DdeClientTransaction function, the application should free the handle by 
calling the DdeFreeDataHandle function. 

Transactions can be synchronous or asynchronous. During a synchronous 
transaction, the DdeClientTransaction function does not return until the 
transaction completes successfully or fails. Synchronous transactions 
cause the client to enter a modal loop while waiting for various 
asynchronous events. Because of this, the client application can still 
respond to user input while waiting on a synchronous transaction but 
cannot begin a second synchronous transaction because of the activity 
associated with the first. The DdeClientTransaction function fails if any 
instance of the same task has a synchronous transaction already in 
progress. 

Chapter 4, Functions 169 



DdeCmpStringHandles 

During an asynchronous transaction, the DdeClientTransaction function 
returns after the transaction is begun, passing a transaction identifier for 
reference. When the server's DOE callback function finishes processing an 
asynchronous transaction, the system sends an XTYP _XACT _COMPLETE 
transaction to the client. This transaction provides the client with the 
results of the asynchronous transaction that it initiated by calling the 
DdeClientTransaction function. A client application can choose to 
abandon an asynchronous transaction by calling the 
DdeAbandonTransaction function. 

Example The following example requests an advise loop with a DOE server 
application: 

HCONVhconvj 
HSZhszNow; 
HDDEDATAhDatai 
DWORD::iwResul t i 

hDat~deClientTransaction( 

(LPBYTE) NULL, /* pass no data to server */ 
0, /* no data */ 
hconv, /* conversation handle */ 
hszNow, /* item name */ 
CF_TEXT, /* clipboard format */ 
XTYF ADVSTART, /* start an advise loop */ 
1000~ /* time-out in one second */ 
&dwResult)i /* points to result flags */ 

See Also DdeAbandonTransaction, DdeAccessData, DdeConnect, 
DdeConnectList, DdeCreateStringHandle 

DdeCmpStringHandles 3.1 

170 

Syntax #include <ddeml.h> 
int DdeCmpStringHandles(hszl, hsz2) 

function DdeCmpStringHandles(hszl, hsz2: HSZ): Integer; 

The DdeCmpStringHandles function compares the values of two string 
handles. The value of a string handle is not related to the case of the 
associated string. 

Parameters hszl 

hsz2 

Specifies the first string handle. 

Specifies the second string handle. 

Windows API Guide 



DdeCmpStringHandles 

Return Value The return value can be one of the following: 

Value Meaning 

-1 

o 
1 

The value of hszl is either 0 or less than the value of hsz2. 

The values of hszl and hsz2 are equal (both can be 0). 
The value of hsz2 is either 0 or less than the value of hszl. 

Comments An application that needs to do a case-sensitive comparison of two string 
handles should compare the string handles directly. An application 
should use DdeCompStringHandles for all other comparisons to preserve 
the case-sensitive nature of dynamic data exchange (DDE). 

The DdeCompStringHandles function cannot be used to sort string 
handles alphabetically. 

Example This example compares two service-name string handles and, if the 
handles are the same, requests a conversation with the server, then issues 
an XTYP _ADVST ART transaction: 

HSZ hszClock; 
HSZ hszTime; 
HSZ hsz1; 
HCONV hConv; 
DWORD dwResult; 
DWORD idInst; 

/* 

/* service name */ 
/* topic name */ 
/* unknown server 
/* conversation handle 
/* result flags 
/* instance identifier 

*/ 
*/ 
*/ 
*/ 

* Compare unknown service name handle with the string handle 
* for the clock application. 
*/ 

if{!DdeCmpStringHandles{hsz1,hszClock)){ 

/* 
* If this is the clock application, start a conversation 
* with it and request an advise loop. 
*/ 

hConv = DdeConnect{idInst, hszClock, hszTime, NULL); 
if (hConv != (HCONV) NULL) 

DdeClientTransaction{NULL, 0, hConv, hszNow, 
CF_TEXT, XTYF_ADVSTART, 1000, &dwResult); 

See Also DdeAccessData, DdeCreateStringHandle, DdeFreeStringHandle 

Chapter 4, Functions 171 



DdeConnect 

DdeConnect 3.1 

172 

Syntax #include <ddeml.h> 
HCONV DdeConnect(idInst, hszService, hszTopic, pCC) 

function DdeConnect(lnst: Longint; Service, Topic: HSZ; CC: 
PConvContext): HConv; 

The DdeConnect function establishes a conversation with a server 
application that supports the specified service name and topic name pair. 
If more than one such server exists, the system selects only one. 

Parameters idlnst 

hszService 

hszTopic 

pee 

Specifies the application-instance identifier obtained by a 
previous call to the Ddelnitialize function. 

Identifies the string that specifies the service name of the 
server application with which a conversation is to be 
established. This handle must have been created by a 
previous call to the DdeCreateStringHandle function. If 
this parameter is NULL, a conversation will be established 
with any available server. 

Identifies the string that specifies the name of the topic on 
which a conversation is to be established. This handle must 
have been created by a previous call to the 
DdeCreateStringHandle function. If this parameter is 
NULL, a conversation on any topic supported by the 
selected server will be established. 

Points to the CONVCONTEXT structure that contains 
conversation-context information. If this parameter is 
NULL, the server receives the default CONVCONTEXT 
structure during the XTYP _CONNECT or 
XTYP _ WILDCONNECT transaction. 

The CONVCONTEXT structure has the following form: 

# incl ude::ddeml. h> 

typedef struct tagCONVCONTEXT { /* cc 
*/ 

UINT cb; 

UINT wFlags; 
UINT wCountryID; 
int iCodePage; 
DWORD dwLangID; 
DWORD dwSecurity; 

}CONVCONTEXTi 

Windows API Guide 



DdeConnect 

Return Value The return value is the handle of the established conversation if the 
function is successful. Otherwise, it is NULL. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT_INITIALIZED 
DMLERR_INV ALIDP ARAMETER 
DMLERR_NO_CONV _ESTABLISHED 
DMLERR_NO_ERROR 

Comments The client application should not make assumptions regarding which 
server will be selected. If an instance-specific name is specified in the 
hszService parameter, a conversation will be established only with the 
specified instance. Instance-specific service names are passed to an 
application's dynamic data exchange callback function during the 
XTYP _REGISTER and XTYP _ UNREGISTER transactions. 

All members of the default CONVCONTEXT structure are set to zero 
except cb, which specifies the size of the structure, and iCodePage, which 
specifies CP _ WINANSI (the default code page). 

Example The following example creates a service-name string handle and a 
topic-name string handle, then attempts to establish a conversation with a 
server that supports the service name and topic name. If the attempt fails, 
the example retrieves an error value identifying the reason for the failure. 

DWORD idInst = OL; 
HSZ hszClock; 
HSZ hszTime; 
HCONV hconv; 
UINT uErro r; 

hszClock = DdeCreateStringHandle(idInst, "Clock", CP WINANSI); 
hszTime = DdeCreateStringHandle(idInst, "Time", CP_WINANSI); 

if ((hconv = DdeConnect ( 
idInst, 
hszClock, 
hszTime, 
NULL)) == NULL) 

/* instance identifier 
/* server's service name 
/* topic name 
/* use default CONVCONTEXT 

uError = DdeGetLastError(idInst); 

See Also DdeConnectList, DdeCreateStringHandle, DdeDisconnect, 
DdeDisconnectList, Ddelnitialize 

*/ 
*/ 
*/ 
*/ 

Chapter 4, Functions 173 



DdeConnectList 

DdeConnectList 3.1 

174 

Syntax #inc1ude <ddeml.h> 
HCONVLIST DdeConnectList(idInst, hszService, hszTopic, hConvList, 
pCC) 

function DdeConnectList(Inst: Longint; Service, Topic: HSZ; convList: 
HConvList; CC: PConvContext): HConvList; 

The DdeConnectList function establishes a conversation with all server 
applications that support the specified service/topic name pair. An 
application can also use this function to enumerate a list of conversation 
handles by passing the function an existing conversation handle. During 
enumeration, the Dynamic Data Exchange Management Library 
(DDEML) removes the handles of any terminated conversations from the 
conversation list. The resulting conversation list contains the handles of 
all conversations currently established that support the specified service 
name and topic name. 

Parameters idlnst 

hszService 

hszTopic 

hConvList 

pCC 

Specifies the application-instance identifier obtained by a 
previous call to the Ddelnitialize function. 

Identifies the string that specifies the service name of the 
server application with which a conversation is to be 
established. If this parameter is NULL, the system will 
attempt to establish conversations with all available 
servers that support the specified topic name. 

Identifies the string that specifies the name of the topic on 
which a conversation is to be established. This handle must 
have been created by a previous call to the 
DdeCreateStringHandle function. If this parameter is 
NULL, the system will attempt to establish conversations 
on all topics supported by the selected server (or servers). 

Identifies the conversation list to be enumerated. This 
parameter should be set to NULL if a new conversation list 
is to be established. 

Points to the CONVCONTEXT structure that contains 
conversation-context information. If this parameter is 
NULL, the server receives the default CONVCONTEXT 
structure during the XTYP _CONNECT or 
XTYP _ WILDCONNECT transaction. 

Windows API Guide 



DdeConnectList 

The CONVCONTEXT structure has the following form: 

#include <ddeml.h> 

typedef struct tagCONVCONTEXT { /* cc 
*/ 

UINT cbi 

UINT wFlagsi 
UINT wCountryIDi 
int iCodePagei 
DWORD dwLangIDi 
DWORD dwSecuritYi 

CONVCONTEXT i 

Return Value The return value is the handle of a new conversation list if the function is 
successful. Otherwise, it is NULL. The handle of the old conversation list 
is no longer valid. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT _INITIALIZED 
DMLERR_INV ALID _P ARAMETER 
DMLERR_NO_CONV _ESTABLISHED 
DMLERR_NO_ERROR 
DMLERR_SYS_ERROR 

Comments An application must free the conversation-list handle returned by this 
function, regardless of whether any conversation handles within the list 
are active. To free the handle, an application can call the 
DdeDisconnectList function. 

All members of the default CONVCONTEXT structure are set to zero 
except cb, which specifies the size of the structure, and iCodePage, which 
specifies CP _WINANSI (the default code page). 

Example The following example uses the DdeConnectList function to establish a 
conversation with all servers that support the System topic, counts the 
servers, allocates a buffer for storing the server's service-name string 
handles, and then copies the handles to the buffer: 

HCONVLIST hconvListi /* conversation list */ 
DWORD idInsti /* instance identifier */ 
HSZ hszSystemi /* System topic */ 
HCONV hconv = NULLi /* conversation handle */ 
CONVINFO Cii /* holds conversation data */ 
UINT cConv = Oi /* count of conv. handles */ 
HSZ *pHsz, *aHszi /* point to string handles */ 

Chapter 4, Functions 175 



DdeCreateDataHandle 

/* Connect to all servers that support the System topic. */ 

hconvList=DdeConnectList(idlnst, (HSZ)NULL,hszSystem, 
(HCONV) NULL, (LPVOID) NULL); 

/ * Count the number of handles in the conversation list. * / 

while ((hconv=DdeQueryNextServer(hconvList,hconv)) !=(HCONV)NULL) 
cConv++; 

/ * Allocate a buffer for the string handles. * / 

hconv = (HCONV) NULL; 
aHsz= (HSZ*) LocalAlloc(LMEM_FIXED, cConv*sizeof(HSZ)); 

/* Copy the string handles to the buffer. * / 

pHsz = aHsz; 
while ( (hconv=DdeQueryNextServer (hconvList, hconv) ) ! = (HCONV) NULL) { 

DdeQueryConvlnfo(hconv, QID SYNC, (PCONVINFO) &ci); 
DdeKeepStringHandle(idlnst,-ci.hszSvcPartner); 
*pHsz++ = ci.hszSvcPartner; 

. / * Use the handles; converse wi th servers. * / 

/ * Free the memory and terminate conversations. * / 

LocalFree((HANDL~Hsz); 

DdeDisconnectList(hconvList); 

See Also DdeConnect, DdeCreateStringHandle, DdeDisconnect, 
DdeDisconnectList, Ddelnitialize, DdeQueryNextServer 

DdeCreateDataHandle 3.1 

176 

Syntax #include <ddeml.h> 
HDDEDAT A DdeCreateDataHandle(idInst, IpvSrcBuf, cbInitData, 
offSrcBuf, hszItem, uFmt, afCmd) 

function DdeCreateDataHandleOnst: Longint; Src: Pointer; cb, Off: 
Longint; Item: HSZ; Fmt, Cmd: Word): HDDEData; 

The DdeCreateDataHandle function creates a global memory object and 
fills the object with the data pointed to by the IpvSrcBuf parameter. A 
dynamic data exchange (DOE) application uses this function during 
transactions that involve passing data to the partner application. 

Windows API Guide 



DdeCreateDataHandle 

Parameters idlnst Specifies the application-instance identifier obtained by a 
previous call to the Ddelnitialize function. 

IpvSrcBuf 

cblnitData 

offSrcBuf 

hszltem 

uFmt 

afCmd 

Points to a buffer that contains data to be copied to the 
global memory object. If this parameter is NULL, no data 
is copied to the object. 

Specifies the amount, in bytes, of memory to allocate for 
the global memory object. If this parameter is zero, the 
IpvSrcBuf parameter is ignored. 

Specifies an offset, in bytes, from the beginning of the 
buffer pointed to by the IpvSrcBufparameter. The data 
beginning at this offset is copied from the buffer to the 
global memory object. 

Identifies the string that specifies the data item 
corresponding to the global memory object. This handle 
must have been created by a previous call to the 
DdeCreateStringHandle function. If the data handle is to 
be used in an XTYP _EXECUTE transaction, this parameter 
must be set to NULL. 

Specifies the standard clipboard format of the data. 

Specifies the creation flags. This parameter can be 
HDATA_APPOWNED, which specifies that the server 
application that calls the DdeCreateDataHandle function 
will own the data handle that this function creates. This 
makes it possible for the server to share the data handle 
with multiple clients instead of creating a separate handle 
for each request. If this flag is set, the server must 
eventually free the shared memory object associated with 
this handle by using the DdeFreeDataHandle function. If 
this flag is not set, after the data handle is returned by the 
server's DOE callback function or used as a parameter in 
another DOE Management Library function, the handle 
becomes invalid in the application that creates the handle. 

Return Value The return value is a data handle if the function is successful. Otherwise, 
it is NULL. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

Chapter 4, Functions 

DMLERR_DLL_NOT _INITIALIZED 
DMLERR_INV ALIDP ARAMETER 
DMLERR_MEMORY_ERROR 
DMLERR_NO_ERROR 

177 



DdeCreateDataHandle 

178 

Comments Any locations in the global memory object that are not filled are 
undefined. 

After a data handle has been used as a parameter in another DDEML 
function or has been returned by a DOE callback function, the handle may 
be used only for read access to the global memory object identified by the 
handle. 

If the application will be adding data to the global memory object (using 
the DdeAddData function) so that the object exceeds 64K in length, then 
the application should specify a total length (cblnitData + offSrcData) that 
is equal to the anticipated maximum length of the object. This avoids 
unnecessary data copying and memory reallocation by the system. 

Example The following example processes the XTYP _ WILDCONNECT transaction 
by returning a data handle to an array of HSZPAIR structures-one for 
each topic name supported: 

#define CTOPICS 2 

UINT type; 
UINT fmt; 
HSZPAIR ahp[(CTOPICS + 1)]; 
HSZ ahszTopicList[CTOPICS]; 
HSZ hszServ, hszTopic; 
WORD i, j; 

if (type == XTYF _ WILDCONNECT) 

/* 
* Scan the topic list and create array of HSZPAIR data 
* st ruct ures . 
*/ 

j = 0; 
for (i = 0; i < CTOPICS; i++) { 

/* 

if (hszTopic == (HSZ) NULL I I 
hszTopic == ahszTopicList[i]) 

ahp[j] .hszSvc = hszServ; 
ahp[j++].hszTopic = ahszTopicList[i]; 

* End the list with an HSZPAIR structure that contains NULL 
* string handles as its members. 
*/ 

ahp[j] .hszSvc = NULL; 
ahp[j++] .hszTopic = NULL; 

/* 
* Return a handle to a global memory object containing the 
* HSZPAIR structures. 
*/ 

Windows API Guide 



DdeCreateStringHandle 

return DdeCreateDataHandle( 
idlnst, /* instance identifier */ 
&ahp, /* points to HSZPAIR array */ 
sizeof(HSZ) * j, /* length of the array */ 
0, / * start at the beginning * / 
NULL, /* no item-name string */ 
fmt, /* return the same format */ 
0); /* let the system own it */ 

See Also DdeAccessData, DdeFreeDataHandle, DdeGetData, Ddelnitialize 

DdeCreateStringHandle 3.1 

Syntax #include <ddeml.h> 
HSZ OdeCreateStringHandle(idlnst, IpszString, codepage) 

function OdeCreateStringHandleCInst: Longint; psz: PChar; CodePage: 
Integer): HSZ; 

The DdeCreateStringHandle function creates a handle that identifies the 
string pointed to by the IpszString parameter. A dynamic data exchange 
(DOE) client or server application can pass the string handle as a 
parameter to other DOE Management Library functions. 

Parameters idlnst Specifies the application-instance identifier obtained by a 
previous call to the Ddelnitialize function. 

IpszString 

codepage 

Points to a buffer that contains the null-terminated string 
for which a handle is to be created. This string may be any 
length. 

Specifies the code page used to render the string. This 
value should be either CP _ WINANSI or the value returned 
by the GetKBCodePage function. A value of zero implies 
CP _ WINANSI. 

Return Value The return value is a string handle if the function is successful. Otherwise, 
it is NULL. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

Chapter 4, Functions 

OMLERR_INV ALIOP ARAMETER 
OMLERR_NO_ERROR 
OMLERR_SYS_ERROR 

179 



DdeCreateStringHandle 

180 

Comments Two identical strings always correspond to the same string handle. String 
handles are unique across all tasks that use the DDEML. That is, when an 
application creates a handle for a string and another application creates a 
handle for an identical string, the string handles returned to both 
applications are identical-regardless of case. 

The value of a string handle is not related to the case of the string it 
identifies. 

When an application has either created a string handle or received one in 
the callback function and has used the DdeKeepStringHandle function to 
keep it, the application must free that string handle when it is no longer 
needed. 

An instance-specific string handle is not mappable from string handle to 
string to string handle again. This is shown in the following example, in 
which the DdeQueryString function creates a string from a string handle 
and then DdeCreateStringHandle creates a string handle from that string, 
but the two handles are not the same: 

DWORD idInst; 
DWORD cb; 
HSZ hszInst, hszNew; 
psz pszInst; 

DdeQueryString(idInst, hszInst, pszInst, cb, CP WINANSI); 
hszNew = DdeCreateStringHandle(idInst, pszInst,-CP_WINANSI); 
/* hszNew != hszInst ! */ 

Example The following example creates a service-name string handle and a 
topic-name string handle and then attempts to establish a conversation 
with a server that supports the service name and topic name. If the 
attempt fails, the example obtains an error value identifying the reason 
for the failure. 

DWORD idInst = OL; 
HSZ hszClock; 
HSZ hszTime; 
HCONV hconv; 
UINT uError; 

hszClock = DdeCreateStringHandle(idInst, "Clock", CP WINANSI); 
hszTime = DdeCreateStringHandle(idInst, "Time", CP_WINANSI); 

if ((hconv = DdeConnect ( 
idInst, 
hszClock, 
hszTime, 
NULL)) == NULL) 

/* instance identifier 
/* server's service name 
/* topic name 
/* use default CONVCONTEXT 

uError = DdeGetLastError(idInst); 

*/ 
*/ 
*/ 
*/ 

Windows API Guide 



DdeDisconnectList 

See Also DdeAccessData, DdeCmpStringHandles, DdeFreeStringHandle, 
Ddelnitialize, DdeKeepStringHandle, DdeQueryString 

DdeDisconnect 

Syntax #include <ddeml.h> 
BOOL DdeDisconnect(hConv) 

function DdeDisconnect(Conv: HConv): Bool; 

3.1 

The DdeDisconnect function terminates a conversation started by either 
the DdeConnect or DdeConnectList function and invalidates the given 
conversation handle. 

Parameters hConv Identifies the active conversation to be terminated. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT_INITIALIZED 
DMLERR_NO_CONV _ESTABLISHED 
DMLERR_NO_ERROR 

Comments Any incomplete transactions started before calling DdeDisconnect are 
immediately abandoned. The XTYP _DISCONNECT transaction type is 
sent to the dynamic data exchange (DOE) callback function of the partner 
in the conversation. Generally, only client applications need to terminate 
conversations. 

See Also DdeConnect, DdeConnectList, DdeDisconnectList 

DdeDisconnectList 3.1 

Syntax #include <ddeml.h> 
BOOL DdeDisconnectList(hConvList) 

function DdeDisconnectList(ConvList: HConvList): Bool; 

The DdeDisconnectList function destroys the given conversation list and 
terminates all conversations associated with the list. 

Chapter 4, Functions 181 



OdeEnableCaliback 

Parameters hConvList Identifies the conversation list. This handle must have 
been created by a previous call to the DdeConnectList 
function. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT _INITIALIZED 
DMLERR_INV ALIDPARAMETER 
DMLERR_NO_ERROR 

Comments An application can use the DdeDisconnect function to terminate 
individual conversations in the list. 

See Also DdeConnect, DdeConnectList, DdeDisconnect 

DdeEnableCaliback 3.1 

182 

Syntax #include <ddeml.h> 
BOOL DdeEnableCallback(idInst, hConv, uCmd) 

function DdeEnableCallbackOnst: Longint; Conv: HConv; Cmd: Word): 
Bool; 

The DdeEnableCallback function enables or disables transactions for a 
specific conversation or for all conversations that the calling application 
currently has established. 

After disabling transactions for a conversation, the system places the 
transactions for that conversation in a transaction queue associated with 
the application. The application should reenable the conversation as soon 
as possible to avoid losing queued transactions. 

Parameters idlnst 

hConv 

uCmd 

Specifies the application-instance identifier obtained by a 
previous call to the Ddelnitialize function. 

Identifies the conversation to enable or disable. If this 
parameter is NULL, the function affects all conversations. 

Specifies the function code. This parameter can be one of 
the following values: 

Windows API Guide 



DdeFreeDataHandle 

Value Meaning 

EC_ENABLEALL Enables all transactions for the specified conversation. 
EC_ENABLEONE Enables one transaction for the specified conversation. 
EC_DISABLE Disables all blockable transactions for the specified 

conversation. 
A server application can disable the following transactions: 
XTYP _ADVSTART 
XTYP _ADVSTOP 
XTYP _EXECUTE 
XTYP_POKE 
XTYP_REQUEST 
A client application can disable the following transactions: 
XTYP _ADVDATA 
XTYP _XACT_COMPLETE 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT _INITIALIZED 
DMLERR_NO _ERROR 
DMLERR_INV ALIDP ARAMETER 

Comments An application can disable transactions for a specific conversation by 
returning CBR_BLOCK from its dynamic data exchange (ODE) callback 
function. When the conversation is reenabled by using the 
DdeEnableCaliback function, the system generates the same transaction 
as was in process when the conversation was disabled. 

See Also DdeConnect, DdeConnectList, DdeDisconnect, Ddelnitialize 

DdeFreeDataHandle 

Syntax #include <ddeml.h> 

Chapter 4, Funcffons 

BaaL DdeFreeDataHandle(hData) 

function DdeFreeDataHandle(Data: HDDEData): Bool; 

The DdeFreeDataHandle function frees a global memory object and 
deletes the data handle associated with the object. 

3.1 

183 



DdeFreeDataHandle 

184 

Parameters hData Identifies the global memory object to be freed. This 
handle must have been created by a previous call to the 
DdeCreateDataHandle function or returned by the 
DdeClientTransaction function. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_INVALIDP ARAMETER 
DMLERR_NO_ERROR 

Comments An application must call DdeFreeDataHandle under the following 
circumstances: 

• To free a global memory object that the application allocated by calling 
the DdeCreateDataHandle function if the object's data handle was 
never passed by the application to another Dynamic Data Exchange 
Management Library (DDEML) function 

• To free a global memory object that the application allocated by 
specifying the HDATA_APPOWNED flag in a call to the 
DdeCreateDataHandle function 

• To free a global memory object whose handle the application received 
from the DdeClientTransaction function 

The system automatically frees an unowned object when its handle is 
returned by a dynamic data exchange (DOE) callback function or used as 
a parameter in a DDEML function. 

Example The following example creates a global memory object containing help 
information, then frees the object after passing the object's handle to the 
client application: 

DWORD idInsti 
HSZ hszItemi 
HDDEDATA hDataHelpi 

char szDdeHelp[] = "DDEML test server help:\r\n"\ 
"\tThe'Server' (service) and 'Test' (topic) names may change.\r\n"\ 
"Items supported under the 'Test' topic are:\r\n"\ 
"\tCount:\tThis value increments on each data change.\r\n"\ 
"\tRand:\tThis value is changed after each data change. \r\n"\ 
"\t\tIn Runaway mode, the above items change after a request.\r\n"\ 
"\tHuge:\tThis is randomly generated text data >64k that the\r\n"\ 
"\t\ttest client can verify. It is recalculated on each\r\n"\ 
"\t\trequest. This also verifies huge data poked or executed\r\n"\ 
"\t\tfrom the test client.\r\n"\ 

Windows API Guide 



DdeFreeStringHandle 

"\tHelp:\tThis help information. This data is APPOWNED.\r\n"; 

/* Create global memory object containing help information. */ 

if (!hDataHelp) { 
hDataHelp = DdeCreateDataHandle(idlnst, szDdeHelp, 

strlen(szDdeHelp) + 1, 0, hszltem, CF_TEXT, HDATA_APPOWNED); 

/* Pass help information to client application. */ 

/* Free the global memory object. */ 

if (hDataHelp) 
DdeFreeDataHandle(hDataHelp); 

See Also DdeAccessData, DdeCreateDataHandle 

DdeFreeStringHandle 3.1 

Syntax #include <ddeml.h> 
BOOL DdeFreeStringHandle(idInst, hsz) 

function DdeFreeStringHandle(lnst: Longint; HSZ: HSZ): Bool; 

The DdeFreeStringHandle function frees a string handle in the calling 
application. 

Parameters idlnst 

hsz 

Specifies the application-instance identifier obtained by a 
previous call to the Ddelnitialize function. 

Identifies the string handle to be freed. This handle must 
have been created by a previous call to the 
DdeCreateStringHandle function. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments An application can free string handles that it creates with the 
DdeCreateStringHandle function but should not free those that the 
system passed to the application's dynamic data exchange (DDE) callback 
function or those returned in the CONVINFO structure by the 
DdeQueryConvlnfo function. 

Chapter 4, Functions 185 



OdeGetOata 

Example The following example frees string handles during the 
XTYP _DISCONNECT transaction: 

DWORD idInst = OL; 
HSZhszClock; 
HSZhszTime; 
HSZhszNow; 
UINTtype; 

if (type == XTYP _DISCONNECT) { 

DdeFreeStringHandle(idlnst, hszClock); 
DdeFreeStringHandle(idInst, hszTime); 
DdeFreeStringHandle(idInst, hszNow); 

return (HDDEDATA) NULL; 

See Also DdeCmpStringHandles, DdeCreateStringHandle, Ddelnitialize, 
DdeKeepStringHandle, DdeQueryString 

DdeGetData 3.1 

Syntax #include <ddeml.h> 
DWORD DdeGetData(hData, pDest, cbMax, offSrc) 

function DdeGetData(Data: HDDEData; Dst: Pointer; Max, Off: Longint): 
Longint; 

The DdeGetData function copies data from the given global memory 
object to the specified local buffer. 

Parameters hData 

pDest 

cbMax 

offSrc 

Identifies the global memory object that contains the data 
to copy. 

Points to the buffer that receives the data. If this parameter 
is NULL, the DdeGetData function returns the amount, in 
bytes, of data that would be copied to the buffer. 

Specifies the maximum amount, in bytes, of data to copy to 
the buffer pointed to by the pDest parameter. Typically, 
this parameter specifies the length of the buffer pointed to 
bypDest. 

Specifies an offset within the global memory object. Data is 
copied from the object beginning at this offset. 

Return Value If the pDest parameter points to a buffer, the return value is the size, in 
bytes, of the memory object associated with the data handle or the size 
specified in the cbMax parameter, whichever is lower. 

186 Windows API Guide 



OdeGetLostError 

If the pDest parameter is NULL, the return value is the size, in bytes, of 
the memory object associated with the data handle. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT _INITIALIZED 
DMLERR_INVALID_HDDEDATA 
DMLERR_INV ALIDPARAMETER 
DMLERR_NO_ERROR 

Example The following example copies data from a global memory object to a local 
buffer and then fills the TIME structure with data from the buffer: 

HDDEDATA hData; 
char szBuf[32]; 

typedef struct { 
int hour; 
int minute; 
int second; 

} TIME; 

DdeGetData(hData, (LPBYTE) szBuf, 32L, OL); 
sscanf(szBuf, "%d:%d:%d", &nTime.hour, &nTime.minute, 

&nTime.second); 

See Also DdeAccessData, DdeCreateDataHandle, DdeFreeDataHandle 

DdeGetLostError 

Syntax #include <ddeml.h> 
UINT DdeGetLastError(idInst) 

function DdeGetLastError(lnst: Longint): Word; 

3.1 

The DdeGetLastError function returns the most recent error value set by 
the failure of a Dynamic Data Exchange Management Library (DDEML) 
function and resets the error value to DMLERR_NO _ERROR. 

Parameters idlnst Specifies the application-instance identifier obtained by a 
previous call to the Ddelnitialize function. 

Return Value The return value is the last error value. Following are the possible 
DDEML error values: 

Chapter 4, Functions 187 



OdeGetLastError 

Value 

DMLERR_ADVACKTIMEOUT 

DMLERR_DATAACKTIMEOUT 

DMLERR_EXECACKTIMEOUT 

DMLERR_INVALIDPARAMETER 

188 

Meaning 

A request for a synchronous advise· 
transaction has timed out. 
The response to the transaction 
caused the DDE_FBUSY bit to be set. 
A request for a synchronous data 
transaction has timed out. 
A DDEML function was called 
without first calling the Ddelnitialize 
function, or an invalid instance 
identifier was passed to a DDEML 
function. 
An application initialized as 
APPCLASS_MONITOR has 
attempted to perform a DDE 
transaction, or an application 
initialized as 
APPCMD _ CLIENTONLY has 
attempted to perform server 
transactions. 
A request for a synchronous execute 
transaction has timed out. 
A parameter failed to be validated by 
the DDEML. Some of the possible 
causes are as follows: 
• The application used a data 

handle initialized with a 
different item-name handle than 
that required by the transaction. 

• The application used a data 
handle that was initialized with 
a different clipboard data format 
than that required by the 
transaction. 

• The application used a 
client-side conversation handle 
with a server-side function or 
vise versa. 

• The application used a freed 
data handle or string handle. 

• More than one instance of the 
application used the same object. 

A DDEML application has created a 
prolonged race condition (where the 
server application outruns the client), 
causing large amounts of memory to 
be consumed. 

Windows API Guide 



Value 

DMLERR_MEMORY_ERROR 
DMLERR_NO_ CONY _ESTABLISHED 

DMLERR_NOTPROCESSED 
DMLERR_POKEACKTIMEOUT 

DMLERR_POSTMSG_FAILED 

DMLERR_REENTRANCY 

DMLERR_UNADVACKTIMEOUT 

OdeGetLostError 

Meaning 

A memory allocation failed. 
A client's attempt to establish a 
conversation has failed. 
A transaction failed. 
A request for a synchronous poke 
transaction has timed out. 
An internal call to the PostMessage 
function has failed. 
An application instance with a 
synchronous transaction already in 
progress attempted to initiate another 
synchronous transaction, or the 
DdeEnableCaliback function was 
called from within a DDEML callback 
function. 
A server-side transaction was 
attempted on a conversation that was 
terminated by the client, or the server 
terminated before completing a 
transaction. 
An internal error has occurred in the 
DDEML. 
A request to end an advise transaction 
has timed out. 
An invalid transaction identifier was 
passed to a DDEML function. Once 
the application has returned from an 
XTYP _XACT_COMPLETE callback, 
the transaction identifier for that 
callback is no longer valid. 

Example The following example calls the DdeGetLastError function if the 
DdeCreateDataHandle function fails: 

DWORD idlnst; 
HDDEDATA hddeMyData; 
HSZPAIR ahszp[2]; 
HSZ hszClock, hszTime; 

/* Create string handles. * / 

hszClock = DdeCreateStringHandle (idlnst, (LPSTR) "Clock", 
CP_WINANSI) ; 

hszTime = DdeCreateStringHandle (idlnst, (LPSTR) "Time", 
CP_WINANSI) ; 

/* Copy handles to an HSZPAIR structure. * / 

ahszp[O] .hszSvc = hszClock; 

Chapter 4, Functions 189 



Ddelnitialize 

ahszp[O] .hszTopic = hszTime; 
ahszp[l].hszSvc = (HSZ) NULL; 
ahszp[l].hszTopic = (HSZ) NULL; 

/* Create a global memory object. * / 

hddeMyData = DdeCreateDataHandle(idInst, ahszp, 
sizeof(ahszp), 0, NULL, CF_TEXT, 0); 

if (hddeMyData == NULL) 
/* 
* Pass error value to application-defined error handling 
* function. 
*/ 

HandleError(DdeGetLastError(idInst)); 

See Also Ddelnitialize 

Ddelnitialize 3.1 

190 

Syntax #include <ddeml.h> 
DINT DdeInitializeOpidInst, pfnCallback, afCmd, uRes) 

function DdeInitialize(var Inst: Longint; Callback: TCallback; Cmd, Res: 
Longint): Word; 

The Ddelnitialize function registers an application with the Dynamic Data 
Exchange Management Library (DDEML). An application must call this 
function before calling any other DDEML function. 

Parameters Ipidlnst 

pfnCallback 

Points to the application-instance identifier. At 
initialization, this parameter should point to 01. If the 
function is successful, this parameter points to the instance 
identifier for the application. This value should be passed 
as the idlnst parameter in all other DDEML functions that 
require it. If an application uses multiple instances of the 
DDEML dynamic link library, the application should 
provide a different callback function for each instance. 

If Ipidlnst points to a nonzero value, this implies a 
reinitialization of the DDEML. In this case, Ipidlnst must 
point to a valid application-instance identifier. 

Points to the application-defined DOE callback function. 
This function processes DOE transactions sent by the 
system. For more information, see the description of the 
DdeCaliback callback function. 

Windows API Guide 



afCmd 

Flag 

Odelnitialize 

Specifies an array of APPCMD _ and CBP _ flags. The 
APPCMD _ flags provide special instructions to the 
Ddelnitialize function. The CBP _ flags set filters that 
prevent specific types of transactions from reaching the 
callback function. Using these flags enhances the 
performance of a DDE application by eliminating 
unnecessary calls to the callback function. 

This parameter can be a combination of the following flags: 

Meaning 

APPCLASS_MONITOR Makes it possible for the application to 
monitor DDE activity in the system. This 
flag is for use by DDE monitoring 
applications. The application specifies the 
types of DDE activity to monitor by 
combining one or more monitor flags with 
the APPCLASS_MONITOR flag. For 
details, see the following Comments 
section. 

APPCLASS_STANDARD Registers the application as a standard 
(nonmonitoring) DDEML application. 

APPCMD _CLIENTONLY 

APPCMD _FILTERINITS 

Chapter 4, Functions 

Prevents the application from becoming a 
server in a DDE conversation. The 
application can be only a client. This flag 
reduces resource consumption by the 
DDEML. It includes the functionality of 
the CBF _FAIL_ALLSVRXACTIONS flag. 
Prevents the DDEML from sending 
XTYP _CONNECT and 
XTYP _ WILDCONNECT transactions to 
the application until the application has 
created its string handles and registered its 
service names or has turned off filtering by 
a subsequent call to the DdeNameService 
or Ddelnitialize function. This flag is 
always in effect when an application calls 
Ddelnitialize for the first time, regardless 
of whether the application specifies this 
flag. On subsequent calls to Ddelnitialize, 
not specifying this flag turns off the 
application's service-name filters; 
specifying this flag turns on the 
application's service-name filters. 

191 



Odelnitialize 

Flag 

192 

Meaning 

Prevents the callback function from 
receiving server transactions. The system 
will return DDE_FNOTPROCESSED to 
each client that sends a transaction to this 
application. This flag is equivalent to 
combining all CBF _FAIL_ flags. 
Prevents the callback function from 
receiving XTYP _ADVSTART and 
XTYP _ADVSTOP transactions. The system 
will return DDE_FNOTPROCESSED to 
each client that sends an 
XTYP _ADVSTART or XTYP _ADVSTOP 
transaction to the server. 
Prevents the callback function from 
receiving XTYP _CONNECT and 
XTYP _ WILDCONNECT transactions. 
Prevents the callback function from 
receiving XTYP _EXECUTE transactions. 
The system will return 
DDE_FNOTPROCESSED to a client that 
sends an XTYP _EXECUTE transaction to 
the server. 
Prevents the callback function from 
receiving XTYP _POKE transactions. The 
system will return 
DDE_FNOTPROCESSED to a client that 
sends an XTYP _POKE transaction to the 
server. 
Prevents the callback function from 
receiving XTYP _REQUEST transactions. 
The system will return 
DDE_FNOTPROCESSED to a client that 
sends an XTYP _REQUEST transaction to 
the server. 
Prevents the callback function from 
receiving XTYP _CONNECT transactions 
from the application's own instance. This 
prevents an application from establishing 
a DDE conversation with its own instance. 
An application should use this flag if it 
needs to communicate with other 
instances of itself but not with itself. 
Prevents the callback function from 
receiving any notifications. This flag is 
equivalent combining all CBF _SKIP _ flags. 

Windows API Guide 



Odelnitiolize 

Flag Meaning 

CBF _SKIP _CONNECT_CONFIRMS Prevents the callback function from 
receiving XTYP _CONNECT_CONFIRM 
notifications. 

CBF _SKIP _DISCONNECTS Prevents the callback function from 
receiving XTYP _DISCONNECT 
notifications. 

CBF _SKIP _REGISTRATIONS Prevents the callback function from 
receiving XTYP _REGISTER notifications. 

CBF _SKIP _ UNREGISTRATIONS Prevents the callback function from 
receiving XTYP _UNREGISTER 
notifications. 

uRes Reserved; must be set to OL. 

Return Value The return value is one of the following: 

DMLERR_DLL_USAGE 
DMLERR_INV ALIDPARAMETER 
DMLERR_NO _ERROR 
DMLERR_SYS_ERROR 

Comments An application that uses multiple instances of the DDEML must not pass 
DDEML objects between instances. 

A DDE monitoring application should not attempt to perform DDE 
(establish conversations, issue transactions, and so on) within the context 
of the same application instance. 

A synchronous transaction will fail with a DMLERR_REENTRANCY 
error if any instance of the same task has a synchronous transaction 
already in progress. 

A DDE monitoring application can combine one or more of the following 
monitor flags with the APPCLASS_MONITOR flag to specify the types of 
DDE activity to monitor: 

Flag 

MF _CALLBACKS 

MF_CONV 

Chapter 4, Functions 

Meaning 

Notifies the callback function whenever a transaction is 
sent to any DDE callback function in the system. 
Notifies the callback function whenever a conversation is 
established or terminated. 
Notifies the callback function whenever a DDE error 
occurs. 

193 



DdeKeepSfringHandle 

Flag 

MF_LlNKS 

Meaning 

Notifies the callback function whenever a DDE 
application creates, frees, or increments the use count of a 
string handle or whenever a string handle is freed as a 
result of a call to the DdeUninitialize function. 
Notifies the callback function whenever an advise loop is 
started or ended. 
Notifies the callback function whenever the system or an 
application posts a DDE message. 
Notifies the callback function whenever the system or an 
application sends a DDE message. 

Example The following example obtains a procedure-instance address for a DOE 
callback function, then initializes the application with the DDEML. 

DWORD idlnst = OL; 
FARPROC IpDdeProc; 

IpDdeProc = MakeProclnstance((FARPROC) DDECallback, hlnst); 
if (Ddelnitialize((LPDWORD) &idlnst, (PFNCALLBACK) IpDdeProc, 

APPCMD_CLIENTONLY, OL)) 
return FALSE; 

See Also DdeClientTransaction, DdeConnect, DdeCreateDataHandle, 
DdeEnableCallback, DdeNameService, DdePostAdvise, DdeUninitialize 

DdeKeepStringHandle 3.' 

194 

Syntax #include <ddeml.h> 
BaaL DdeKeepStringHandle(idlnst, hsz) 

function DdeKeepStringHandle(Inst: Longint; HSZ: HSZ): Bool; 

The DdeKeepStringHandle function increments the usage count 
(increases it by one) associated with the given handle. This function 
makes it possible for an application to save a string handle that was 
passed to the application's dynamic data exchange (DOE) callback 
function. Otherwise, a string handle passed to the callback function is 
deleted when the callback function returns. 

Parameters idlnst 

hsz 

Specifies the application-instance identifier obtained by a 
previous call to the Ddelnitialize function. 

Identifies the string handle to be saved. 

Windows API Guide 



DdeNameService 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Example The following example is a portion of a DDE callback function that 
increases the usage count and saves a local copy of two string handles: 

HSZ hszl; 
HSZ hsz2; 
static HSZ hszServerBase; 
static HSZ hszServerInst; 
DWORD idInst; 

case XTYF REGISTER: 

/* Keep the handles for later use. */ 

DdeKeepStringHandle(idInst, hszl); 
DdeKeepStringHandle(idInst, hsz2); 
hszServerBase = hszl; 
hszServerInst = hsz2; 

/* Finish processing the transaction. */ 

See Also DdeCreateStringHandle, DdeFreeStringHandle, Ddelnitialize, 
DdeQueryString 

DdeNameService 3.1 

Syntax #include <ddeml.h> 
HDDEDATA DdeNameService(idInst, hszl, hszRes, afCmd) 

function DdeNameService(Inst: Longint; hszl, hsz2: HSZ; Cmd: Word): 
HDDEData; 

The DdeNameService function registers or unregisters the service names 
that a dynamic data exchange (DDE) server supports. This function 
causes the system to send XTYP _REGISTER or XTYP _ UNREGISTER 
transactions to other running DDE Management Library (DDEML) client 
applications. 

A server application should call this function to register each service 
name that it supports and to unregister names that it previously 
registered but no longer supports. A server should also call this function 
to unregister its service names just before terminating. 

Parameters idlnst 

Chapter 4, Functions 

Specifies the application-instance identifier obtained by a 
previous call to the Ddelnitialize function. 

195 



DdeNameService 

hszl 

hszRes 

afCmd 

Value 

Identifies the string that specifies the service name that the 
server is registering or unregistering. An application that is 
unregistering all of its service names should set this 
parameter to NULL. 

Reserved; should be set to NULL. 

Specifies the service-name flags. This parameter can be one 
of the following values: 

Meaning 

DNS_REGISTER 
DNS_UNREGISTER 

Registers the given service name. 
Unregisters the given service name. If the hszl 
parameter is NULL, all service names registered by the 
server will be unregistered. 

DNS_FILTERON Turns on service-name initiation filtering. This filter 
prevents a server from receiving XTYP _CONNECT 
transactions for service names that it has not registered. 
This is the default setting for this filter. 
If a server application does not register any service 
names, the application cannot receive 
XTYP _ WILDCONNECT transactions. 
Turns off service-name initiation filtering. If this flag is 
set, the server will receive an XTYP _CONNECT 
transaction whenever another DDE application calls the 
DdeConnect function, regardless of the service name. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT _INITIALIZED 
DMLERR_DLL_ USAGE 
DMLERR_INV ALIDP ARAMETER 
DMLERR_NO _ERROR 

Comments The service name identified by the hszl parameter should be a base name 
(that is, the name should contain no instance-specific information). The 
system generates an instance-specific name and sends it along with the 
base name during the XTYP _REGISTER and XTYP _UNREGISTER 
transactions. The receiving applications can then connect to the specific 
application instance. 

196 Windows API Guide 



DdePostAdvise 

Example The following example initializes an application with the DDEML, creates 
frequently used string handles, and registers the application's service 
name: 

HSZ hszClocki 
HSZ hszTimei 
HSZ hszNoWi 
HINSTANCE hinsti 
DWORD idInst = OLi 
FARPROC lpDdePrOCi 

/* Initialize the application for the DDEML. * / 

lpDdeProc = MakeProcInstance((FARPROC) DdeCallback, hinst)i 
if (!DdeInitialize((LPDWORD) &idInst, (PFNCALLBACK) lpDdeProc, 

APPCMD_FILTERINITS I CBF_FAIL_EXECUTES, OL)) { 

/* Create frequently used string handles. */ 

hszTime = DdeCreateStringHandle(idInst, "Time", CP_WINANSI)i 
hszNow = DdeCreateStringHandle (idInst, "Now", CP_WINANSI) i 

hszClock = DdeCreateStringHandle(idInst, "Clock", CP_WINANSI)i 

/* Register the service name. */ 

DdeNameService(idInst, hszClock, (HSZ) NULL, DNS_REGISTER)i 

See Also DdeConnect, DdeConnectList, Ddelnitialize 

DdePostAdvise 

Syntax #include <ddeml.h> 
BOOL DdePostAdvise(idInst, hszTopic, hszItem) 

function DdePostAdviseOnst: Longint; Topic, Item: HSZ): Bool; 

The DdePostAdvise function causes the system to send an 

3.1 

XTYP _ADVREQ transaction to the calling (server) application's dynamic 
data exchange (DOE) callback function for each client that has an advise 
loop active on the specified topic or item name pair. A server application 
should call this function whenever the data associated with the topic or 
item name pair changes. 

Parameters idlnst 

hszTopic 

Chapter 4, Functions 

Specifies the application-instance identifier obtained by a 
previous call to the Ddelnitialize function. 

Identifies a string that specifies the topic name. To send 
notifications for all topics with active advise loops, an 
application can set this parameter to NULL. 

197 



DdePostAdvise 

hszItem Identifies a string that specifies the item name. To send 
notifications for all items with active advise loops, an 
application can set this parameter to NULL. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT_INITIALIZED 
DMLERR_DLL_ USAGE 
DMLERR_NO_ERROR 

Comments A server that has nonenumerable topics or items should set the hszTopic 
and hszItem parameters to NULL so that the system will generate trans­
actions for all active advise loops. The server's DOE callback function 
returns NULL for any advise loops that do not need to be updated. 

If a server calls DdePostAdvise with a topic/item/format name set that 
includes the set currently being handled in a XTYP _ADVREQ callback, a 
stack overflow may result. 

Example The following example calls the DdePostAdvise function whenever the 
time changes: 

typedef struct { /* tm * / 
int hour; 
int minute; 
int second; 

} TIME; 

TIME tmTime; 
DWORD idInst; 
HSZ hszTime; 
HSZ hszNow; 
TIME tmCurTime; 

. /* Fill tmCurTime with the current time. */ 

1* Check for any change in second, minute, or hour. * / 

if ((tmCurTime. second ! = tmTime. second) I I 
(tmCurTime.minute != tmTime.minute) II 
(tmCurTime.hour != tmTime.hour)) { 

1* Send the current time to the clients. *1 

DdePostAdvise(idInst, hszTime, hszNow); 

See Also Ddelnitialize 

198 Windows API Guide 



DdeQueryConvlnfo 

DdeQueryConvlnfo 3.1 

Syntax #include <ddeml.h> 
UINT DdeQueryConvInfo(hConv, idTransaction, lpConvInfo) 

function DdeQueryConvInfo(Conv: HConv; Transaction: Longint; 
ConvInfo: PConvInfo): Word; 

The DdeQueryConvlnfo function retrieves information about a dynamic 
data exchange (DOE) transaction and about the conversation in which the 
transaction takes place. 

Parameters hConv Identifies the conversation. 

idTransaction Specifies the transaction. For asynchronous transactions, 
this parameter should be a transaction identifier returned 
by the DdeClientTransaction function. For synchronous 
transactions, this parameter should be QID _SYNC. 

IpConvlnfo Points to the CONVINFO structure that will receive 
information about the transaction and conversation. The 
cb member of the CONVINFO structure must specify the 
length of the buffer allocated for the structure. 

The CONVINFO structure has the following form: 

#include <ddeml.h> 

typedef struct tagCONVINFO { /* ci * / 
DWORD cb; 
DWORD hUser; 
HCONV hConvPartner; 
HSZ hszSvcPartner; 
HSZ hszServiceReq; 
HSZ hszTopic; 
HSZ hszItem; 
UINT wFmt; 
UINT wType; 
UINT wStatus; 
UINT wConvst; 
UINT wLastError; 
HCONVLIST hConvList; 
CONVCONTEXT ConvCtxt; 

CONVINFO; 

Return Value The return value is the number of bytes copied into the CONVINFO 
structure, if the function is successful. Otherwise, it is zero. 

Chapter 4, Functions 199 



DdeQueryNextServer 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT_INITIALIZED 
DMLERR_NO _ CONY _ESTABLISHED 
DMLERR_NO _ERROR 
DMLERR_ UNFOUND _ QUEUE_ID 

Example The following example fills a CONVINFO structure with information 
about a synchronous conversation and then obtains the names of the 
partner application and topic: 

DWORD idInsti 
HCONV hConVi 
CONVINFO cii 
WORD wError i 
char szSvcPartner[32]i 
char szTopic[32]i 
DWORD cchServ, cchTopici 

if (!DdeQueryConvInfo(hConv, QID SYNC, &ci)) 
wError = DdeGetLastError(idInst)i 

else { 
cchServ = DdeQueryString(idInst, ci.hszSvcPartner, 

(LPSTR) &szSvcPartner, sizeof(szSvcPartner), 
CP _WINANS I) i 

cchTopic = DdeQueryString(idInst, ci.hszTopic, 
(LPSTR) &szTopic, sizeof(szTopic), 

CP _ WINANS I ) i 

See Also DdeConnect, DdeConnectList, DdeQueryNextServer 

DdeQueryNextServer 3.1 

200 

Syntax #include <ddeml.h> 
HCONV DdeQueryNextServer(hConvList, hConvPrev) 

function DdeQueryNextServer(ConvList: HConvList; ConvPrev: HConv): 
HConv; 

The DdeQueryNextServer function obtains the next conversation handle 
in the given conversation list. 

Parameters hConvList Identifies the conversation list. This handle must have 
been created by a previous call to the DdeConnectList 
function. 

Windows API Guide 



DdeQueryNextServer 

hConvPrev Identifies the conversation handle previously returned by 
this function. If this parameter is NULL, this function 
returns the first conversation handle in the list. 

Return Value The return value is the next conversation handle in the list if the list 
contains any more conversation handles. Otherwise, it is NULL. 

Example The following example uses the DdeQueryNextServer function to count 
the number of conversation handles in a conversation list and to copy the 
service-name string handles of the servers to a local buffer: 

/* conversation list */ HCONVLIST hconvList; 
DWORD idInst; /* 

/* 
/* 
/* 
/* 
/* 

instance identifier */ 
HSZ hszSystem; 
HCONV hconv = NULL; 
CONVINFO Cii 
UINT cConv = 0; 
HSZ *pHsz, *aHsz; 

System topic */ 
conversation handle */ 
holds conversation data */ 
count of conv. handles */ 
point to string handles */ 

/* Connect to all servers that support the System topic. * / 

hconvList=DdeConnectList(idInst, (HSZ)NULL,hszSystem, 
(HCONV) NULL, (LPVOID) NULL); 

/* Count the number of handles in the conversation list. * / 

while ( (hconv=DdeQueryNextServer (hconvList, hconv) ) ! = (HCONV) NULL) 
cConv++i 

/* Allocate a buffer for the string handles. * / 

hconv = (HCONV) NULL; 
aHsz= (HSZ*) LocalAlloc(LMEM_FIXED, cConv*sizeof(HSZ)); 

/* Copy the string handles to the buffer. * / 

pHsz = aHszi 
while ( (hconv=DdeQueryNextServer (hconvList, hconv)) ! = (HCONV) NULL) { 

DdeQueryConvInfo(hconv, QID_SYNC, (PCONVINFO) &Ci)i 
DdeKeepStringHandle(idInst, ci.hszSvcPartner)i 
*pHsz++ = ci.hszSvcPartneri 

/ * Use the handles i converse with servers. * / 

/* Free the memory and terminate conversations. * / 

LocalFree((HANDLE4Hsz); 
DdeDisconnectList(hconvList)i 

See Also DdeConnectList, DdeDisconnectList 

Chapter 4, Functions 201 



DdeQueryString 

DdeQueryString 3.1 

202 

Syntax #include <ddeml.h> 
DWORD DdeQueryString(idInst, hsz, lpsz, cchMax, codepage) 

function DdeQueryString(lnst: Longint; HSZ: HSZ; psz: PChar; Max: 
Longint; CodePage: Integer): Longint; 

The DdeQueryString function copies text associated with a string handle 
into a buffer. 

The string returned in the buffer is always null-terminated. If the string is 
longer than (cchMax - 1), only the first (cchMax - 1) characters of the string 
are copied. 

If the Ipsz parameter is NULL, this function obtains the length, in bytes, of 
the string associated with the string handle. The length does not include 
the terminating null character. 

Parameters idlnst 

hsz 

Ipsz 

cchMax 

codepage 

Specifies the application-instance identifier obtained by a 
previous call to the Ddelnitialize function. 

Identifies the string to copy. This handle must have been 
created by a previous call to the DdeCreateStringHandle 
function. 

Points to a buffer that receives the string. To obtain the 
length of the string, this parameter should be set to NULL. 

Specifies the length, in bytes, of the buffer pointed to by 
the Ipsz parameter. If the string is longer than (cchMax-l), 
it will be truncated. If the Ipsz parameter is set to NULL, 
this parameter is ignored. 

Specifies the code page used to render the string. This 
value should be either CP _ WINANS I or the value returned 
by the GetKBCodePage function. 

Return Value The return value is the length, in bytes, of the returned text (not including 
the terminating null character) if the Ipsz parameter specified a valid 
pointer. The return value is the length of the text associated with the hsz 
parameter (not including the terminating null character) if the Ipsz 
parameter specified a NULL pointer. The return value is NULL if an error 
occurs. 

Windows API Guide 



DdeReconnect 

Example The following example uses the DdeQueryString function to obtain a 
service name and topic name that a server has registered: 

UINT typei 

HSZ hszli 
HSZ hsz2i 
char szBaseName[16)i 
char szInstName[16)i 

if (type == XTYP_REGISTER) 

/ * Copy the base service name to a buffer. * / 

DdeQueryString(idlnst, hszl, (LPSTR) &szBaseName, 
sizeof(szBaseName), CP_WINANSI)i 

/* Copy the instance-specific service name to a buffer. */ 

DdeQueryString(idlnst, hsz2, (LPSTR) &szInstName, 
sizeof(szInstName), CP_WINANSI)i 

return (HDDEDATA) TRUE; 

See Also DdeCmpStringHandles, DdeCreateStringHandle, DdeFreeStringHandle, 
Ddelnitialize 

DdeReconnect 3.' 

Syntax #include <ddeml.h> 
HCONV DdeReconnect(hConv) 

function DdeReconnect(Conv: HConv): HConv; 

The DdeReconnect function allows a client Dynamic Data Exchange 
Management Library (DDEML) application to attempt to reestablish a 
conversation with a service that has terminated a conversation with the 
client. When the conversation is reestablished, the DDEML attempts to 
reestablish any preexisting advise loops. 

Parameters hConv Identifies the conversation to be reestablished. A client 
must have obtained the conversation handle by a previous 
call to the DdeConnect function. 

Return Value The return value is the handle of the reestablished conversation if the 
function is successful. The return value is NULL if the function fails. 

Chapter 4, Functions 203 



DdeSetUserHandle 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT_INITIALIZED 
DMLERR_INV ALIDPARAMETER 
DMLERR_NO _ CONY _ESTABLISHED 
DMLERR_NO_ERROR 

Example The following example shows the context within which an application 
should call the DdeReconnect function: 

HDDEDATAEXPENTRYDdeCallback(wType,wFmt,hConv,hszl, 
hsz2, hData, dwDatal, dwData2) 

WORD wType; /* transaction type */ 
WORD wFmt; /* clipboard format */ 
HCONV hConv; /* handle of the conversation */ 
HSZ hszl; /* handle of a string */ 
HSZ hsz2; /* handle of a string * / 
HDDEDATA hData; /* handle of a global memory object */ 
DWORD dwDatal; /* transaction-specific data */ 
DWORD dwData2; /* transaction-specific data */ 
{ 

BOOL fAutoReconnect; 

switch (wType) { 
case XTYF DISCONNECT: 

if (fAutoReconnect) 
DdeReconnect(hConv); /* attempt to reconnect */ 

return 0; 

/* Process other transactions. */ 

See Also DdeConnect, DdeDisconnect 

DdeSetUserHandle 3.1 

204 

Syntax #include <ddeml.h> 
BOOL DdeSetUserHandle(hConv, id, hUser) 

function DdeSetUserHandle(Conv: HConv; ID, User: Longint): Bool; 

The DdeSetUserHandle function associates an application-defined 32-bit 
value with a conversation handle and transaction identifier. This is useful 
for simplifying the processing of asynchronous transactions. An 
application can use the DdeQueryConvlnfo function to retrieve this value. 

Windows API Guide 



DdeUnaccessData 

Parameters hConv 

id 

hUser 

Identifies the conversation. 

Specifies the transaction identifier of an asynchronous 
transaction. An application should set this parameter to 
QID _SYNC if no asynchronous transaction is to be 
associated with the hUser parameter. 

Identifies the value to associate with the conversation 
handle. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

DMLERR_DLL_NOT_INITIALIZED 
DMLERR_INV ALIDPARAMETER 
DMLERR_NO_ERROR 
DMLERR_ UNFOUND _ QUEUE_ID 

See Also DdeQueryConvlnfo 

DdeUnaccessData 3.1 

Syntax #inc1ude <ddeml.h> 
BOOL DdeUnaccessData(hData) 

function DdeUnaccessData(Data: HDDEData): Bool; 

The DdeUnaccessData function frees a global memory object. An 
application must call this function when it is finished accessing the object. 

Parameters hData Identifies the global memory object. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Errors Use the DdeGetLastError function to retrieve the error value, which may 
be one of the following: 

Chapter 4, Functions 

DMLERR_DLL_NOT _INITIALIZED 
DMLERR_INV ALIDPARAMETER 
DMLERR_NO_ERROR 

205 



OdeUninitiolize 

Example The following example obtains a pointer to a global memory object, uses 
the pointer to copy data from the object to a local buffer, and then uses the 
DdeUnaccessData function to free the object: 

HDDEDATA hData; 
LPBYTE lpszAdviseData; 
DWORD cbDataLen; 
DWORD i; 
char szData[128]; 

lpszAdviseData = DdeAccessData(hData, &cbDataLen); 
for (i = 0; i < cbDataLen; i++) 

szData[i] = *lpszAdviseData++; 
DdeUnaccessData(hData); 

See Also DdeAccessData, DdeAddData, DdeCreateDataHandle, 
DdeFreeDataHandle 

DdeUninitialize 3.1 

Syntax #inc1ude <ddeml.h> 
BOOL DdeUninitialize(idInst) 

function DdeUninitialize(lnst: Longint): Bool; 

The DdeUninitialize function frees all Dynamic Data Exchange 
Management Library (DDEML) resources associated with the calling 
application. 

Parameters idlnst Specifies the application-instance identifier obtained by a 
previous call to the Ddelnitialize function. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero. 

Comments The DdeUninitialize function terminates any conversations currently open 
for the application. If the partner in a conversation fails to terminate its 
end of the conversation, the system may enter a modal loop while it waits 
for the conversation to terminate. A timeout period is associated with this 
loop. If the timeout period expires before the conversation has 
terminated, a message box appears that gives the user the choice of 
waiting for another timeout period (Retry), waiting indefinitely (Ignore), 
or exiting the modal loop (Abort). 

An application should wait until its windows are no longer visible and its 
message loop has terminated before calling this function. 

See Also DdeDisconnect, DdeDisconnectList, Ddelnitialize 

206 Windows API Guide 



DebugOutput 

DebugOutput 3.1 

Syntax void FAR _cdecl DebugOutput(flags, IpszFmt, ... ) 

The DebugOutput function sends a message to the debugging terminal. 
Applications can apply the formatting codes to the message string and 
use filters and options to control the message category. 

Parameters flags 

IpszFmt 

Specifies the type of message to be sent to the debugging 
terminal. This parameter can be one of the following 
values: 

Value 

DBF _WARNING 

Meaning 

The message reports that no error has 
occurred and supplies information that 
may be useful during debugging. 
Example: "KERNEL: Loading 
SAMPLE.DLL" 
The message reports a situation that may 
or may not be an error, depending on the 
circumstances. Example: "KERNEL: 
LoadString failed" 
The message reports an error resulting 
from a failed call to a Windows function. 
The application continues to run. Example: 
"KERNEL: Invalid local heap" 
The message reports an error that will 
terminate the application. Example: 
"USER: Obsolete function 
SetDeskWallpaper called" 

Points to a formatting string identical to the formatting 
strings used by the Windows function wsprintf. This string 
must be less than 160 characters long. Any additional 
formatting can be done by supplying additional 
parameters following IpszFmt. 

Specifies zero or more optional arguments. The number 
and type of arguments depends on the corresponding 
format-control character sequences specified in the IpszFmt 
parameter. 

Return Value This function does not return a value. 

Comments The messages sent by the DebugOutput function are affected by the 
system debugging options and trace-filter flags that are set and retrieved 

Chapter 4, Functions 207 



DebugProc 

by using the GetWinDebuglnfo and SetWinDebuglnfo functions. These 
options and flags are stored in a WINDEBUGINFO structure. 

Unlike most other Windows functions, DebugOutput uses the C calling 
convention (_cdecl), rather than the Pascal calling convention. As a result, 
the caller must pop arguments off the stack. Also, arguments must be 
pushed on the stack from right to left. In C-Ianguage modules, the C 
compiler performs this task. 

Any application that uses this function must explicitly declare it as an 
import function. The following information must be included in the 
IMPORTS section of the application's module-definition file: 

IMPORTS 
kernel._DebugOutput 

See Also GetWinDebuglnfo, OutputDebugString, SetWinDebuglnfo, wsprintf 

DebugProc 3.1 

208 

Syntax LRESUL T CALLBACK DebugProc(code, wParam, IParam) 

The DebugProc function is a library-defined callback function that the 
system calls before calling any other filter installed by the 
SetWindowsHookEx function. The system passes information about the 
filter about to be called to the DebugProc callback function. The callback 
function can examine the information and determine whether to allow the 
filter to be called. 

Parameters code 

wParam 

IParam 

Specifies the hook code. Currently, HC_ACTION is the 
only positive valid value. If this parameter is less than 
zero, the callback function must call the CaliNextHookEx 
function without any further processing. 

Specifies the task handle of the task that installed the filter 
about to be called. 

Contains a long pointer to a DEBUGHOOKINFO structure. 
The DEBUGHOOKINFO structure has the following form: 

typedef struct tagDEBUGHOOKINFO { 
HMODULE hModuleHook; 
LPARAM reserved; 
LPARAM lParam; 
WPARAM wParam; 
int code; 

DEBUGHOOKINFO; 

Windows API Guide 



DefDriverProc 

Return Value The callback function should return TRUE to prevent the system from 
calling another filter. Otherwise, the callback function must pass the filter 
information to the CaliNextHookEx function. 

Comments An application must install this callback function by specifying the 
WH_DEBUG filter type and the procedure-instance address of the 
callback function in a call to the SetWindowsHookEx function. 

CallWndProc is a placeholder for the library-defined function name. The 
actual name must be exported by including it in an EXPORTS statement 
in the library's module-definition file. 

See Also CaliNextHookEx, SetWindowsHookEx 

DefDriverProc 3. 1 

Syntax LRESULT DefDriverProcCdwDriverIdentifier, hdrvr, uMsg, IParaml, 
IParam2) 

function DefDriverProcCDriverIdentifier: Longint; DriverId: THandle; 
Message: Word; IParaml, IParam2: Longint): Longint; 

The DefDriverProc function provides default processing for any messages 
not processed by an installable driver. 

Parameters dwDriverldentifier 

hdrvr 

uMsg 

IParaml 

IParam2 

Identifies an installable driver. This parameter 
must have been obtained by a previous call to the 
Open Driver function. 

Identifies the installable driver. 

Specifies the message to be processed. 

Specifies 32 bits of additional message-dependent 
information. 

Specifies 32 bits of additional message-dependent 
information. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The DefDriverProc function processes messages that are not handled by 
the DriverProc function. 

See Also Open Driver, SendDriverMessage 

Chapter 4, Functions 209 



DirectedYield 

DirectedYield 3.1 

Syntax void DirectedYield(htask) 

procedure DirectedYield(Task: TTask); 

The DirectedYield function puts the current task to sleep and awakens the 
given task. 

Parameters htask Specifies the task to be executed. 

Return Value This function does not return a value. 

Comments When relinquishing control to other applications (that is, when exiting 
hard mode), a Windows-based debugger should call DirectedYield, 
identifying the handle of the task being debugged. This ensures that the 
debugged application runs next and that messages received during 
debugging are processed by the appropriate windows. 

The Windows scheduler executes a task only when there is an event 
waiting for it, such as a paint message, or a message posted in the 
message queue. 

If an application uses DirectedYield for a task with no events scheduled, 
the task will not be executed. Instead, Windows searches the task queue. 
In some cases, however, you may want the application to force a specific 
task to be scheduled. The application can do this by calling the 
PostAppMessage function, specifying a WM_NULL message identifier. 
Then, when the application calls DirectedYield, the scheduler will run the 
task regardless of the task's event status. 

DirectedYield starts the task identified by htask at the location where it left 
off. Typically, debuggers should use TaskSwitch instead of DirectedYield, 
because TaskSwitch can start a task at any address. 

DirectedYield returns when the current task is reawakened. This occurs 
when the task identified by htask waits for messages or uses the Yield or 
DirectedYield function. Execution will continue as before the task switch. 

DirectedYield is located in KRNL286.EXE and KRNL386.EXE and is 
available in Windows versions 3.0 and 3.1. 

See Also PostAppMessage, TaskSwitch, TaskGetCSIP, TaskSetCSIP, Yield 

210 Windows API Guide 



DlgDirSelecfComboBoxEx 

DlgDirSelectComboBoxEx 

Syntax BOOL DlgDirSelectComboBoxEx(hwndDlg, IpszPath, cbPath, 
idComboBox) 

function DlgDirSelectComboBoxEx(Dlg: HWnd; Path: PChar; cbPath: 
Integer; ComboBox: Integer): Bool; 

3.0 

The DlgDirSelectComboBoxEx function retrieves the current selection 
from the list box of a combo box. The list box should have been filled by 
the DlgDirListComboBox function, and the selection should be a drive 
letter, a file, or a directory name. 

Parameters hwndDlg Identifies the dialog box that contains the combo box. 

IpszPath Points to a buffer that receives the selected path or 
filename. 

cbPath Specifies the length, in bytes, of the path or filename 
pointed to by the IpszPath parameter. This value should not 
be larger than 128. 

idComboBox Specifies the integer identifier of the combo box in the 
dialog box. 

Return Value The return value is nonzero if the current combo box selection is a 
directory name. Otherwise, it is zero. 

Comments The DlgDirSelectComboBoxEx function does not allow more than one 
filename to be returned from a combo box. 

If the current selection is a directory name or drive letter, 
DlgDirSelectComboBoxEx removes the enclosing square brackets (and 
hyphens, for drive letters) so that the name or letter is ready to be inserted 
into a new path or filename. If there is no selection, the contents of buffer 
pointed to by the IpszPath parameter do not change. 

DlgDirSelectComboBoxEx sends CB_GETCURSEL and CB_GETLBTEXT 
messages to the combo box. 

See Also DlgDirList, DlgDirListComboBox, DlgDirSelect, DlgDirSelectEx, 
Dig DirSelectComboBox 

Chapter 4, Functions 211 



DlgDirSelectEx 

DlgDirSelectEx 2.x 

Syntax BaaL DlgDirSelectEx(hwndDlg, IpszPath, cbPath, idListBox) 

function DlgDirSelectEx(Dlg: HWnd; Path: PChar; cbPath: Integer; 
ListBox: Integer): Bool; 

The DlgDirSelectEx function retrieves the current selection from a list 
box. The specified list box should have been filled by the DlgDirList 
function, and the selection should be a drive letter, a file, or a directory 
name. 

Parameters hwndDlg 

IpszPath 

cbPath 

idListBox 

Identifies the dialog box that contains the list box. 

Points to a buffer that receives the selected path or 
filename. 

Specifies the length, in bytes, of the path or filename 
pointed to by the IpszPath parameter. This value should not 
be larger than 128. 

Specifies the integer identifier of a list box in the dialog box. 

Return Value The return value is nonzero if the current list box selection is a directory 
name. Otherwise, it is zero. 

Comments If the current selection is a directory name or drive letter, DlgDirSelectEx 
removes the enclosing square brackets (and hyphens, for drive letters) so 
that the name or letter is ready to be inserted into a new path or filename. 
If there is no selection, the contents of buffer pointed to by the IpszPath 
parameter do not change. 

The DlgDirSelectEx function does not allow more than one filename to be 
returned from a list box. 

The list box must not be a multiple-selection list box. If it is, this function 
will not return a zero value and IpszPath will remain unchanged. 

DlgDirSelectEx sends LB_GETCURSEL and LB_GETTEXT messages to 
the list box. 

See Also DlgDirList, DlgDirListComboBox, DlgDirSelect, DlgDirSelectComboBox 

212 Windows API Guide 



DragFinish 

DragAcceptFiles 3.1 

Syntax #include <shellapi.h> 
void DragAcceptFiles(hwnd, fAccept) 

procedure DragAcceptFiles(Wnd: HWnd; Accept: Bool); 

The DragAcceptFiles function registers whether a given window accepts 
dropped files. 

Parameters hwnd 

fAccept 

Identifies the window registering whether it accepts 
dropped files. 

Specifies whether the window specified by the hwnd 
parameter accepts dropped files. An application should set 
this value to TRUE to accept dropped files or FALSE to 
discontinue accepting dropped files. 

Return Value This function does not return a value. 

Comments When an application calls DragAcceptFiles with fAccept set to TRUE, 
Windows File Manager (WINFILE.EXE) sends the specified window a 
WM_DROPFILES message each time the user drops a file in that window. 

DragFinish 3.1 

Syntax #include <shellapi.h> 
void DragFinish(hDrop) 

procedure DragFinish(Drop: THandle); 

The DragFinish function releases memory that Windows allocated for use 
in transferring filenames to the application. 

Parameters hDrop Identifies the internal data structure that describes 
dropped files. This handle is passed to the application in 
the wParam parameter of the WM_DROPFILES message. 

Return Value This function does not return a value. 

Chapter 4, Functions 213 



DragQueryFile 

DragQueryFile 3.1 

Syntax #inc1ude <shellapLh> 
UINT DragQueryFile(hDrop, iFile, IpszFile, cb) 

function DragQueryFile(Drop: THandle; FileIndex: Word; FileName: 
PChar; cb: Word): Word; 

The DragQueryFile function retrieves the number of dropped files and 
their filenames. 

Parameters hDrop 

iFile 

IpszFile 

cb 

Identifies the internal data structure containing filenames 
for the dropped files. This handle is passed to the 
application in the wParam parameter of the 
WM_DROPFILES message. 

Specifies the index of the file to query. The index of the 
first file is O. If the value of the iFile parameter is -1, 
DragQueryFile returns the number of files dropped. If the 
value of the iFile parameter is between zero and the total 
number of files dropped, DragQueryFile copies the 
filename corresponding to that value to the buffer pointed 
to by the IpszFile parameter. 

Points to a null-terminated string that contains the 
filename of a dropped file when the function returns. If 
this parameter is NULL and the iFile parameter specifies 
the index for the name of a dropped file, DragQueryFile 
returns the required size, in bytes, of the buffer for that 
filename. 

Specifies the size, in bytes, of the IpszFile buffer. 

Return Value When the function copies a filename to the IpszFile buffer, the return value 
is the number of bytes copied. If the iFile parameter is OxFFFF, the return 
value is the number of dropped files. If iFile is between zero and the total 
number of dropped files and if IpszFile is NULL, the return value is the 
required size of the IpszFile buffer. 

See Also DragQueryPoint 

DragQueryPoint 3.1 

Syntax #inc1ude <shellapi.h> 
BaaL DragQueryPoint(hDrop, lppt) 

214 Windows API Guide 



DriverProc 

function DragQueryPoint(Drop: THandle; var Pt: TPoint): Bool; 

The DragQueryPoint function retrieves the window coordinates of the 
cursor when a file is dropped. 

Parameters hDrop Identifies the internal data structure that describes the 
dropped file. This structure is returned in the wParam 
parameter of the WM_DROPFILES message. 

lppt Points to a POINT structure that the function fills with the 
coordinates of the position at which the cursor was located 
when the file was dropped. The POINT structure has the 
following form: 

typedef struct tagPOINT 
int x; 
int y; 

} POINT; 

/* pt */ 

Return Value The return value is nonzero if the file is dropped in the client area of the 
window. Otherwise, it is zero. 

Comments The DragQueryPoint function fills the POINT structure with the 
coordinates of the position at which the cursor was located when the user 
released the left mouse button. The window for which coordinates are 
returned is the window that received the WM_DROPFILES message. 

See Also DragQueryFile 

DriverProc 3. 1 

Syntax LRESUL T CALLBACK DriverProc(dwDriverIdentifier, hDriver, 
wMessage, IParaml, IParam2) 

The DriverProc function processes the specified message. 

Parameters dwDriverldentifier 

hDriver 

wMessage 

Chapter 4, Functions 

Specifies an identifier of the installable driver. 

Identifies the installable driver. This parameter is a 
unique handle that Windows assigns to the driver. 

Identifies a message that the driver must process. 
Following are the messages that Windows or an 
application can send to an installable driver: 

215 



DriverProc 

Message 

DRV _CONFIGURE 

DRV _DISABLE 

DRV_FREE 
DRV _INSTALL 

DRV_OPEN 
DRV_POWER 

DRV _ QUERYCONFIGURE 

DRV_REMOVE 

Description 

Notifies the driver that it should decrement 
(decrease by one) its usage count and unload the 
driver if the count is zero. 
Notifies the driver that it should display a 
custom-configuration dialog box. (This message 
should be sent only if the driver returns a nonzero 
value when the DRV _QUERYCONFIGURE 
message is processed.) 
Notifies the driver that its allocated memory is 
about to be freed. 
Notifies the driver that it has been loaded or 
reloaded, or that Windows has been enabled. 
Notifies the driver that it will be discarded. 
Notifies the driver that it has been successfully 
installed. 
Notifies the driver that it has been successfully 
loaded. 
Notifies the driver that it is about to be opened. 
Notifies the driver that the device's power source 
is about to be turned off or turned on. 
Determines whether the driver supports the 
DRV _CONFIGURE message. The message 
displays a private configuration dialog box. 
Notifies the driver that it is about to be removed 
from the system. 

IParaml 

IParam2 

Specifies the first message parameter. 

Specifies the second message parameter. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The DriverProc function is the main function within a Windows 
installable driver; it is supplied by the driver developer. 

When the wMessage parameter is DRV _OPEN, IParaml is the string 
following the driver filename from the SYSTEM.INI file and IParam2 is the 
value given as the IParam parameter in the call to the Open Driver function. 

When the wMessage parameter is DRV _CLOSE, IParaml and IParam2 are 
the same values as the IParaml and IParam2 parameters in the call to the 
CloseDriver function. 

See Also CloseDriver, Open Driver 

216 Windows API Guide 



EnableCommNotification 

EnableCommNotification 3.1 

Syntax BaaL EnableCommNotification(idComDev, hwnd, cbWriteNotify, 
cbOutQueue) 

function EnableCommNotification(idComDev: Integer; hwnd: HWnd; 
cbWriteNotify, cbOutQueue: Integer): Bool; 

The EnableCommNotification function enables or disables 
WM_ COMMNOTIFY message posting to the given window. 

Parameters idComDev Specifies the communications device that is 
posting notification messages to the window 
identified by the hwnd parameter. The OpenComm 
function returns the value for the idComDev 
parameter. 

hwnd 

cb WriteNotify 

Chapter 4, Functions 

Identifies the window whose 
WM_ COMMNOTIFY message posting will be 
enabled or disabled. If this parameter is NULL, 
EnableCommNotification disables message 
posting to the current window. 

Indicates the number of bytes the COM driver 
must write to the application's input queue before 
sending a notification message. The message 
signals the application to read information from 
the input queue. 

217 



EnableScroliBar 

cbOutQueue Indicates the minimum number of bytes in the 
output queue. When the number of bytes in the 
output queue falls below this number, the COM 
driver sends the application a notification 
message, signaling it to write information to the 
output queue. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero, indicating an invalid COM port identifier, a port that is not open, or 
a function not supported by COMM.DRV. 

Comments If an application specifies -1 for the cb WriteNotify parameter, the 
WM_ COMMNOTIFY message is sent to the specified window for 
CN_EVENT and CN_TRANSMIT notifications but not for CN_RECEIVE 
notifications. If -1 is specified for the cbOutQueue parameter, CN_EVENT 
and CN_RECEIVE notifications are sent but CN_TRANSMIT notifications 
are not. 

If a timeout occurs before as many bytes as specified by the cb WriteNotify 
parameter are written to the input queue, a WM_ COMMNOTIFY 
message is sent with the CN_RECEIVE flag set. When this occurs, another 
message will not be sent until the number of bytes in the input queue falls 
below the number specified in the cb WriteNotify parameter. Similarly, a 
WM_COMMNOTIFY message in which the CN_RECEIVE flag is set is 
sent only when the output queue is larger than the number of bytes 
specified in the cbOutQueue parameter. 

The Windows 3.0 version of COMM.DRV does not support this function. 

EnableScroliBar 3.1 

218 

Syntax BOOL EnableScrollBar(hwnd, fnSBFlags, fuArrowFlags) 

function EnableScrollBar(hwnd: HWnd; fnSBFlags: Integer; 
fuArrowFlags: Word): Bool; 

The EnableScroliBar function enables or disables one or both arrows of a 
scroll bar. 

Parameters hwnd 

fnSBFlags 

Identifies a window or a scroll bar, depending on the value 
of the fnSBFlags parameter. 

Specifies the scroll bar type. This parameter can be one of 
the following values: 

Windows API Guide 



Value 

SB_BOTH 

EnableScrollBar 

Meaning 

Enables or disables the arrows of the horizontal 
and vertical scroll bars associated with the given 
window. The hwnd parameter identifies the 
window. 
Identifies the scroll bar as a scroll bar control. 
The hwnd parameter must identify a scroll bar 
control. 
Enables or disables the arrows of the horizontal 
scroll bar associated with the given window. The 
hwnd parameter identifies the window. 
Enables or disables the arrows of the vertical 
scroll bar associated with the given window. The 
hwnd parameter identifies the window. 

fuArrowFlags Specifies whether the scroll bar arrows are enabled or 
disabled, and which arrows are enabled or disabled. This 
parameter can be one of the following values: 

Value 

ESB_ENABLE_BOTH 
ESB_DISABLE_LTUP 

ESB_DISABLE_BOTH 

Meaning 

Enables both arrows of a scroll bar. 
Disables the left arrow of a 
horizontal scroll bar, or the up arrow 
of a vertical scroll bar. 
Disables the right arrow of a 
horizontal scroll bar, or the down 
arrow of a vertical scroll bar. 
Disables both arrows of a scroll bar. 

Return Value The return value is nonzero if the arrows are enabled or disabled as 
specified. Otherwise, it is zero, indicating that the arrows are already in 
the requested state or that an error occurred. 

Example The following example enables an edit control's vertical scroll bar when 
the control receives the input focus, and disables the scroll bar when the 
control loses the focus: 

case EN SETFOCUS: 
EnableScrollBar(hwndMLEdit, SB_VERT, ESB_ENABLE_BOTH); 
break; 

case EN KILLFOCUS: 
EnableScrollBar(hwndMLEdit, SB_VERT, ESB_DISABLE_BOTH); 
break; 

See Also ShowScrollBar 

Chapter 4, Functions 219 



EndDoc 

EndDoc 3.1 

Syntax int EndOoc(hdc) 

function EndOoc(OC: HOC): Integer; 

The End Doc function ends a print job. This function replaces the 
END DOC printer escape for Windows version 3.1. 

Parameters hdc Identifies the device context for the print job. 

Return Value The return value is greater than or equal to zero if the function is 
successful. Otherwise, it is less than zero. 

Comments An application should call the End Doc function immediately after 
finishing a successful print job. To terminate a print job because of an 
error or if the user chooses to cancel the job, an application should call the 
AbortDoc function. 

Do not use the End Doc function inside metafiles. 

See Also AbortDoc, Escape, StartDoc 

EndPage 3.1 

Syntax int EndPage(hdc) 

function EndPage(OC: HOC): Integer; 

The EndPage function signals the device that the application has finished 
writing to a page. This function is typically used to direct the driver to 
advance to a new page. 

This function replaces the NEWFRAME printer escape for Windows 3.1. 
Unlike NEWFRAME, this function is always called after printing a page. 

Parameters hdc Identifies the device context for the print job. 

Return Value The return value is greater than or equal to zero if the function is 
successful. Otherwise, it is an error value. 

Errors If the function fails, it returns one of the following error values: 

220 Windows API Guide 



Value 

SP_ERROR 
SP _APPABORT 

EnumFontFamilies 

Meaning 

General error. 
Job was terminated because the application's print­
canceling function returned zero. 

SP _USERABORT User terminated the job by using Windows Print 
Manager (PRINTMAN .EXE). 

SP _OUTOFDISK Not enough disk space is currently available for 
spooling, and no more space will become available. 
Not enough memory is available for spooling. SP _OUTOFMEMORY 

Comments The ResetDC function can be used to change the device mode, if 
necessary, after calling the EndPage function. 

See Also Escape, ResetDC, StartPage 

EnumFontFamilies 3.1 

Syntax int EnumFontFamilies(hdc,lpszFamily, fntenmprc, IParam) 

function EnumFontFamilies(DC: HDC; Family: PChar; EnumProc: 
TFontEnumProc; Data: PChar): Integer; 

The EnumFontFamilies function enumerates the fonts in a specified font 
family that are available on a given device. EnumFontFamilies continues 
until there are no more fonts or the callback function returns zero. 

Parameters hdc 

IpszFamily 

fntenmprc 

IParam 

Identifies the device context. 

Points to a null-terminated string that specifies the family 
name of the desired fonts. If this parameter is NULL, the 
EnumFontFamilies function selects and enumerates one 
font from each available font family. 

Specifies the procedure-instance address of the 
application-defined callback function. The address must be 
created by the MakeProclnstance function. For more 
information about the callback function, see the 
description of the EnumFontFamProc callback function. 

Specifies a 32-bit application-defined value that is passed 
to the callback function along with the font information. 

Return Value The return value specifies the last value returned by the callback function, 
if the function is successful. This value depends on which font families are 
available for the given device. 

Chapter 4, Functions 221 



EnumFontFamProc 

Comments The EnumFontFamilies function differs from the EnumFonts function in 
that it retrieves the style names associated with a TrueType font. Using 
EnumFontFamilies, an application can retrieve information about 
unusual font styles (for example, Outline) that cannot be enumerated by 
using the EnumFonts function. Applications should use 
EnumFontFamilies instead of EnumFonts. 

For each font having the font name specified by the IpszFamily parameter, 
the EnumFontFamilies function retrieves information about that font and 
passes it to the function pointed to by the fntenmprc parameter. The 
application-supplied callback function can process the font information, 
as necessary. 

Example The following example uses the MakeProclnstance function to create a 
pointer to the callback function for the EnumFontFamilies function. The 
FreeProclnstance function is called when enumeration is complete. 
Because the second parameter is NULL, EnumFontFamilies enumerates 
one font from each family that is available in the given device context. The 
aFontCount variable points to an array that is used inside the callback 
function. 

FONTENUMPROC lpEnumFarnCallBacki 
int aFontCount[] = { 0, 0, 0 }i 

lpEnumFarnCallBack = (FONTENUMPROC) MakeProclnstance( 
(FARPROC) EnumFarnCallBack, hApplnstance)i 

EnumFontFamilies(hdc, NULL, lpEnumFarnCallBack, (LPARAM) aFontCount)i 
FreeProclnstance((FARPROC) lpEnumFarnCallBack)i 

See Also EnumFonts, EnumFontFamProc 

EnumFontFamProc 3.1 

222 

Syntax int CALLBACK EnumFontFamProc(lpnlf, lpntm, FontType, IParam) 

TFontEnumProc = TFarProc; 

The EnumFontFamProc function is an application-defined callback 
function that retrieves information about available fonts. 

Parameters Ipnlf Points to a NEWLOGFONT structure that contains 
information about the logical attributes of the font. This 
structure is locally-defined and is identical to the Windows 
LOGFONT structure except for two new members. The 
NEWLOGFONT structure has the following form: 

Windows API Guide 



Ipntm 

Chapter 4, Functions 

EnumFontFamProc 

struct tagNEWLOGFONT /* nlf */ 

int lfHeight; 
int lfWidth; 
int lfEscapement; 
int lfOrientation; 
int lfWeighti 
BYTE lfltalic; 
BYTE lfUnderline; 
BYTE lfStrikeOuti 
BYTE lfCharSeti 
BYTE lfOutPrecisioni 
BYTE lfClipPrecision; 
BYTE lfQualitYi 
BYTE lfPitchAndFamilYi 
BYTE lfFaceName[LF_FACESIZE]i 
BYTE lfFullName [2 * LF_FACESIZE]; /* TrueType only 

*/ 
BYTE lfStyle[LF_FACESIZE]; /* TrueType only 

*/ 
} NEWLOGFONT i 

The If Full Name and IfStyle members are appended to a 
LOGFONT structure when a TrueType font is enumerated 
in the EnumFontFamProc function. 

The If Full Name member is a character array specifying the 
full name for the font. This name contains the font name 
and style name. 

The IfStyle member is a character array specifying the style 
name for the font. 

For example, when bold italic Arial@is enumerated, the last 
three members of the NEWLOGFONT structure contain 
the following strings: 

IfFaceName = "Arial"; 
IfFullN arne = "Arial Bold Italic" ; 
lfStyle = "Bold Italic"; 

Points to a NEWTEXTMETRIC structure that contains 
information about the physical attributes of the font, if the 
font is a TrueType font. If the font is not a TrueType font, 
this parameter points to a TEXTMETRIC structure. 

223 



EnumFontFamProc 

224 

FontType 

IParam 

The NEWTEXTMETRIC structure has the following form: 

typedef struct tagNEWTEXTMETRIC 
int tmHeight; 
int tmAscent; 
int tmDescent; 
int tmInternalLeading; 
int tmExternalLeading; 
int tmAveCharWidth; 
int tmMaxCharWidth; 
int tmWeight; 
BYTE tmItalic; 
BYTE tmUnderlined; 
BYTE tmStruckOut; 
BYTE tmFirstChar; 
BYTE tmLastChar; 
BYTE tmDefaultChar; 
BYTE tmBreakChar; 
BYTE tmPitchAndFamily; 
BYTE tmCharSet; 
int tmOverhang; 
int tmDigitizedAspectX; 
int tmDigitizedAspectY; 
DWORD ntmFlags; 
UINT ntmSizeEM; 
UINT ntmCellHeight; 
UINT ntmAvgWidth; 

}NEWTEXTMETRI C; 

/* ntm */ 

The TEXTMETRIC structure is identical to 
NEWTEXTMETRIC except that it does not include the last 
four members. 

Specifies the type of the font. This parameter can be a 
combination of the following masks: 

DEVICE_FONTTYPE 
RASTER_FONTTYPE 
TRUETYPE_FONTTYPE 

Points to the application-defined data passed by 
EnumFontFamilies. 

Return Value This function must return a nonzero value to continue enumeration; to 
stop enumeration, it must return zero. 

Comments An application must register this callback function by passing its address 
to the EnumFontFamilies function. The EnumFontFamProc function is a 
placeholder for the application-defined function name. The actual name 

Windows API Guide 



EnumFontsProc 

must be exported by including it in an EXPORTS statement in the 
application's module-definition (.DEF) file. 

The AND (&) operator can be used with the RASTER_FONTTYPE, 
DEVICE_FONTTYPE, and TRUETYPE_FONTTYPE constants to deter­
mine the font type. If the RASTER_FONTTYPE bit is set, the font is a 
raster font. If the TRUETYPE_FONTTYPE bit is set, the font is a TrueType 
font. If neither bit is set, the font is a vector font. A third mask, 
DEVICE_FONT -TYPE, is set when a device (for example, a laser printer) 
supports downloading TrueType fonts; it is zero if the font is not a device 
font. (Any device can support device fonts, including display adapters 
and dot-matrix printers.) An application can also use the DEVICE_FONT­
TYPE mask to distinguish GDI-supplied raster fonts from device-supplied 
fonts. GDI can simulate bold, italic, underline, and strikeout attributes for 
GDI-supplied raster fonts, but not for device-supplied fonts. 

See Also EnumFontFamilies, EnumFonts 

EnumFontsProc 3.1 

Syntax int CALLBACK EnumFontsProcOplf, lpntm, FontType, IpData) 

TOldFontEnumProc = TFarProc; 

The EnumFontsProc function is an application-defined callback function 
that processes font data from the EnumFonts function. 

Parameters Iplf 

Chapter 4, Functions 

Points to a LOGFONT structure that contains information 
about the logical attributes of the font. The LOG FONT 
structure has the following form: 

typedef struct tagLOGFONT /* 
int lfHeighti 
int lfWidthi 
int lfEscapementi 
int lfOrientationi 
int lfWeight; 
BYTE lfItalic; 
BYTE lfUnderline; 
BYTE lfStrikeOut; 
BYTE lfCharSet; 
BYTE lfOutPrecision; 
BYTE lfClipPrecision; 
BYTE lfQuality; 
BYTE lfpitchAndFamilYi 
BYTE lfFaceName[LF_FACESIZEli 

} LOGFONTi 

If */ 

225 



EnumFontsProc 

226 

Ipntm 

FontType 

IpData 

Points to a NEWTEXTMETRIC structure that contains 
information about the physical attributes of the font, if the 
font is a TrueType font. If the font is not a TrueType font, 
this parameter points to a TEXTMETRIC structure. 

The NEWTEXTMETRIC structure has the following form: 

typedef struct tagNEWTEXTMETRIC 
int tmHeight: 
int tmAscent: 
int tmDescent: 
int tmInternalLeading: 
int tmExternalLeading: 
int tmAveCharWidth: 
int tmMaxCharWidth: 
int tmWeight: 
BYTE tmItalic: 
BYTE tmUnderlined: 
BYTE tmStruckOut: 
BYTE tmFirstChar: 
BYTE tmLastChar: 
BYTE tmDefaultChar: 
BYTE tmBreakChar: 
BYTE tmPitchAndFamily: 
BYTE tmCharSet: 
int tmOverhang: 
int tmDigitizedAspectX: 
int tmDigitizedAspectY: 
DWORD ntmFlags: 
UINT ntmSizeEM; 
UINT ntmCellHeight; 
UINT ntmAvgWidth: 

}NEWTEXTMETRI C: 

/* ntm */ 

The TEXTMETRIC structure is identical to 
NEWTEXTMETRIC except that it does not include the last 
four members. 

Specifies the type of the font. This parameter can be a 
combination of the following masks: 

DEVICE_FONTTYPE 
RASTER_FONTTYPE 
TRUETYPE_FONTTYPE 

Points to the application-defined data passed by the 
EnumFonts function. 

Return Value This function must return a nonzero value to continue enumeration; to 
stop enumeration, it must return zero. 

Windows API Guide 



EnumMetaFileProc 

Comments An application must register this callback function by passing its address 
to the EnumFonts function. The EnumFontsProc function is a 
placeholder for the application-defined function name. The actual name 
must be exported by including it in an EXPORTS statement in the 
application's module-definition (.DEF) file. 

The AND (&) operator can be used with the RASTER_FONTTYPE, 
DEVICE_FONTTYPE, and TRUETYPE_FONTTYPE constants to 
determine the font type. If the RASTER_FONTTYPE bit is set, the font is a 
raster font. If the TRUETYPE_FONTTYPE bit is set, the font is a TrueType 
font. If neither bit is set, the font is a vector font. A third mask, 
DEVICE_FONTTYPE, is set when a device (for example, a laser printer) 
supports downloading TrueType fonts; it is zero if the device is a display 
adapter, dot-matrix printer, or other raster device. An application can also 
use the DEVICE_FONTTYPE mask to distinguish GDI-supplied raster 
fonts from device-supplied fonts. GDI can simulate bold, italic, underline, 
and strikeout attributes for GDI-supplied raster fonts, but not for 
device-supplied fonts. 

See Also EnumFonts, EnumFontFamilies 

EnumMetaFileProc 

Syntax int CALLBACK EnumMetaFileProc(hdc, lpht, lpmr, cObj, IParam) 

The EnumMetaFileProc function is an application-defined callback 
function that processes metafile data from the EnumMetaFile function. 

Parameters hdc 

Ipht 

Identifies the special device context that contains the 
metafile. 

Points to a table of handles associated with the objects 
(pens, brushes, and so on) in the metafile. 

3.1 

Ipmr 

cObj 

Points to a metafile record contained in the metafile. 

Specifies the number of objects with associated handles in 
the handle table. 

IParam Points to the application-defined data. 

Return Value The callback function must return a nonzero value to continue 
enumeration; to stop enumeration, it must return zero. 

Comments An application must register this callback function by passing its address 
to the EnumMetaFile function. 

Chapter 4, Functions 227 



EnumObjectsProc 

The EnumMetaFileProc function is a placeholder for the 
application-defined function name. The actual name must be exported by 
including it in an EXPORTS statement in the application's 
module-definition (.DEF) file. 

See Also EnumMetaFile 

EnumObjectsProc 

Syntax int CALLBACK EnumObjectsProc(lpLogObject, IpData) 

The EnumObjectsProc function is an application-defined callback 
function that processes object data from the EnumObjects function. 

3.1 

Parameters IpLogObject Points to a LOG PEN or LOGBRUSH structure that contains 
information about the attributes of the object. 

IpData 

The LOG PEN structure has the following form: 

typedef struct tagLOGPEN { /* 19pn */ 
UINT lopnStylei 
POINT lopnWidthi 

COLORREF lopnColori 
} LOGPENi 

The LOGBRUSH structure has the following form: 

typedef struct tagLOGBRUSH 

UINT lbStylei 
COLORREF lbColor; 

int lbHatch; 
} LOGBRUSH; 

/* lb */ 

Points to the application-defined data passed by the 
EnumObjects function. 

Return Value This function must return a nonzero value to continue enumeration; to 
stop enumeration, it must return zero. 

Comments An application must register this callback function by passing its address 
to the EnumObjects function. The EnumObjectsProc function is a 
placeholder for the application-supplied function name. The actual name 
must be exported by including it in an EXPORTS statement in the 
application's module-definition (.DEF) file. 

228 Windows API Guide 



EnumObjecfsProc 

Example The following example retrieves the number of horizontally hatched 
brushes and fills LOGBRUSH structures with information about each of 
them: 

#define MAXBRUSHES 50 

GOBJENUMPROC lpProcCallback; 
HGLOBAL hglbl; 
LPBYTE lpbCountBrush; 

lpProcCallback = (GOBJENUMPROC) MakeProcInstance( 
(FARPROC) Callback, hinst); 

hglbl = GlobalAlloc(GMEM_FIXED, sizeof(LOGBRUSH) 
* MAXBRUSHES); 

lpbCountBrush = (LPBYTE) GlobalLock(hglbl); 
*lpbCountBrush = 0; 
EnumObjects(hdc, OBJ_BRUSH, lpProcCallback, 

(LPARAM) lpbCountBrush); 

FreeProcInstance((FARPROC) lpProcCallback); 

intFARPASCALCallback(LPLOGBRUSHlpLogBrush,LPBYTEpbData) 
{ 

/* 
* The pbData parameter contains the number of horizontally 
* hatched brushes; the lpDest parameter is set to follow the 
* byte reserved for pbData and the LOGBRUSH structures that 
* have been filled with brush information. 
*/ 

LPLOGBRUSH lpDest = 
(LPLOGBRUSH) (pbData + 1 + (*pbData * sizeof(LOGBRUSH))); 

if (lpLogBrush->lbStyle == 
BS_HATCHED && /* if horiz hatch */ 
lpLogBrush->lbHatch == HS HORIZONTAL) 

*lpDest++ = *lpLogBrush; /* fills structure with brush 
(*pbData) ++; /* increments brush count 
if (*pbData >= MAXBRUSHES) 

return 0; 

return 1; 

See Also EnumObjects, FreeProclnstance, GlobalAlloc, GlobalLock, 
MakeProclnstance 

info */ 
*/ 

Chapter 4, Functions 229 



EnumPropFixedProc 

EnumPropFixedProc 2.x 

Syntax BOOL CALLBACK EnumPropFixedProc(hwnd, lpsz, hData) 

The EnumPropFixedProc function is an application-defined callback 
function that receives a window's property data as a result of a call to the 
EnumProps function. 

Parameters hwnd 

Ipsz 

hData 

Identifies the handle of the window that contains the 
property list. 

Points to the null-terminated string associated with the 
property data identified by the hData parameter. The 
application specified the string and data in a previous call 
to the SetProp function. If the application passed an atom 
instead of a string to SetProp, the Ipsz parameter contains 
the atom in the low-order word and zero in the high-order 
word. 

Identifies the property data. 

Return Value The callback function must return TRUE to continue enumeration; it must 
return FALSE to stop enumeration. 

Comments This form of the property-enumeration callback function should be used 
in applications and dynamic-link libraries with fixed data segments and 
in dynamic libraries with movable data segments that do not contain a 
stack. 

The following restrictions apply to the callback function: 

• The callback function must not yield control or do anything that might 
yield control to other tasks. 

• The callback function can call the RemoveProp function. However, 
RemoveProp can remove only the property passed to the callback 
function through the callback function's parameters. 

II The callback function should not attempt to add properties. 

The EnumPropFixedProc function is a placeholder for the 
application-defined function name. The actual name must be exported by 
including it in an EXPORTS statement in the application's 
module-definition (.DEF) file. 

See Also EnumPropMovableProc, EnumProps, RemoveProp, SetProp 

230 Windows API Guide 



EnumPropMovableProc 

EnumPropMovableProc 2.x 

Syntax BOOL CALLBACK EnumPropMovableProc(hwnd, lpsz, hData) 

The EnumPropMovableProc function is an application-defined callback 
function that receives a window's property data as a result of a call to the 
EnumProps function. 

Parameters hwnd 

Ipsz 

hData 

Identifies the handle of the window that contains the 
property list. 

Points to the null-terminated string associated with the 
data identified by the hData parameter. The application 
specified the string and data in a previous call to the 
SetProp function. If the application passed an atom 
instead of a string to SetProp, the Ipsz parameter contains 
the atom. 

Identifies the property data. 

Return Value The callback function must return TRUE to continue enumeration; to stop 
enumeration, it must return FALSE. 

Comments This form of the property-enumeration callback function should be used 
in applications with movable data segments and in dynamic libraries 
whose movable data segments also contain a stack. This form is required 
since movement of the data will invalidate any long pointer to a variable 
on the stack, such as the Ipsz parameter. The data segment typically 
moves if the callback function allocates more space in the local heap than 
is currently available. 

The following restrictions apply to the callback function: 

C The callback function must not yield control or do anything that might 
yield control to other tasks. 

IJ The callback function can call the RemoveProp function. However, 
RemoveProp can remove only the property passed to the callback 
function through the callback function's parameters. 

El The callback function should not attempt to add properties. 

The EnumPropMovableProc function is a placeholder for the application­
defined function name. The actual name must be exported by including it 
in an EXPORTS statement in the application's module-definition (.DEF) file. 

See Also EnumPropFixedProc, EnumProps, RemoveProp, SetProp 

Chapter 4, Functions 231 



EnumToskWndProc 

Enum TaskWndProc 2.x 

Syntax BOOL CALLBACK EnumTaskWndProc(hwnd, IParam) 

The EnumTaskWndProc function is an application-defined callback 
function that receives the window handles associated with a task as a 
result of a call to the EnumTaskWindows function. 

Parameters hwnd Identifies a window associated with the task specified in 
the EnumTaskWindows function. 

IParam Specifies the application-defined value specified in the 
EnumTaskWindows function. 

Return Value The callback function must return TRUE to continue enumeration; to stop 
enumeration, it must return FALSE. 

Comments The callback function can carry out any desired task. 

The EnumTaskWndProc function is a placeholder for the 
application-defined function name. The actual name must be exported by 
including it in an EXPORTS statement in the application's 
module-definition (.DEF) file. 

See Also EnumTaskWindows 

EnumWindowsProc 2.x 

Syntax BOOL CALLBACK Enum WindowsProc(hwnd, IParam) 

The EnumWindowsProc function is an application-defined callback 
function that receives parent window handles as a result of a call to the 
EnumWindows function. 

Parameters hwnd 

IParam 

Identifies a parent window. 

Specifies the application-defined value specified in the 
EnumWindows function. 

Return Value The callback function must return nonzero to continue enumeration; to 
stop enumeration, it must return zero. 

Comments The callback function can carry out any desired task. 

232 Windows API Guide 



ExitWindowsExec 

The EnumWindowsProc function is a placeholder for the 
application-defined function name. The actual name must be exported by 
including it in an EXPORTS statement in the application's 
module-definition (.DEF) file. 

See Also EnumWindows 

ExitWindowsExec 3.0 

Syntax BOOL ExitWindowsExec(lpszExe, lpszParams) 
function ExitWindowExec(Exe: PChar; Params: PChar): Bool; 

The ExitWindowsExec function terminates Windows, runs a specified 
MS-DOS application, and then restarts Windows. 

Parameters IpszExe 

IpszParams 

Points to a null-terminated string specifying the path and 
filename of the executable file for the system to run after 
Windows has been terminated. This string must not be 
longer than 128 bytes (including the null terminating 
character). 

Points to a null-terminated string specifying any 
parameters for the executable file specified by the IpszExe 
parameter. This string must not be longer than 127 bytes 
(including the null terminating character). This value can 
be NULL. 

Return Value The return value is FALSE if the function fails. (The function could fail 
because of a memory-allocation error or if one of the applications in the 
system does not terminate.) 

Comments The ExitWindowsExec function is typically used by installation programs 
to replace components of Windows which are active when Windows is 
running. 

See Also ExitWindows 

Chapter 4, Functions 233 



Extractlcon 

Extractlcon 3. 1 

Syntax #include <shellapi.h> 
HICON ExtractIcon(hinst, IpszExeName, iIcon) 

function Extractlcon(lnst: THandle; ExeFileName: PChar; IconIndex: 
Word): HIcon; 

The Extractlcon function retrieves the handle of an icon from a specified 
executable file, dynamic-link library (DLL), or icon file. 

Parameters hinst Identifies the instance of the application calling the 
function. 

lpszExeName Points to a null-terminated string specifying the name of 
an executable file, dynamic-link library, or icon file. 

iIcon Specifies the index of the icon to be retrieved. If this 
parameter is zero, the function returns the handle of the 
first icon in the specified file. If the parameter is -1, the 
function returns the total number of icons in the specified 
file. 

Return Value The return value is the handle of an icon if the function is successful. It is 
1 if the file specified in the lpszExeName parameter is not an executable 
file, dynamic-link library, or icon file. Otherwise, it is NULL, indicating 
that the file contains no icons. 

FindExecutoble 3.1 

234 

Syntax #include <shellapi.h> 
HINSTANCE FindExecutableOpszFile, IpszDir, IpszResult) 

function FindExecutable(FileName, Directory, Result: PChar): THandle; 

The FindExecutable function finds and retrieves the executable filename 
that is associated with a specified filename. 

Parameters lpszFile 

lpszDir 

lpszResult 

Points to a null-terminated string specifying a filename. 
This can be a document or executable file. 

Points to a null-terminated string specifying the drive 
letter and path for the default directory. 

Points to a buffer that receives the name of an executable 
file when the function returns. This null-terminated string 

Windows API Guide 



FindExecutable 

specifies the application that is started when the Open 
command is chosen from the File menu in File Manager. 

Return Value The return value is greater than 32 if the function is successful. If the 
return value is less than or equal to 32, it specifies an error code. 

Errors The FindExecutable function returns 31 if there is no association for the 
specified file type. The other possible error values are as follows: 

Value 

o 

2 

3 
5 

6 
8 

10 
11 

12 

13 
14 
15 

16 

19 

20 

21 

Meaning 

System was out of memory, executable file was corrupt, or relocations 
were invalid. 

File was not found. 
Path was not found. 

Attempt was made to dynamically link to a task, or there was a 
sharing or network-protection error. 
Library required separate data segments for each task. 
There was insufficient memory to start the application. 

Windows version was incorrect. 
Executable file was invalid. Either it was not a Windows application 
or there was an error in the .EXE image. 
Application was designed for a different operating system. 
Application was designed for MS-DOS 4.0. 
Type of executable file was unknown. 
Attempt was made to load a real-mode application (developed for an 
earlier version of Windows). 
Attempt was made to load a second instance of an executable file 
containing multiple data segments that were not marked read-only. 

Attempt was made to load a compressed executable file. The file must 
be decompressed before it can be loaded. 

Dynamic-link library (DLL) file was invalid. One of the DLLs required 
to run this application was corrupt. 
Application requires Microsoft Windows 32-bit extensions. 

Comments The filename specified in the IpszFile parameter is associated with an 
executable file when an association has been registered between that file's 
filename extension and an executable file in the registration database. An 
application that produces files with a given filename extension typically 
associates the extension with an executable file when the application is 
installed. 

See Also RegQueryValue, Shell Execute 

Chapter 4, Functions 235 



FindText 

FindText 3.1 

236 

Syntax #include <commdlg.h> 
HWND FindTextOpfr) 

function FindText<var FindReplace: TFindReplace): HWnd; 

The FindText function creates a system-defined modeless dialog box that 
makes it possible for the user to find text within a document. The 
application must perform the search operation. 

Parameters [pfr Points to a FINDREPLACE structure that contains 
information used to initialize the dialog box. When the 
user makes a selection in the dialog box, the system fills 
this structure with information about the user's selection 
and then sends a message to the application. This message 
contains a pointer to the FINDREPLACE structure. 

The FINDREPLACE structure has the following form: 

#include <cornmdlg.h> 

typedef struct tagFINDREPLACE 

DWORD lStructSize; 
HWND hwndOwner; 
HINSTANCE hInstance; 
DWORD Flags; 
LPSTR lpstrFindWhat; 
LPSTR 
UINT 
UINT 
LPARAM 

lpstrReplaceWith; 
wFindWhatLen; 
wReplaceWithLen; 
lCustData; 

/* fr */ 

UINT (CALLBACK* IpfnHook) (HWND, UINT, WPARAM, LPARAM); 

LPCSTR lpTemplateName; 

}FINDREPLACE; 

Return Value The return value is the window handle of the dialog box if the function is 
successful. Otherwise, it is NULL. An application can use this window 
handle to communicate with or to close the dialog box. 

Errors Use the CommDlgExtendedError function to retrieve the error value, 
which may be one of the following values: 

CDERR_FINDRESFAILURE 
CDERR_INITIALIZATION 
CDERR_LOCKRESFAILURE 
CDERR_LOADRESFAILURE 
CDERR_LOADSTRFAILURE 

Windows API Guide 



CDERR_MEMALLOCFAILURE 
CDERR_MEMLOCKFAILURE 
CDERR_NOHINSTANCE 
CDERR_NOHOOK 
CDERR_NOTEMPLATE 
CDERR_STRUCTSIZE 
FRERR_BUFFERLENGTHZERO 

FindText 

Comments The dialog box procedure for the Find dialog box passes user requests to 
the application through special messages. The IParam parameter of each of 
these messages contains a pointer to a FINDREPLACE structure. The 
procedure sends the messages to the window identified by the 
hwndOwner member of the FINDREPLACE structure. An application can 
register the identifier for these messages by specifying the 
"commdlg_FindReplace" string in a call to the RegisterWindowMessage 
function. 

For the TAB key to function correctly, any application that calls the 
FindText function must also call the Is Dialog Message function in its main 
message loop. (The IsDialogMessage function returns a value that 
indicates whether messages are intended for the Find dialog box.) 

If the hook function (to which the IpfnHook member of the 
FINDREPLACE structure points) processes the WM_CTLCOLOR 
message, this function must return a handle of the brush that should be 
used to paint the control background. 

Example The following example initializes a FINDREPLACE structure and calls the 
FindText function to display the Find dialog box: 

Chapter 4, Functions 

FINDREPLACE fr; 

/* Set all structure fields to zero. */ 

memset(&fr, 0, sizeof(FINDREPLACE)); 

fr.1StructSize = sizeof(FINDREPLACE); 
fr.hwndOwner = hwnd; 
fr.lpstrFindWhat = szFindWhat; 
fr.wFindWhatLen = sizeof(szFindWhat); 

hDlg = FindText(&fr); 

break; 

In addition to initializing the members of the FINDREPLACE structure 
and calling the FindText function, an application must register the special 
FINDMSGSTRING message and process messages from the dialog box. 

237 



FMExtensionProc 

The following example registers the message by using the 
RegisterWindowMessage function: 

UINT uFindReplaceMsg; 

/* Register the FindReplace message. * / 

uFindReplaceMsg = RegisterWindowMessage(FINDMSGSTRING); 

After the application registers the FINDMSGSTRING message, it can 
process messages by using the RegisterWindowMessage return value. 
The following example processes messages for the Find dialog box and 
then calls its own SearchFile function to locate the string of text: 

LRESULTCALLBACKMainWndProc(HWNDhwnd,UINTmsg,WPARAMwParam, 
LPARAM lParam) 

FINDREPLACE FAR* lpfr; 

if (msg == uFindReplaceMsg) 
lpfr = (FINDREPLACE FAR*) lParam; 
SearchFile((BOOL) (lpfr->Flags & FR_DOWN), 

(BOOL) (lpfr->Flags & FR_MATCHCASE)); 
return 0; 

See Also IsDialogMessage, RegisterWindowMessage, ReplaceText 

FMExtensionProc 3.1 

238 

Syntax #include <wfext.h> 
HMENU FAR PASCAL FMExtensionProc(hwnd, wMsg,IParam) 

TFM_Ext_Proc = function(Handle: HWnd; w: Word; 1: Longint): Longint; 

The FMExtensionProc function, an application-defined callback function, 
processes menu commands and messages sent to a File Manager 
extension dynamic-link library (DLL). 

Parameters hwnd 

wMsg 

Identifies the File Manager window. An extension DLL 
should use this handle to specify the parent for any dialog 
boxes or message boxes that the DLL may display and to 
send request messages to File Manager. 

Specifies the message. This parameter may be one of the 
following values: 

Windows API Guide 



Value 

1-99 

FMEVENT_INITMENU 

FMEVENT _LOAD 

FMEVENT_SELCHANGE 

FMEVENT _UNLOAD 

FMEVENT _USER_REFRESH 

FreeAIIGDIMem 

Meaning 

Identifier for the menu item 
that the user selected. 
User selected the extension's 
menu. 
File Manager is loading the 
extension DLL. 
Selection in File Manager's 
directory window, or Search 
Results window, changed. 
File Manager is unloading the 
extension DLL. 
User chose the Refresh 
command from the Window 
menu. 

IParam Specifies 32 bits of additional message-dependent 
information. 

Return Value The callback function should return the result of the message processing. 
The actual return value depends on the message that is processed. 

Comments Whenever File Manager calls the FMExtensionProc function, it waits to 
refresh its directory windows (for changes in the file system) until after 
the function returns. This allows the extension to perform large numbers 
of file operations without excessive repainting by the File Manager. The 
extension does not need to send the FM_REFRESH_ WINDOWS message 
to notify File Manager to repaint its windows. 

FreeAIIGDIMem 

Syntax #include <stress.h> 
void FreeAllGDIMem(void) 

procedure FreeAllGDIMem; 

The FreeAIIGDIMem function frees all memory allocated by the 
AllocGDIMem function. 

Parameters This function has no parameters. 

Return Value This function does not return a value. 

See Also AllocGDIMem 

3.1 

Chapter 4, Functions 239 



FreeAIiMem 

FreeAIiMem 3.1 

Syntax #inc1ude <stress.h> 
void FreeAllMem(void) 

procedure FreeAllMem; 

The FreeAIiMem function frees all memory allocated by the AllocMem 
function. 

Parameters This function has no parameters. 

Return Value This function does not return a value. 

See Also AllocMem 

FreeAIiUserMem 3.1 

Syntax #inc1ude <stress.h> 
void FreeAllUserMem(void) 

procedure FreeAllUserMem; 

The FreeAIiUserMem function frees all memory allocated by the 
AliocUserMem function. 

Parameters This function has no parameters. 

Return Value This function does not return a value. 

See Also AliocUserMem 

GetAspectRatioFilterEx 3.1 

240 

Syntax BOOL GetAspectRatioFilterEx(hdc, IpAspectRatio) 

function GetAspectRatioFilterEx(DC: HDC; Size: PSize): Bool; 

The GetAspectRatioFilterEx function retrieves the setting for the current 
aspect-ratio filter. The aspect ratio is the ratio formed by a device's pixel 
width and height. Information about a device's aspect ratio is used in the 
creation, selection, and displaying of fonts. Windows provides a special 

Windows API Guide 



GetBoundsRect 

filter, the aspect-ratio filter, to select fonts designed for a particular aspect 
ratio from all of the available fonts. The filter uses the aspect ratio 
specified by the SetMapperFlags function. 

Parameters hDC 

IpAspectRatio 

Identifies the device context that contains the 
specified aspect ratio. 

Pointer to a SIZE structure where the current 
aspect ratio filter will be returned. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

See Also SetMapperFlags 

GetBitmapDimensionEx 2.x 

Syntax BOOL GetBitmapOimensionEx(hBitmap, lpOimension) 

function GetBitmapOimensionEx(BM: HBitmap; Size: PSize): Bool; 

The GetBitmapDimensionEx function returns the dimensions of the 
bitmap previously set by the SetBitmapDimensionEx function. If no 
dimensions have been set, a default of 0,0 will be returned. 

Parameters hBitmap Identifies the bitmap. 

IpDimension Points to a SIZE structure to which the dimensions are 
returned. The SIZ.E structure has the following form: 

typedef struet tagSIZE 
int ex; 
int ey; 

} SIZE; 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

See Also SetBitmapDimensionEx 

GetBoundsRect 3.1 

Syntax UINT GetBoundsRect(hdc, lprcBounds, flags) 

function GetBoundsRect(OC: HOC; var Bounds: TRect; Flags: Word): Word; 

Chapter 4, Functions 241 



GetBoundsRect 

The GetBoundsRect function returns the current accumulated bounding 
rectangle for the specified device context. 

Windows maintains two accumulated bounding rectangles-one for the 
application and one reserved for use by Windows. An application can 
query and set its own rectangle, but can only query the Windows 
rectangle. 

Parameters hdc Identifies the device context to return the bounding 
rectangle for. 

IprcBounds 

flags 

Points to a buffer that will receive the current bounding 
rectangle. The application's rectangle is returned in logical 
coordinates, and the Windows rectangle is returned in 
screen coordinates. 

Specifies the type of information to return. This parameter 
can be either or both of the following values: 

Value 

DCB_WINDOWMGR 

Meaning 

Forces the bounding rectangle to be 
cleared after it is returned. 
Queries the Windows bounding 
rectangle instead of the application's. 

Return Value The return value specifies the current state of the bounding rectangle if 
the function is successful. It can be a combination of the following values: 

Value 

DCB_ACCUMULATE 

DCB_RESET 
DCB_SET 

DCB_ENABLE 
DCB_DISABLE 

Meaning 

Bounding rectangle accumulation is occurring. 
Bounding rectangle is empty. 
Bounding rectangle is not empty. 
Bounding accumulation is on. 
Bounding accumulation is off. 

Comments To ensure that the bounding rectangle is empty, check both the 
DCB_RESET bit and the DCB_ACCUMULATE bit in the return value. If 
DCB_RESETis set and DCB_ACCUMULATE is not, the bounding 
rectangle is empty. 

See Also SetBoundsRect 

242 Windows API Guide 



GetCharABCWidths 

GetBrushOrgEx 3.1 

Syntax BOOL GetBrushOrgEx(hOC, lpPoint) 

function GetBrushOrgEx(OC: HOC; Point: PPoint): Baal; 

The GetBrushOrgEx function retrieves the current brush origin for the 
given device context. 

Parameters hDC 

IpPoint 

Identifies the device context. 

Points to a POINT structure to which the device 
coordinates of the brush origin are to be returned. The 
POINT structure has the following form: 

typedef struct tagPOINT { /* pt */ 
int Xi 

int Yi 
} POINT i 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The initial brush origin is at the coordinate (0,0). 

See Also SetBrushOrg 

GetCharABCWidths 3.1 

Syntax BOOL GetCharABCWidths(hdc, uFirstChar, uLastChar,lpabc) 

function GetCharABCWidths(hdc: HOC; uFirstChar, uLastChar: Word; 
var lpabc: T ABC): Baal; 

The GetCharABCWidths function retrieves the widths of consecutive 
characters in a specified range from the current TrueType font. The 
widths are returned in logical units. This function succeeds only with 
TrueType fonts. 

Parameters hdc Identifies the device context. 

uFirstChar 

uLastChar 

Chapter 4, Functions 

Specifies the first character in the range of characters from 
the current font for which character widths are returned. 

Specifies the last character in the range of characters from 
the current font for which character widths are returned. 

243 



GetClipCursor 

lpabe Points to an array of ABC structures that receive the 
character widths when the function returns. This array 
must contain at least as many ABC structures as there are 
characters in the range specified by the uFirstChar and 
uLastChar parameters. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The TrueType rasterizer provides ABC character spacing after a specific 
point size has been selected. "A" spacing is the distance that is added to 
the current position before placing the glyph. "B" spacing is the width of 
the black part of the glyph. "c" spacing is added to the current position to 
account for the white space to the right of the glyph. The total advanced 
width is given by A + B + C. 

When the GetCharABCWidths function retrieves negative" A" or "c" 
widths for a character, that character includes underhangs or overhangs. 

To convert the ABC widths to font design units, an application should 
create a font whose height (as specified in the If Height member of the 
LOG FONT structure) is equal to the value stored in the ntmSizeEM 
member of the NEWTEXTMETRIC structure. (The value of the ntmSizeEM 
member can be retrieved by calling the EnumFontFamilies function.) 

The ABC widths of the default character are used for characters that are 
outside the range of the currently selected font. 

To retrieve the widths of characters in non-TrueType fonts, applications 
should use the GetCharWidth function. 

See Also EnumFontFamilies, GetCharWidth 

GetClipCursor 3.1 

244 

Syntax void GetClipCursor(lprc) 

procedure GetClipCursor(var Rect: TRect); 

The GetClipCursor function retrieves the screen coordinates of the 
rectangle to which the cursor has been confined by a previous call to the 
ClipCursor function. 

Parameters lpre Points to a RECT structure that receives the screen 
coordinates of the confining rectangle. The structure 

Windows API Guide 



GetCursor 

receives the dimensions of the screen if the cursor is not 
confined to a rectangle. The RECT structure has the 
following form: 

typedef struct tagRECT 
int left; 
int top; 
int right; 
int bottom; 

} RECT; 

Return Value This function does not return a value. 

See Also ClipCursor, GetCursorPos 

GetCurrentPositionEx 

Syntax BOOL GetCurrentPositionEx(hdc; IpPoint) 

/* rc */ 

function GetCurrentPositionEx(DC: HDC; Point: PPoint): Bool; 

The GetCurrentPositionEx function retrieves the current position in 
logical coordinates. 

3.1 

Parameters hdc 

IpPoint 

Identifies the device context to get the current position from. 

Points to a POINT structure that gets filled with the current 
position. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero. 

GetCursor 3.1 

Syntax HCURSOR GetCursor(void) 

function GetCursor: HCursor; 

The GetCursor function retrieves the handle of the current cursor. 

Parameters This function has no parameters. 

Return Value The return value is the handle of the current cursor if the function is 
successful. Otherwise, it is NULL. 

See Also SetCursor 

Chapter 4, Functions 245 



GetDCEx 

GetDCEx 3.1 

Syntax HDC GetDCEx(hwnd, hrgnClip, fdwOptions) 

function GetDCEx(Wnd: HWnd; Clip: HRgn; Flags: Longint): HDC; 

The GetDCEx function retrieves the handle of a device context for the 
given window. The device context can be used in subsequent graphics 
device interface (GD!) functions to draw in the client area. 

This function, which is an extension to the GetDC function, gives an 
application more control over how and whether a device context for a 
window is clipped. 

Parameters hwnd 

hrgnClip 

Identifies the window where drawing will occur. 

Identifies a clipping region that may be combined with the 
visible region of the client window. 

fdwOptions Specifies how the device context is created. This parameter 
can be a combination of the following values: 

Value Meaning 

DCX_CACHE Returns a device context from the cache, 
rather than the OWNDC or CLASSDC 
window. Essentially overrides CS_OWNDC 
and CS_ CLASSDC. 

DCX_ CLIPCHILDREN Excludes the visible regions of all child 
windows below the window identified by the 
hwnd parameter. 

DCX_ CLIPSIBLINGS Excludes the visible regions of all sibling 
windows above the window identified by the 
hwnd parameter. 

DCX_EXCLUDERGN Excludes the clipping region identified by the 
hrgnClip parameter from the visible region of 
the returned device context. 

DCX_INTERSECTRGN Intersects the clipping region identified by the 
hrgnClip parameter with the visible region of 
the returned device context. 

DCX_LOCKWINDOWUPDATE Allows drawing even if there is a 
LockWindowUpdate call in effect that would 
otherwise exclude this window. This value is 
used for drawing during tracking. 

246 Windows API Guide 



GetDriverlnfo 

Value Meaning 

DCX_PARENTCLIP Uses the visible region of the parent window, 
ignoring the parent window's 
WS_ CLIPCHILDREN and WS_PARENTDC 
style bits. This value sets the device context's 
origin to the upper-left corner of the window 
identified by the hwnd parameter. 
Returns a device context corresponding to the 
window rectangle rather than the client 
rectangle. 

Return Value The return value is a handle of the device context for the specified 
window, if the function is successful. Otherwise, it is NULL. 

Comments Unless the device context belongs to a window class, the ReleaseDC 
function must be called to release the context after drawing. Since only 
five common device contexts are available at any given time, failure to 
release a device context can prevent other applications from accessing a 
device context. 

A device context belonging to the window's class is returned by the 
GetDCEx function if the CS_CLASSDC, CS_OWNDC, or CS_PARENTDC 
class style was specified in the WNDCLASS structure when the class was 
registered. 

In order to obtain a cached device context, an application must specify 
DCX_ CACHE. If DCX_ CACHE is not specified and the window is neither 
CS_OWNDC nor CS_CLASSDC, this function returns NULL. 

See Also BeginPaint, GetDC, GetWindowDC, ReleaseDC 

GetDriverlnfo 3.1 

Syntax BOOL GetDriverInfo(hdrvr, Ipdis) 

function GetDriverInfo(hDriver: THandle; lpdis: PDriverInfoStruct): Bool; 

The GetDriverlnfo function retrieves information about an installable 
driver. 

Parameters hdrvr 

Chapter 4, Functions 

Identifies the installable driver. This handle must be 
retrieved by the Open Driver function. 

247 



GetDriverModuleHandle 

[pdis Points to a DRIVERINFOSTRUCT structure that receives 
the driver information. The DRIVERINFOSTRUCT 
structure has the following form: 

typedef struct tagDRIVERINFOSTRUCT /* drvinfst */ 

UINT length; 

HDRVR hDriver; 
HINSTANCE hModule; 

char szAliasNarne[128]; 

DRIVERINFOSTRUCT; 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

GetDriverModuleHandle 3.1 

Syntax HINSTANCE GetDriverModuleHandle(hdrvr) 

function GetDriverModuleHandle(Driver: THandle): THan die; 

The GetDriverModuleHandle function retrieves the instance handle of a 
module that contains an install able driver. 

Parameters hdror Identifies the installable driver. This parameter must be 
retrieved by the Open Driver function. 

Return Value The return value is an instance handle of the driver module if the function 
is successful. Otherwise, it is NULL. 

See Also OpenDriver 

248 Windows API Guide 



GetExpandedName 

GetExpandedName 3.1 

Syntax #include <lzexpand.h> 
int GetExpandedName(lpszSource, IpszBuffer) 

function GetExpandedName(Source, Buffer: PChar): Integer; 

The GetExpandedName function retrieves the original name of a 
compressed file if the file was compressed with the COMPRESS.EXE 
utility and the Ir option was specified. 

Parameters IpszSource Points to a string that specifies the name of a compressed 
file. 

IpszBuffer Points to a buffer that receives the name of the compressed 
file. 

Return Value The return value is TRUE if the function is successful. Otherwise, it is an 
error value that is less than zero, and it may be 
LZERROR_BADINHANDLE, which means that the handle identifying 
the source file was not valid. 

Example The following example uses the GetExpandedName function to retrieve 
the original filename of a compressed file: 

Chapter 4, Functions 

char szSrc [] = {"readme. crop"}; 
char szFileName[128]; 
OFSTRUCT ofStrSrc; 
OFSTRUCT ofStrDest; 
HFILE hfSrcFile, hfDstFile, hfCompFile; 
int cbRead; 
BYTE abBuf[512]; 

/* Open the compressed source file. * / 

hfSrcFile = OpenFile(szSrc, &ofStrSrc, OF_READ); 

/* 
* Initialize internal data structures for the decompression 
* operation. 
*/ 

hfCompFile = LZInit(hfSrcFile); 

/* Retrieve the original name for the compressed file. * / 

GetExpandedName(szSrc, szFileName); 

/* Create the destination file using the original name. * / 

hfDstFile = LZOpenFile(szFileName, &ofStrDest, OF_CREATE); 

249 



GetFileResource 

/ * Copy the compressed source file to the destination file. * / 

do { 
if ((cbRead = LZRead(hfCompFile, abBuf, sizeof(abBuf))) > 0) 

_lwrite(hfDstFile, abBuf, cbRead); 
else { 

. /* handle error condition */ 

while (cbRead == sizeof(abBuf)); 

/* Close the files. * / 

LZClose(hfSrcFile); 
LZClose(hfDstFile); 

Comments This function retrieves the original filename from the header of the 
compressed file. If the source file is not compressed, the filename to which 
IpszSource points is copied to the buffer to which IpszBuffer points. 

If the Ir option was not set when the file was compressed, the string in the 
buffer to which IpszBuffer points is invalid. 

GetFileResource 3.1 

250 

Syntax #include <ver.h> 
BOOL GetFileResourceOpszFileName, lpszResType, lpszResID, 
dwFileOffset, dwResLen, lpvData) 

function GetFileResource(FileName: PChar; ResType: PChar; ResID: 
PChar; FileOffset: Longint; ResLen: Longint; Data: PChar): Bool; 

The GetFileResource function copies the specified resource from the 
specified file into the specified buffer. To obtain the appropriate buffer 
size, the application can call the GetFileResourceSize function before 
calling GetFileResource. 

Parameters IpszFileName Points to the buffer that contains the name of the file 

IpszResType 

IpszResID 

containing the resource. 

Points to a value that is created by using the 
MAKEINTRESOURCE macro with the numbered resource 
type. This value is typically VS_FILE_INFO. 

Points to a value that is created by using the 
MAKEINTRESOURCE macro with the numbered resource 
identifier. This value is typically VS_ VERSION_INFO. 

Windows API Guide 



GetFileResourceSize 

dwFileOffset Specifies the offset of the resource within the file. The 
GetFileResourceSize function returns this value. If this 
parameter is NULL, the GetFileResource function 
searches the file for the resource. 

dwResLen Specifies the buffer size, in bytes, identified by the IpvData 
parameter. The GetFileResourceSize function returns the 
buffer size required to hold the resource. If the buffer is not 
large enough, the resource data is truncated to the size of 
the buffer. 

IpvData Points to the buffer that will receive a copy of the resource. 
If the buffer is not large enough, the resource data is 
truncated. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero, indicating the function could not find the file, could not find the 
resource, or produced an MS-DOS error. The GetFileResource function 
returns no information about the type of error that occurred. 

Comments If the dwFileOffset parameter is zero, the GetFileResource function 
determines the location of the resource by using the IpszResType and 
IpszResID parameters. 

If dwFileOffset is not zero, GetFileResource assumes that dwFileOffset is 
the return ~alue of GetFileResourceSize and, therefore, ignores 
IpszResType and IpszResID. 

See Also GetFileResourceSize 

GetFileResourceSize 

Syntax #include <ver.h> 
DWORD GetFileResourceSize(lpszFileName, IpszResType, IpszResID, 
IpdwFileOffset) 

3.1 

function GetFileResourceSize(FileName: PChar; ResType: PChar; ResID: 
PChar; var FileOffset: Longint): Longint; 

The GetFileResourceSize function searches the specified file for the 
resource of the specified type and identifier. 

Parameters IpszFileName Points to the buffer that contains the name of the file in 
which to search for the resource. 

Chapter 4, Functions 251 



GetFileTitle 

IpszResType Points to a value that is created by using the 
MAKEINTRESOURCE macro with the numbered resource 
type. This value is typically VS_FILE_INFO. 

IpszResID Points to a value that is created by using the 
MAKEINTRESOURCE macro with the numbered resource 
identifier. This value is typically VS_ VERSION_INFO. 

IpdwFileOffset Points to a 16-bit value that the GetFileResourceSize 
function fills with the offset to the resource within the file. 

Return Value The return value is the size of the resource, in bytes. The return value is 
NULL if the function could not find the file, the file does not have any 
resources attached, or the function produced an MS-DOS error. The 
GetFileResourceSize function returns no information about the type of 
error that occurred. 

See Also GetFileResource 

GetFile Title 3. 1 

Syntax #include <commdlg.h> 
int GetFileTitle(lpszFile, IpszTitle, cbBuO 

function GetFileTitleCFileName, Title: PChar; TitleSize: Word): Integer; 

The GetFileTitle function returns the title of the file identified by the 
IpszFile parameter. 

Parameters IpszFile 

IpszTitle 

cbBuf 

Points to the name and location of an MS-DOS file. 

Points to a buffer into which the function is to copy the 
name of the file. 

Specifies the length, in bytes, of the buffer to which the 
IpszTitle parameter points. 

Return Value The return value is zero if the function is successful. The return value is a 
negative number if the filename is invalid. The return value is a positive 
integer that specifies the required buffer size, in bytes, if the buffer to 
which the IpszTitle parameter points is too small. 

Comments The function returns an error value if the buffer pointed to by the IpszFile 
parameter contains any of the following: 

252 Windows API Guide 



Get File Version Info 

C An empty string 

13 A string containing a wildcard (*), opening bracket (D, or closing 
bracketeD 

IJ A string that ends with a colon (:), slash mark (/), or backslash (\) 

D A string whose length exceeded the length of the buffer 

IJ An invalid character (for example, a space or unprintable character). 

The required buffer size includes the terminating null character. 

GetFileVersionlnfo 3.1 

Syntax #include <ver.h> 

Parameters 

BOOL GetFileVersionInfo(lpszFileName, handle, cbBuf,lpvData) 

function GetFileVersionInfo(FileName: PChar; Handle: Longint; Len: 
Longint; Data: PChar): Bool; 

The GetFileVersionlnfo function returns version information about the 
specified file. The application must call the GetFileVersionlnfoSize 
function before calling GetFileVersionlnfo to obtain the appropriate 
handle if the handle is not NULL. 

IpszFileName 

handle 

cbBuf 

IpvData 

Points to the buffer that contains the name of the file. 

Identifies the file-version information. The 
GetFileVersionlnfoSize function returns this handle, or it 
may be NULL. If the handle parameter is NULL, the 
GetFileVersionlnfo function searches the file for the 
version information. 

Specifies the buffer size, in bytes, identified by the IpvData 
parameter. The GetFileVersionlnfoSize function returns 
the buffer size required to hold the file-version 
information. If the buffer is not large enough, the 
file-version information is truncated to the size of the 
buffer. 

Points to the buffer that will receive the file-version 
information. This parameter is used by a subsequent call to 
the VerQueryValue function. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero, indicating the file does not exist or the handle parameter is invalid. 
The GetFileVersionlnfo function returns no information about the type of 
error that occurred. 

Chapter 4, Functions 253 



GetFile VersionlnfoSize 

Comments The file version information is organized in a VS_ VERSION_INFO block. 

Currently, the GetFileVersionlnfo function recognizes only 
version-information created by Microsoft Resource Compiler (RC). 

See Also GetFileVersionlnfoSize, VerQueryValue 

GetFileVersionlnfoSize 3.1 

Syntax #inc1ude <ver.h> 

Parameters 

DWORD GetFile VersionlnfoSizeOpszFileN arne, lpdw Handle) 

function GetFileVersionlnfoSize(FileName: PChar; var Handle: Longint): 
Longint; 

The GetFileVersionlnfoSize function determines whether it can obtain 
version information from the specified file. If version information is 
available, GetFileVersionlnfoSize returns the size of the buffer required to 
hold the version information. It also returns a handle that can be used in a 
subsequent call to the GetFileVersionlnfo function. 

IpszFileName 

IpdwHandle 

Points to the buffer that contains the name of the file. 

Points to a 32-bit value that the GetFileVersionlnfoSize 
function fills with the handle to the file-version 
information. The GetFileVersionlnfo function can use this 
handle. 

Return Value The return value is the buffer size, in bytes, required to hold the version 
information if the function is successful. The return value is NULL if the 
function could not find the file, could not find the version information, or 
produced an MS-DOS error. The GetFileVersionlnfoSize function returns 
no information about the type of error that occurred. 

Comments The file version information is organized in a VS_ VERSION_INFO block. 

See Also GetFileVersionlnfo 

GetFontData 3.1 

Syntax DWORD GetFontData(hdc, dwTable, dwOffset, IpvBuffer, cbData) 

function GetFontData(hdc: HDC; dwTable, dwOffset: Longint; IpvBuffer: 
PChar; cbData: Longint): Longint; 

254 Windows API Guide 



GetFontOata 

The GetFontData function retrieves font-metric information from a 
scalable font file. The information to retrieve is identified by specifying an 
offset into the font file and the length of the information to return. 

Parameters hdc 

dwTable 

dwOffset 

IpvBuffer 

cbData 

Identifies the device context. 

Specifies the name of the metric table to be returned. This 
parameter can be one of the metric tables documented in 
the TrueType Font Files specification, published by 
Microsoft Corporation. If this parameter is zero, the 
information is retrieved starting at the beginning of the 
font file. 

Specifies the offset from the beginning of the table at which 
to begin retrieving information. If this parameter is zero, 
the information is retrieved starting at the beginning of the 
table specified by the dwTable parameter. If this value is 
greater than or equal to the size of the table, GetFontData 
returns zero. 

Points to a buffer that will receive the font information. If 
this value is NULL, the function returns the size of the 
buffer required for the font data specified in the dwTable 
parameter. 

Specifies the length, in bytes, of the information to be 
retrieved. If this parameter is zero, GetFontData returns 
the size of the data specified in the dwTable parameter. 

Return Value The return value specifies the number of bytes returned in the buffer 
pointed to by the IpvBuffer parameter, if the function is successful. 
Otherwise, it is -1. 

Comments An application can sometimes use the GetFontData function to save a 
TrueType font with a document. To do this, the application determines 
whether the font can be embedded and then retrieves the entire font file, 
specifying zero for the dwTable, dwOffset, and cbData parameters. 

Applications can determine whether a font can be embedded by checking 
the otmfsType member of the OUTLINETEXTMETRIC structure. If bit 1 of 
otmfsType is set, embedding is not permitted for the font. If bit 1 is clear, 
the font can be embedded. If bit 2 is set, the embedding is read-only. 

Chapter 4, Functions 

If an application attempts to use this function to retrieve information for a 
non-TrueType font, the GetFontData function returns -1. 

255 



GetFontOata 

Example The following example retrieves an entire TrueType font file: 

HGLOBAL hglb; 
DWORD dwSize; 
void FAR* lpvBuffer; 

dwSize = GetFontData(hdc, NULL, OL, NULL, OL); /* get file size */ 

hglb = GlobalAlloc(GPTR, dwSize); /* allocate memory */ 
lpvBuffer = GlobalLock(hglb); 
GetFontData(hdc, NULL, OL, lpvBuffer, dwSize); /* retrieve data */ 

The following retrieves an entire TrueType font file 4K at a time: 

#define SIZE 4096 
BYTE Buffer[SIZE]; 
DWORD dwOffset; 
DWORD dwSizei 
dwOffset = OL; 
while(dwSize = GetFontData(hdc, NULL, dwOffset, Buffer, SIZE)) { 

. /* process data in buffer */ 

dwOffset += dwSizei 

The following example retrieves a TrueType font table: 

HGLOBAL hglb; 
DWORD dwSize; 
void FAR* lpvBuffer; 

LPSTR lpszTable; 
DWORD dwTablei 

lpszTable 
dwTable 

"cmap"i 
* (LPDWORD) lpszTable; /* construct DWORD type * / 

dwSize GetFontData(hdc, dwTable, OL, NULL, OL); /* get table size */ 

hglb = GlobalAlloc(GPTR, dwSize); /* allocate memory */ 
lpvBuffer = GlobalLock(hglb)i 
GetFontData(hdc, dwTable, OL, lpvBuffer, dwSize); /* retrieve data */ 

See Also GetOutiineTextMetrics 

256 Windows API Guide 



GetFreeSystemResources 

GetFreeFileHandles 3.1 

Syntax #inc1ude <stress.h> 
int GetFreeFileHandles(void) 

function GetFreeFileHandles: Integer; 

The GetFreeFileHandles function returns the number of file handles 
available to the current instance. 

Parameters This function has no parameters. 

Return Value The return value is the number of file handles available to the current instance. 

GetFreeSystemResources 3.1 

Syntax UINT GetFreeSystemResources(fuSysResource) 

function GetFreeSystemResources(SysResource: W ord): Word; 

The GetFreeSystemResources function returns the percentage of free 
space for system resources. 

Parameters fuSysResource Specifies the type of resource to be checked. This 
parameter can be one of the following values: 

Value Meaning 

GFSR_SYSTEMRESOURCES Returns the percentage of free space for system 
resources. 

GFSR_ GDIRESOURCES Returns the percentage of free space for GDI 
resources. GDI resources include device-context 
handles, brushes, pens, regions, fonts, and bitmaps. 

GFSR_ USERRESOURCES Returns the percentage of free space for USER 
resources. These resources include window and 
menu handles. 

Return Value The return value specifies the percentage of free space for resources, if the 
function is successful. 

Comments Since the return value from this function does not guarantee that an 
application will be able to create a new object, applications should not use 
this function to determine whether it will be possible to create an object. 

See Also GetFreeSpace 

Chapter 4, Functions 257 



GetGlyphOutline 

GetGlyphOutline 3.1 

258 

Syntax DWORD GetGlyphOutline(hdc, uChar; fuFormat,lpgm, cbBuffer, 
IpBuffer,lpmat2) 

function GetGlyphOutline(hdc: HDC; uChar, fuFormat: Word; var lpgm: 
TGlyphMetrics; cbBuffer: Longint; IpBuffer: PChar; var Ipmat2: TMat2): 
Longint; 

The GetGlyphOutiine function retrieves the outline curve or bitmap for an 
outline character in the current font. 

Parameters hdc 

uChar 

fuFormat 

Ipgm 

Identifies the device context. 

Specifies the character for which information is to be 
returned. 

Specifies the format in which the function is to return 
information. It can be one of the following values: 

Value Meaning 

Returns the glyph bitmap. When the 
function returns, the buffer pointed to by the 
lpBuffer parameter contains a I-bit-per-pixel 
bitmap whose rows start on doubleword 
boundaries. 
Returns the curve data points in the 
rasterizer's native format, using device 
units. When this value is specified, any 
transformation specified in the lpmat2 
parameter is ignored. 

When the value of this parameter is zero, the function fills 
in a GL VPHMETRICS structure but does not return 
glyph-outline data. 

Points to a GL VPHMETRICS structure that describes the 
placement of the glyph in the character cell. The 
GL VPHMETRICS structure has the following form: 

typedef struct tagGLYPHMETRICS { /* gm */ 
UINT gmBlackBoxXj 
UINT gmBlackBoxYj 
POINT gmptGlyphOriginj 
int gmCellIncXj 
int gmCellIncY; 

GLYPHMETRICSj 

Windows API Guide 



cbBuffer 

IpBuffer 

Ipmat2 

GetGlyphOutline 

Specifies the size of the buffer into which the function 
copies information about the outline character. If this value 
is zero and the fuFormat parameter is either the 
eeO_BITMAP or eeO_NATIVE values, the function 
returns the required size of the buffer. 

Points to a buffer into which the function copies 
information about the outline character. If the fuFormat 
parameter specifies the eeo _NATIVE value, the 
information is copied in the form of TTPOL YGONHEADER 
and TTPOL YCURVE structures. If this value is NULL and 
the fuFormat parameter is either the eeo _BITMAP or 
eeO_NATIVE value, the function returns the required 
size of the buffer. 

Points to a MAT2 structure that contains a transformation 
matrix for the character. This parameter cannot be NULL, 
even when the eeO_NATIVE value is specified for the 
fuFormat parameter. The MAT2 structure has the following 
form: 

typedef struct tagMAT2 { /* mat2 */ 
FIXED eMl1; 

FIXED eM12; 

FIXED eM21; 

FIXED eM22; 

MAT2; 

Return Value The return value is the size, in bytes, of the buffer required for the 
retrieved information if the cbBuffer parameter is zero or the IpBuffer 
parameter is NULL. Otherwise, it is a positive value if the function is 
successful, or -1 if there is an error. 

Comments An application can rotate characters retrieved in bitmap format by 
specifying a 2-by-2 transformation matrix in the structure pointed to by 
the Ipmat2 parameter. 

A glyph outline is returned as a series of contours. Each contour is 
defined by a TTPOL YGONHEADER structure followed by as many 
TTPOLYCURVE structures as are required to describe it. All points are 
returned as POINTFX structures and represent absolute positions, not 
relative moves. The starting point given by the pfxStart member of the 
TTPOL YGONHEADER structure is the point at which the outline for a 
contour begins. The TTPOLYCURVE structures that follow can be either 
polyline records or spline records. Polyline records are a series of points; 
lines drawn between the points describe the outline of the character. 
Spline records represent the quadratic curves used by TrueType (that is, 
quadratic b-splines). 

Chapter 4, Functions 259 



GetKerningPairs 

For example, the GetGlyphOutiine function retrieves the following 
information about the lowercase "i" in the Arial TrueType font: 

dwrc = 88 

TTPOLYGONHEADER #1 
cb = 44 
dwType = 24 
pfxStart = 1.000, 11.000 

TTPOLYCURVE #1 
wType = TT PRIM LINE 
cpfx = 3 
pfx[O] = 1.000, 12.000 
pfx[l] = 2.000, 12.000 
pfx[2] = 2.000, 11.000 

TTPOLYGONHEADER #2 
cb = 44 
dwType = 24 
pfxStart = 1.000, 0.000 

TTPOLYCURVE #1 
wType = TT PRIM LINE 
cpfx = 3 
pfx[O] = 1.000, 9.000 
pfx[l] = 2.000, 9.000 
pfx[2] = 2.000, 0.000 

See Also GetOutlineTextMetrics 

/* total size of native buffer 

/* contour for dot on i 
/* size for contour 
/* TT_POLYGON_TYPE 

*/ 

*/ 
*/ 
*/ 

/* automatically close to pfxStart */ 

/* contour for body of i */ 

*/ 

/* automatically close to pfxStart */ 

GetKerningPairs 3.1 

260 

Syntax int GetKerningPairs(hdc, cPairs, lpkrnpair) 

function GetKerningPairs(DC: HDC; i: Integer; Pair: PKerningPair): 
Integer; 

The GetKerningPairs function retrieves the character kerning pairs for the 
font that is currently selected in the specified device context. 

Parameters hdc 

cPairs 

Identifies a device context. The GetKerningPairs function 
retrieves kerning pairs for the current font for this device 
context. 

Specifies the number of KERNINGPAIR structures pointed 
to by the Ipkrnpair parameter. The function will not copy 
more kerning pairs than specified by cPairs. 

The KERNINGPAIR structure has the following form: 

Windows API Guide 



GetMsgProc 

typedef struct tagKERNINGPAIR { 
WORD wFirst; 
WORD wSecond; 
int iKernAmount; 

KERNINGPAIR; 

Ipkrnpair Points to an array of KERNINGPAIR structures that receive 
the kerning pairs when the function returns. This array 
must contain at least as many structures as specified by the 
cPairs parameter. If this parameter is NULL, the function 
returns the total number of kerning pairs for the font. 

Return Value The return value specifies the number of kerning pairs retrieved or the 
total number of kerning pairs in the font, if the function is successful. It is 
zero if the function fails or there are no kerning pairs for the font. 

GetMessageExtralnfo 

Syntax LONG GetMessageExtralnfo(void) 

function GetMessageExtralnfo: Longint; 

The GetMessageExtralnfo function retrieves the extra information 
associated with the last message retrieved by the Get Message or 
PeekMessage function. This extra information may be added to a 
message by the driver for a pointing device or keyboard. 

Parameters This function has no parameters. 

Return Value The return value specifies the extra information if the function is 
successful. The meaning of the extra information is device-specific. 

See Also GetMessage, hardware_event, PeekMessage 

3.1 

GetMsgProc 3.1 

Syntax LRESULT CALLBACK GetMsgProc(code, wParam, IParam) 

The GetMsgProc function is a library-defined callback function that the 
system calls whenever the GetMessage function has retrieved a message 
from an application queue. The system passes the retrieved message to 
the callback function before passing the message to the destination 
window procedure. 

Chapter 4, Functions 261 



GetNextDriver 

Parameters code 

wParam 

IParam 

Specifies whether the callback function should process the 
message or call the CallNextHookEx function. If this 
parameter is less than zero, the callback function should 
pass the message to CallNextHookEx without further 
processing. 

Specifies a NULL value. 

Points to an MSG structure that contains information about 
the message. The MSG structure has the following form: 

typedef struct tagMSG 
HWND hwndi 
DINT messagei 
WPARAM wParam; 
LPARAM lParami 
DWORD time; 
POINT pt; 

MSG; 

/* msg */ 

Return Value The callback function should return zero. 

Comments The GetMsgProc callback function can examine or modify the message as 
desired. Once the callback function returns control to the system, the 
GetMessage function returns the message, with any modifications, to the 
application that originally called it. The callback function does not require 
a return value. 

This callback function must be in a dynamic-link library (DLL). 

An application must install the callback function by specifying the 
WH_GETMESSAGE filter type and the procedure-instance address of the 
callback function in a call to the SetWindowsHookEx function. 

GetMsgProc is a placeholder for the library-defined function name. The 
actual name must be exported by including it in an EXPORTS statement 
in the library's module-definition (.DEF) file. 

See Also CallNextHookEx, GetMessage, SetWindowsHookEx 

GetNextDriver 3.1 

Syntax HDRVR GetNextDriver(hdrvr, fdwFlag) 

function GetNextDriver(Driver: THandle; IParam: Longint): THandle; 

The GetNextDriver function enumerates instances of an installable driver. 

262 Windows API Guide 



Parameters hdrvr 

fdwFlag 

Value 

GetOpenClipboardWindow 

Identifies the installable driver for which instances should 
be enumerated. This parameter must be retrieved by the 
Open Driver function. If this parameter is NULL, the 
enumeration begins at either the beginning or end of the 
list of installable drivers (depending on the setting of the 
flags in the fdwFlag parameter). 

Specifies whether the function should return a handle 
identifying only the first instance of a driver and whether 
the function should return handles identifying the 
instances of the driver in the order in which they were 
loaded. This parameter can be one or more of the following 
flags: 

Meaning 

GND _FIRSTINSTANCEONLY Returns a handle identifying the first instance 
of an installable driver. When this flag is set, 
the function will enumerate only the first 
instance of an installable driver, no matter 
how many times the driver has been installed. 
Enumerates subsequent instances of the 
driver. (Using this flag has the same effect as 
not using the GND _REVERSE flag.) 

GND _REVERSE Enumerates instances of the driver as it was 
loaded-each subsequent call to the function 
returns the handle of the next instance. 

Return Value The return value is the instance handle of the installable driver if the 
function is successful. 

GetOpenClipboardWindow 

Syntax HWND GetOpenClipboardWindow(void) 

function GetOpenClipboardWindow: HWnd; 

The GetOpenClipboardWindow function retrieves the handle of the 
window that currently has the clipboard open. 

Parameters This function has no parameters. 

3.1 

Return Value The return value is the handle of the window that has the clipboard open, 
if the function is successful. Otherwise, it is NULL. 

See Also GetClipboardOwner, GetClipboardViewer, OpenClipboard 

Chapter 4, Functions 263 



GefOpenFileName 

GetOpenFileName 3.1 

Syntax #include <commdlg.h> 
BOOL GetOpenFileN ame(lpofn) 

function GetOpenFileN ame( var OpenFile: TOpenFilename): Bool; 

The GetOpenFileName function creates a system-defined dialog box that 
makes it possible for the user to select a file to open. 

Parameters [pofn Points to an OPENFILENAME structure that contains 
information used to initialize the dialog box. When the 
GetOpenFileName function returns, this structure contains 
information about the user's file selection. 

The OPENFILENAME structure has the following form: 

#include <commdlg.h> 

typedef struct tagOPENFILENAME { 1* ofn *1 
DWORD lStructSize; 
HWND hwndOwner; 
HINSTANCE hInstance; 
LPCSTR lpstrFilter; 
LPSTR lpstrCustomFilter; 
DWORD nMaxCustFilter; 
DWORD nFilterIndex; 
LPSTR lpstrFile; 
DWORD nMaxFile; 
LPSTR lpstrFileTitle; 
DWORD nMaxFileTitle; 
LPCSTR lpstrInitialDir; 
LPCSTR lpstrTitle; 
DWORD Flags; 
UINT nFileOffset; 
UINT nFileExtension; 
LPCSTR lpstrDefExt; 
LPARAM lCustData; 
UINT (CALLBACK* IpfnHook) (HWND, UINT, WPARAM, LPARAM); 

LPCSTR lpTemplateName; 
OPENFILENAME; 

Return Value The return value is nonzero if the user selects a file to open. It is zero if an 
error occurs, if the user chooses the Cancel button, if the user chooses the 
Close command on the System menu to close the dialog box, or if the 
buffer identified by the IpstrFile member of the OPEN FILENAME 
structure is too small to contain the string that specifies the selected file. 

264 Windows API Guide 



GefOpenFileName 

Errors The CommDlgExtendedError function retrieves the error value, which 
may be one of the following values: 

CDERR_FINDRESFAILURE 
CDERR_INITIALIZATION 
CDERR_LOCKRESFAILURE 
CDERR_LOADRESFAILURE 
CDERR_LOADSTRFAILURE 
CDERR_MEMALLOCFAILURE 
CDERR_MEMLOCKFAILURE 
CDERR_NOHINSTANCE 
CDERR_NOHOOK 
CDERR_NOTEMPLATE 
CDERR_STRUCTSIZE 
FNERR_BUFFERTOOSMALL 
FNERR_INV ALIDFILENAME 
FNERR_SUBCLASSFAILURE 

Comments If the hook function (to which the IpfnHook member of the 
OPENFILENAME structure points) processes the WM_CTLCOLOR 
message, this function must return a handle of the brush that should be 
used to paint the control background. 

Example The following example copies file-filter strings into a buffer, initializes an 
OPENFILENAME structure, and then creates an Open dialog box. 

The file-filter strings are stored in the resource file in the following form: 

STRINGTABLE 
BEGIN 

IDS FILTERSTRING "Write Files (*. WRI) 1*. wri I Word Files (* .DOC) 1*. doc I" 
END 

The replaceable character at the end of the string is used to break the 
entire string into separate strings, while still guaranteeing that all the 
strings are continguous in memory. 

Chapter 4, Functions 

OPENFILENAME ofni 
char szDirName[256]i 
char szFile[256] , szFileTitle[2561i 
UINT i, cbStringi 
char chReplacei /* string separator for szFilter */ 
char szFilter[256]i 
HFILE hfi 

/* Get the system directory name and store in szDirName */ 

GetSystemDirectory(szOirName, sizeof(szDirName))i 
szFile[O] = '\0' i 

265 



GetOutlineTextMetrics 

if ((cbString = LoadString(hinst, IDS_FILTERSTRING, 
szFilter, sizeof(szFilter))) == 0) { 

ErrorHandler () ; 
return OL; 

chReplace = szFilter[cbString - 1]; /* retrieve wild character */ 

for (i = 0; szFilter[i] != '\0'; i++) 
if (szFilter[i] == chReplace) 

szFilter[i] = '\0'; 

/* Set all structure members to zero. * / 

memset(&ofn, 0, sizeof(OPENFILENAME)); 

ofn.1StructSize = sizeof(OPENFlLENAME); 
ofn.hwndOwner = hwnd; 
ofn.lpstrFilter = szFilter; 
ofn.nFilterlndex = 1; 
ofn.lpstrFile = szFile; 
ofn.nMaxFile = sizeof(szFile); 
ofn.lpstrFileTitle = szFileTitle; 
ofn.nMaxFileTitle = sizeof(szFileTitle)i 
ofn.lpstrlnitialDir = szDirName; 
ofn.Flags = OFN_SHOWHELP I OFN_PATHMUSTEXIST OFN_FILEMUSTEXISTi 

if (GetOpenFileName(&ofn)) 
hf = _lopen(ofn.lpstrFile, OF_READ); 

/* Perform file operations */ 

else 
ErrorHandler() i 

See Also GetSaveFileName 

GetOutline TextMetrics 

Syntax WORD GetOutlineTextMetrics(hdc, cbData, lpotm) 

function GetOutlineTextMetrics(hdc: HOC; cbData: Word; var Ipotm: 
TOutlineTextMetric): Word; 

The GetOutiineTextMetrics function retrieves metric information for 
TrueType fonts. 

Parameters hdc 

cbData 

Identifies the device context. 

Specifies the size, in bytes, of the buffer to which 
information is returned. 

3.1 

266 Windows API Guide 



Ipotm 

GetOutlineTextMetrics 

Points to an OUTLINETEXTMETRIC structure. If this 
parameter is NULL, the function returns the size of the 
buffer required for the retrieved metric information. The 
OUTLINETEXTMETRIC structure has the following form: 

typedef struct tagOUTLINETEXTMETRIC 
UINT otmSize; 
TEXTMETRIC otmTextMetrics; 
BYTE otmFiller; 
PANOSE 
UINT 
UINT 
UINT 
UINT 
UINT 
UINT 
INT 
INT 
UINT 
UINT 
UINT 
RECT 
INT 
INT 
UINT 
UINT 
POINT 
POINT 
POINT 
POINT 
UINT 
INT 
INT 
UINT 
PSTR 
PSTR 
PSTR 

otmPanoseNumber; 
otmfsSelection; 
otmfsType; 
otmsCharSlopeRise; 
otmsCharSlopeRun; 
otmItalicAngle; 
otmEMSquare; 
otmAscent; 
otmDescent; 
otmLineGap; 
otmsXHeight; 
otmsCapEmHeight; 
otmrcFontBox; 
otmMacAscent; 
otmMacDescent; 
otmMacLineGap; 
otmusMinimumPPEM; 
otmptSubscriptSize; 
otmptSubscriptOffset; 
otmptSuperscriptSize; 
otmptSuperscriptOffset; 
otmsStrikeoutSize; 
otmsStrikeoutPosition; 
otmsUnderscorePosition; 
otmsUnderscoreSize; 
otmpFamilyName; 
otmpFaceName; 
otmpStyleName; 

PSTR otmpFullName; 
OUTLINETEXTMETRIC; 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The OUTLINETEXTMETRIC structure contains most of the font metric 
information provided with the TrueType format, including a 
TEXTMETRIC structure. The last four members of the 
OUTLINETEXTMETRIC structure are pointers to strings. Applications 
should allocate space for these strings in addition to the space required 
for the other members. Because there is no system-imposed limit to the 
size of the strings, the simplest method for allocating memory is to 

Chapter 4, Functions 267 



GetQueueStatus 

retrieve the required size by specifying NULL for the lpatm parameter in 
the first call to the GetOutlineTextMetrics function. 

See Also GetTextMetrics 

GetQueueStatus 3.1 

Syntax DWORD GetQueueStatus(fuFlags) 

function GetQueueStatus(Flags: Word): Longint; 

The GetQueueStatus function returns a value that indicates the type of 
messages in the queue. 

This function is very fast and is typically used inside speed-critical loops 
to determine whether the GetMessage or PeekMessage function should 
be called to process input. 

GetQueueStatus returns two sets of information: whether any new 
messages have been added to the queue since GetQueueStatus, 
GetMessage, or PeekMessage was last called, and what kinds of events 
are currently in the queue. 

Parameters fuFlags Specifies the queue-status flags to be retrieved. This 
parameter can be a combination of the following values: 

Value 

QS_MOUSEMOVE 
QS_MOUSEBUTTON 
QS_PAINT 
QS_POSTMSG 

QS_SENDMSG 
QS_TIMER 

Meaning 

WM_ CHAR message is in the queue. 
WM_MOUSEMOVE or WM_ *BUTTON* message is in 
the queue. 
WM_MOUSEMOVE message is in the queue. 
WM_ *BUTTON* message is in the queue. 
WM_PAINT message is in the queue. 
Posted message other than those listed above is in the 
queue. 
Message sent by another application is in the queue. 
WM_ TIMER message is in the queue. 

Return Value The high-order word of the return value indicates the types of messages 
currently in the queue. The low-order word shows the types of messages 
added to the queue and are still in the queue since the last call to the 
GetQueueStatus, GetMessage, or PeekMessage function. 

268 Windows API Guide 



GetRasterizerCaps 

Comments The existence of a QS_ flag in the return value does not guarantee that a 
subsequent call to the PeekMessage or GetMessage function will return 
a message. Get Message and PeekMessage perform some internal 
filtering computation that may cause the message to be processed 
internally. For this reason, the return value from GetQueueStatus should 
be considered only a hint as to whether Get Message or PeekMessage 
should be called. 

See Also GetlnputState, GetMessage, PeekMessage 

GetRasterizerCaps 

Syntax BOOL GetRasterizerCaps(lpraststat, cb) 

function GetRasterizerCaps(var lpraststat: TRasterizer_Status; cb: 
Integer): Bool; 

The GetRasterizerCaps function returns flags indicating whether 
TrueType fonts are installed in the system. 

3.1 

Parameters Ipraststat Points to a RASTERIZER_STATUS structure that receives 
information about the rasterizer. The 
RASTERIZER_STATUS structure has the following form: 

cb 

typedef struct tagRASTERIZER_STATUS 

int nSize; 
int wFlags; 
int nLanguageIDi 

RASTERIZER_STATUSi 

/* rs */ 

Specifies the number of bytes that will be copied into the 
structure pointed to by the Ipraststat parameter. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero. 

Comments The GetRasterizerCaps function enables applications and printer drivers 
to determine whether TrueType is installed. 

If the TT_AVAILABLE flag is set in the wFlags member of the 
RASTERIZER_STATUS structure, at least one TrueType font is installed. 
If the TT_ENABLED flag is set, TrueType is enabled for the system. 

See Also GetOutiineTextMetrics 

Chapter 4, Functions 269 



GetSaveFileName 

GetSaveFileName 3.1 

270 

Syntax #include <commdlg.h> 
BaaL GetSaveFileN ame(lpofn) 

function GetSa veFileN ame( var OpenFile: TOpenFilename): Bool; 

The GetSaveFileName function creates a system-defined dialog box that 
makes it possible for the user to select a file to save. 

Parameters [pafn Points to an OPENFILENAME structure that contains 
information used to initialize the dialog box. When the 
GetSaveFileName function returns, this structure contains 
information about the user's file selection. 

The OPENFILENAME structure has the following form: 

#include <commdlg.h> 

typedef struct tagOPENFILENAME { /* ofn */ 
DWORD lStructSize; 
HWND hwndOwner; 
HINSTANCE hInstance; 
LPCSTR lpstrFilter; 
LPSTR lpstrCustomFilter; 
DWORD nMaxCustFilter; 
DWORD nFilterIndex; 
LPSTR lpstrFile; 
DWORD nMaxFile; 
LPSTR lpstrFileTitle; 
DWORD nMaxFileTitle; 
LPCSTR lpstrInitialDir; 
LPCSTR lpstrTitle; 
DWORD Flags; 
UINT nFileOffset; 
UINT nFileExtension; 
LPCSTR lpstrDefExt; 
LPARAM lCustData; 
UINT (CALLBACK* IpfnHook) (HWND, UINT, WPARAM, LPARAM) ; 

LPCSTR lpTernplateName; 
PENFILENAME; 

Return Value The return value is nonzero if the user selects a file to save. It is zero if an 
error occurs, if the user clicks the Cancel button, if the user chooses the 
Close command on the System menu to close the dialog box, or if the 
buffer identified by the IpstrFile member of the OPENFILENAME 
structure is too small to contain the string that specifies the selected file. 

Windows API Guide 



GetSaveFileName 

Errors The CommDlgExtendedError retrieves the error value, which may be one 
of the following values: 

CDERR_FINDRESFAILURE 
CDERR_INITIALIZATION 
CDERR_LOCKRESFAILURE 
CDERR_LOADRESFAILURE 
CDERR_LOADSTRF AlLURE 
CDERR_MEMALLOCF AlLURE 
CDERR_MEMLOCKFAILURE 
CDERR_NOHINSTANCE 
CDERR_NOHOOK 
CDERR_NOTEMPLATE 
CDERR_STRUCTSIZE 
FNERR_BUFFERTOOSMALL 
FNERR_INV ALIDFILENAME 
FNERR_SUBCLASSFAILURE 

Comments If the hook function (to which the IpfnHook member of the 
OPENFILENAME structure points) processes the WM_ CTLCOLOR 
message, this function must return a handle for the brush that should be 
used to paint the control background. 

Example The following example copies file-filter strings (filename extensions) into 
a buffer, initializes an OPENFILENAME structure, and then creates a Save 
As dialog box. 

Chapter 4, Functions 

The file-filter strings are stored in the resource file in the following form: 

STRINGTABLE 
BEGIN 

IDS FILTERSTRING "Write Files (*.WRI) 1*.wriIWord Files (*.DOC) I*.docl" 
END 

The replaceable character at the end of the string is used to break the 
entire string into separate strings, while still guaranteeing that all the 
strings are continguous in memory. 

OPENFILENAME ofni 
char szDirName[256]i 
char szFile[256] , szFileTitle[256]i 
UINT i, cbStringi 
char chReplacei /* string separator for szFilter */ 
char szFilter[256]i 
HFILEhfi 

/* 
* Retrieve the system directory name and store it in 
* szDirName. 

271 



GetSelectorBase 

*/ 
GetSystemDirectory(szDirName, sizeof(szDirName)); 

if ((cbString = LoadString(hinst, IDS_FILTERSTRING, 
szFilter, sizeof(szFilter))) == 0) ( 

ErrorHandler(); 
return 0; 

chReplace szFilter[cbString - 1]; /* retrieve wild character */ 

for (i = 0; szFilter[i] != '\0'; i++) 
if (szFilter[i] == chReplace) 

szFilter[i] = '\0'; 

/* Set all structure members to zero. */ 

memset(&ofn, 0, sizeof(OPENFILENAME)); 

/*InitializetheOPENFILENAMEmembers. */ 

szFile [0] =' \0' ; 

ofn.IStructSize = sizeof(OPENFlLENAME); 
ofn.hwndOwner = hwnd; 
ofn.lpstrFilter = szFilter; 
ofn.lpstrFile = szFile; 
ofn.nMaxFile = sizeof(szFile); 
ofn.lpstrFileTitle = szFileTitle; 
ofn.nMaxFileTitle = sizeof(szFileTitle); 
ofn.lpstrlnitialDir = szDirName; 
ofn.Flags = OFN_SHOWHELP I OFN_OVERWRITEPROMPT; 

if (GetSaveFileName(&ofn)) 

/* Perform file operations. */ 

else 
ErrorHandler(); 

See Also GetOpenFileName 

GetSelectorBase 

Syntax DWORD GetSelectorBase(uSelector) 

function GetSelectorBase(Selector: Word): Longint; 

The GetSelectorBase function retrieves the base address of a selector. 

Parameters uSelector Specifies the selector whose base address is retrieved. 

3.1 

272 Windows API Guide 



GetSystemDebugState 

Return Value This function returns the base address of the specified selector. 

See Also GetSelectorLimit, SetSelectorBase, SetSelectorLimit 

GetSelectorLimit 3.1 

Syntax DWORD GetSelectorLimit(uSelector) 

function GetSelectorLimit(Selector: Word): Longint; 

The GetSelectorLimit function retrieves the limit of a selector. 

Parameters uSelector Specifies the selector whose limit is being retrieved. 

Return Value This function returns the limit of the specified selector. 

See Also GetSelectorBase, SetSelectorBase, SetSelectorLimit 

GetSystemDebugStote 3.1 

Syntax LONG GetSystemDebugState( void) 

function GetSystemDebugState: Longint; 

The GetSystemDebugState function retrieves information about the state 
of the system. A Windows-based debugger can use this information to 
determine whether to enter hard mode or soft mode upon encountering a 
breakpoint. 

Parameters This function has no parameters. 

Return Value The return value can be one or more of the following values: 

Chapter 4, Functions 

Value 

SDS_MENU 
SDS_SYSMODAL 
SDS_NOTASKQUEUE 

SDS_DIALOG 
SDS _ TASKISLOCKED 

Meaning 

Menu is displayed. 
System-modal dialog box is displayed. 
Application queue does not exist yet and, therefore, 
the application cannot accept posted messages. 
Dialog box is displayed. 
Current task is locked and, therefore, no other task is 
permitted to run. 

273 



GetSystemDir 

GetSystemDir 3.1 

Syntax #include <ver.h> 
UINT GetSystemDir{lpszWinDir,lpszBuf, cbBuf) 

function GetSystemDir(AppDir: PChar; Buffer: PChar; Size: Integer): 
Word; 

The GetSystemDir function retrieves the path of the Windows system 
directory. This directory contains such files as Windows libraries, drivers, 
and fonts. 

GetSystemDir is used by MS-DOS applications that set up Windows 
applications; it exists only in the static-link version of the File Installation 
library. Windows applications should use the GetSystemDirectory 
function to determine the Windows directory. 

Parameters Ipsz WinDir 

IpszBuf 

cbBuf 

Points to the Windows directory retrieved by a previous 
call to the GetWindowsDir function. 

Points to the buffer that is to receive the null-terminated 
string containing the path. 

Specifies the size, in bytes, of the buffer pointed to by the 
IpszBuf parameter. 

Return Value The return value is the length of the string copied to the buffer, in bytes, 
including the terminating null character, if the function is sucessful. If the 
return value is greater than the cbBuf parameter, the return value is the 
size of the buffer required to hold the path. The return value is zero if the 
function fails. 

Comments An application must call the GetWindowsDir function before calling the 
GetSystemDir function to obtain the correct IpszWinDirvalue. 

The path that this function retrieves does not end with a backslash unless 
the Windows system directory is the root directory. For example, if the 
system directory is named WINDOWS\SYSTEM on drive C, the path of 
the system directory retrieved by this function is 
C: \ WINDOWS \SYSTEM. 

See Also GetSystemDirectory, GetWindowsDir 

274 Windows API Guide 



GetT extExtentPoint 

GetTextExtentPoint 

Syntax BaaL GetTextExtentPoint(hdc,lpszString, cbString,lpSize) 

function GetTextExtentPoint(DC: HDC; Str: PChar; Count: Integer; var 
Size: Integer): Bool; 

3.1 

The GetTextExtentPoint function computes the width and height of the 
specified text string. The GetTextExtentPoint function uses the currently 
selected font to compute the dimensions of the string. The width and 
height, in logical units, are computed without considering any clipping. 

The GetTextExtentPoint function may be used as either a wide-character 
function (where text arguments must use Unicode) or an ANSI function 
(where text arguments must use characters from the Windows 3.x 
character set 

Parameters hdc 

IpszString 

cbString 

IpSize 

Identifies the device context. 

Points to a text string. 

Specifies the number of bytes in the text string. 

Points to a SIZE structure that will receive the dimensions 
of the string The SIZE structure has the following form: 

typedef struet tagSIZE 
int ex; 
int ey; 

SIZE; 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments Because some devices do not place characters in regular cell arrays-that 
is, because they carry out kerning-the sum of the extents of the 
characters in a string may not be equal to the extent of the string. 

The calculated width takes into account the intercharacter spacing set by 
the SetTextCharacterExtra function. 

See Also SetTextCharacterExtra 

Chapter 4, Functions 275 



GetTimerResolution 

GetTimerResolution 3.1 

Syntax OWORO GetTimerResolution(void) 

function GetTimerResolution: Longint; 

The GetTimerResolution function retrieves the number of microseconds 
per timer tick. 

Parameters This function has no parameters. 

Return Value The return value is the number of microseconds per timer tick. 

See Also GetTickCount, SetTimer 

GetViewportExtEx 3.1 

Syntax BOOL GetViewportExtEx(hdc,lpSize) 

function GetViewportExtEx(OC: HOC; Size: PSize): Bool; 

The GetViewportExtEx function retrieves the x- and y-extents of the 
device context's viewport. 

Parameters hdc 

lpSize 

Identifies the device context. 

Points to a SIZE structure. The x- and y-extents (in device 
units) are placed in this structure. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero. 

GetViewportOrgEx 3.1 

276 

Syntax BOOL GetViewportOrgEx(hdc, lpPoint) 

function GetViewportOrgEx(OC: HOC; Point: PPoint): Bool; 

The GetViewportOrgEx function retrieves the x- and y-coordinates of the 
origin of the viewport associated with the specified device context. 

Parameters hdc 

lpPoint 

Identifies the device context. 

Points to a POINT structure. The origin of the viewport (in 
device coordinates) is placed in this structure. 

Windows API Guide 



GefWinDebuglnfo 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

GetWinDebuglnfo 3.1 

Syntax BaaL GetWinDebuglnfoOpwdi, flags) 

function GetWinDebugInfo(DebugInfo: PWinDebugInfo; Flags: Word): 
Bool; 

The GetWinDebuglnfo function retrieves current system-debugging 
information for the debugging version of the Windows 3.1 operating 
system. 

Parameters Ipwdi 

flags 

Value 

Points to a WINDEBUGINFO structure that is filled with 
debugging information. The WINDEBUGINFO structure 
has the following form: 

typedef struct tagWINDEBUGINFO 
UINT flagsi 
DWORD dwOptionSi 
DWORD dwFilteri 
char achAllocModule[8]i 
DWORD dwAllocBreaki 
DWORD dwAllocCounti 

WINDEBUG INFO i 

Specifies which members of the WINDEBUGINFO structure 
should be filled in. This parameter can be one or more of 
the following values: 

Meaning 

WDCOPTIONS 
WDCFILTER 
WDCALLOCBREAK 

Fill in the dwOptions member of WINDEBUGINFO. 

Fill in the dwFilter member of WINDEBUGINFO. 

Fill in the achAllocModule, dwAllocBreak, and 
dwAllocCount members of WINDEBUGINFO. 

Return Value The return value is nonzero if the function is successful. It is zero if the 
pointer specified in the Ipwdi parameter is invalid or if the function is not 
called in the debugging version of Windows 3.1. 

Comments The flags member of the returned WINDEBUGINFO structure is set to the 
values supplied in the flags parameter of this function. 

See Also SetWinDebuglnfo 

Chapter 4, Functions 277 



GetWindowExtEx 

GetWindowExtEx 3.1 

Syntax BaaL GetWindowExtEx(hdc,lpSize) 

function GetWindowExtEx(DC: HDC; Size: PSize): Bool; 

The GetWindowExtEx function retrieves the x- and y-extents of the 
window associated with the specified device context. 

Parameters hdc Identifies the device context. 

IpSize Points to a SIZE structure. The x- and y-extents (in logical 
units) are placed in this structure. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

GetWindowOrgEx 3.1 

Syntax BaaL GetWindowOrgEx(hdc,lpPoint) 

function GetWindowOrgEx(DC: HDC; Point: PPoint): Bool; 

This function retrieves the x- and y-coordinates of the origin of the 
window associated with the specified device context. 

Parameters hdc 

IpPoint 

Identifies the device context. 

Points to a POINT structure. The origin of the window (in 
logical coordinates) is placed in this structure. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

GetWindowPlacement 3.1 

278 

Syntax BaaL GetWindowPlacement(hwnd, lpwndpl) 

function GetWindowPlacement(Wnd: HWnd; Placement: 
PWindowPlacement): Bool; 

The GetWindowPlacement function retrieves the show state and the 
normal (restored), minimized, and maximized positions of a window. 

Windows API Guide 



GetWindowsDir 

Parameters hwnd Identifies the window. 

Ipwndpl Points to the WINDOWPLACEMENT structure that receives 
the show state and position information. The 
WINDOWPLACEMENT structure has the following form: 

typedef struct tagWINDOWPLACEMENT 
UINT length; 
UINT flags; 
UINT showCmd; 
POINT ptMinPosition; 
POINT ptMaxPosition; 
RECT rcNormalPosition; 

WI NDOWPLACEMENT ; 

/* wndpl */ 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

See Also SetWindowPlacement 

GetWindowsDir 3.1 

Syntax #inc1ude <ver.h> 
DINT GetWindowsDirOpszAppDir, IpszPath, cbPath) 

function GetWindowsDir(AppDir: PChar; Buffer: PChar; Size: Integer): 
Word; 

The GetWindowsDir function retrieves the path of the Windows 
directory. This directory contains such files as Windows applications, 
initialization files, and help files. 

GetWindowsDir is used by MS-DOS applications that set up Windows 
applications; it exists only in the static-link version of the File Installation 
library. Windows applications should use the GetWindowsDirectory 
function to determine the Windows directory. 

Parameters IpszAppDir Specifies the current directory in a search for Windows 
files. If the Windows directory is not on the path, the 
application must prompt the user for its location and pass 
that string to the GetWindowsDir function in the 
IpszAppDir parameter. 

IpszPath 

cbPath 

Chapter 4, Functions 

Points to the buffer that will receive the null-terminated 
string containing the path. 

Specifies the size, in bytes, of the buffer pointed to by the 
IpszPath parameter. 

279 



GetWinMem32Version 

Return Value The return value is the length of the string copied to the IpszPath 
parameter, including the terminating null character, if the function is 
successful. If the return value is greater than the cbPath parameter, it is the 
size of the buffer required to hold the path. The return value is zero if the 
function fails. 

Comments The path that this function retrieves does not end with a backslash unless 
the Windows directory is the root directory. For example, if the Windows 
directory is named WINDOWS on drive C, the path retrieved by this 
function is C: \ WINDOWS. If Windows is installed in the root directory of 
drive C, the path retrieved is C: \ . 

After the GetWindowsDir function locates the Windows directory, it 
caches the location for use by subsequent calls to the function. 

See Also GetSystemDir, GetWindowsDirectory 

GetWinMem32Version 

Syntax #include <winmem32.h> 
WORD GetWinMem32Version(void) 

function GetWinMem32Version: Word; 

3.0 

The GetWinMem32Version function retrieves the application 
programming interface (API) version implemented by the 
WINMEM32.DLL dynamic-link library. This is not the version number of 
the library itself. 

Parameters This function has no parameters. 

Return Value The return value specifies the version of the 32-bit memory API 
implemented by WINMEM32.DLL. The high-order 8 bits contain the 
major version number, and the low-order 8 bits contain the minor version 
number. 

280 Windows API Guide 



Giobal16Pointer Alloc 

Global 1 6PointerAlioc 3.0 

Syntax #include <winmem32.h> 
WORD Gioba116PointerAllodwSelector, dwOffset,lpBuffer, dwSize, 
wFlags) 

function Globa116PointerAlloc(Selector: Word; dwOffset: Longint; 
IpBuffer: PLongint; dwSize: Longint; wFlags: Word): Word; 

The Giobal16PointerAiloc function converts a 16:32 pointer into a 16:16 
pointer alias that the application can pass to a Windows function or to 
other 16:16 functions. 

Parameters wSelector Specifies the selector of the object for which an alias is to be 
created. This must be the selector returned by a previous 
call to the Giobal32Alloc function. 

dwOffset 

IpBuffer 

dwSize 

wFlags 

Specifies the offset of the first byte for which an alias is to 
be created. The offset is from the first byte of the object 
specified by the wSelector parameter. Note that 
wSelector:dwOffset forms a 16:32 address of the first byte of 
the region for which an alias is to be created. 

Points to a four-byte location in memory that receives the 
16:16 pointer alias for the specified region. 

Specifies the addressable size, in bytes, of the region for 
which an alias is to be created. This value must be no 
larger than 64K. 

Reserved; must be zero. 

Return Value The return value is zero if the function is successful. Otherwise, it is an 
error value, which can be one of the following: 

WM32_Insufficient_Mem 
WM32_Insufficient_Sels 
WM32_Invalid_Arg 
WM32_Invalid_Flags 
WM32_Invalid_Func 

Comments When this function returns successfully, the location pointed to by the 
IpBuffer parameter contains a 16:16 pointer to the first byte of the region. 
This is the same byte to which wSelector:dwOffset points. 

The returned selector identifies a descriptor for a data segment that has 
the following attributes: read-write, expand up, and small (B bit clear). 
The descriptor privilege level (DPL) and the granularity (the G bit) are set 

Chapter 4, Functions 281 



Giobal16PointerFree 

at the system's discretion, so you should make no assumptions regarding 
their settings. The DPL and requestor privilege level (RPL) are 
appropriate for a Windows application. 

An application must not change the setting of any bits in the DPL or the 
RPL selector. Doing so can result in a system crash and will prevent the 
application from running on compatible platforms. 

Because of tiling schemes implemented by some systems, the offset 
portion of the returned 16:16 pointer is not necessarily zero. 

When writing your application, you should not assume the size limit of 
the returned selector. Instead, assume that at least dwSize bytes can be 
addressed starting at the 16:16 pointer created by this function. 

See Also Giobal16PointerFree 

Giobal16PointerFree 3.0 

282 

Syntax #include <winmem32.h> 
WORD Globa116PointerFree(wSelector, dwAlias, wFlags) 

function Globa116PointerFree(wSelector: Word; dwAlias: Longint; 
wFlags: Word): Word; . 

The Giobal16PointerFree function frees the 16:16 pointer alias previously 
created by a call to the Giobal16PointerAlloc function. 

Parameters wSelector 

dwAlias 

wFlags 

Specifies the selector of the object for which the alias is to 
be freed. This must be the selector returned by a previous 
call to the Giobal32Alloc function. 

Specifies the 16:16 pointer alias to be freed. This must be 
the alias (including the original offset) returned by a 
previous call to the Giobal16PointerAlloc function. 

Reserved; must be zero. 

Return Value The return value is zero if the function is successful. Otherwise, it is an 
error value, which can be one of the following: 

WM32_Insufficient_Mem 
WM32_Insufficient_Sels 
WM32_Invalid_Arg 

Windows API Guide 



Giobal32Alloc 

WM32_Invalid_Flags 
WM32_Invalid_Func 

Comments An application should free a 16:16 pointer alias as soon as it is no longer 
needed. Freeing the alias releases space in the descriptor table, a limited 
system resource. 

See Also Giobal16PointerAlloc 

Giobal32Alloc 3.0 

Syntax #include <winmem32.h> 
WORD GlobaI32Alloc(dwSize, IpSelector, dwMaxSize, wFlags) 

function GlobaI32Alloc(dwSize: Longint; IpSelector: PWord; dwMaxSize, 
wFlags :Word): Word; 

The Giobal32Alloc function allocates a memory object to be used as a 
16:32 (USE32) code or data segment and retrieves the selector portion of 
the 16:32 address of the memory object. The first byte of the object is at 
offset 0 from this selector. 

Parameters dwSize 

ipSelector 

dwMaxSize 

wFlags 

Chapter 4, Functions 

Specifies the initial size, in bytes, of the object to be 
allocated. This value must be in the range 1 through (16 
megabytes - 64K). 

Points to a 2-byte location in memory that receives the 
selector portion of the 16:32 address of the allocated object. 

Specifies the maximum size, in bytes, that the object will 
reach when it is reallocated by the Giobal32Realloc 
function. This value must be in the range 1 through (16 
megabytes - 64 K). If the application will never reallocate 
this memory object, the dwMaxSize parameter should be set 
to the same value as the dwSize parameter. 

Depends on the return value of the GetWinMem32Version 
function. If the return value is less than Ox0101, this 
parameter must be zero. If the return value is greater than 
or equal to Ox01 01, this parameter can be set to 
GMEM_DDESHARE (to make the object shareable). 
Otherwise, this parameter should be zero. For more 
information about GMEM_DDESHARE, see the 
description of the GlobalAlloc function. 

283 



Giobal32Alloc 

Return Value The return value is zero if the function is successful. Otherwise, it is an 
error value, which can be one of the following: 

WM32_Insufficient_Mem 
WM32_Insufficient_Sels 
WM32_Invalid_Arg 
WM32_Invalid_Flags 
WM32_Invalid_Func 

Comments If the Giobal32Alloc function fails, the value to which the IpSelector 
parameter points is zero. If the function succeeds, IpSelector points to the 
selector of the object. The valid range of offsets for the object referenced 
by this selector is 0 through (but not including) dwSize. 

In Windows 3.0 and later, the largest object that can be allocated is 
OxOOFFOOOO (16 megabytes - 64K). This is the limitation placed on 
WINMEM32.0LL by the current Windows kernel. 

The returned selector identifies a descriptor for a data segment that has 
the following attributes: read-write, expand-up, and big (B bit set). The 
descriptor privilege level (OPL) and the granularity (the G bit) are set at 
the system's discretion, so you should make no assumptions regarding 
these settings. Because the system sets the granularity, the size of the 
object (and the selector size limit) may ~e greater than the requested size 
by up to 4095 bytes (4K minus 1). The OPL and requestor privilege level 
(RPL) will be appropriate for a Windows application. 

An application must not change the setting of any bits in the OPL or the 
RPL selector. Doing so can result in a system crash and will prevent the 
application from running on compatible platforms. 

The allocated object is neither movable nor discardable but can be paged. 
An application should not page-lock a 32-bit memory object. Page-locking 
an object is useful only if the object contains code or data that is used at 
interrupt time, and 32-bit memory cannot be used at interrupt time. 

See Also Global32Free, Giobal32Realioc 

284 Windows API Guide 



Giobal32CodeAlias 

Giobal32CodeAlias 3.0 

Syntax #include <winmem32.h> 
WORD Globa132CodeAlias(wSelector,lpAlias, wFlags) 

function Globa132CodeAlias(wSelector: Word; lpAlias: PLongint; wFlags: 
Word): Word; 

The Giobal32CodeAlias function creates a 16:32 (USE32) code-segment 
alias selector for a 32-bit memory object previously created by the 
Giobal32Alloc function. This allows the application to execute code 
contained in the memory object. 

Parameters wSelector Specifies the selector of the object for which an alias is to be 
created. This must be the selector returned by a previous 
call to the Giobal32Alloc function. 

IpAlias 

wFlags 

Points to a 2-byte location in memory that receives the 
selector portion of the 16:32 code-segment alias for the 
specified object. 

Reserved; must be zero. 

Return Value The return value is zero if the function is successful. Otherwise, it is an 
error value, which can be one of the following: 

WM32 _Insufficient_Mem 
WM32 _Insufficient _Sels 
WM32_Invalid_Arg 
WM32_Invalid_Flags 
WM32_Invalid_Func 

Comments If the function fails, the value pointed to by the IpAlias parameter is zero. 
If the function is successful, IpAlias points to a USE32 code-segment alias 
for the object specified by the wSelector parameter. The first byte of the 
object is at offset 0 from the selector returned in IpAlias. Valid offsets are 
determined by the size of the object as set by the most recent call to the 
Giobal32Alloc or Giobal32Realioc function. 

The returned selector identifies a descriptor for a code segment that has 
the following attributes: read-execute, nonconforming, and USE32 (D bit 
set). The descriptor privilege level (DPL) and the granularity (the G bit) 
are set at the system's discretion, so you should make no assumptions 
regarding their settings. The granularity will be consistent with the 
current data selector for the object. The DPL and requestor privilege level 
(RPL) are appropriate for a Windows application. 

Chapter 4, Functions 285 



Giobal32CodeAliasFree 

An application must not change the setting of any bits in the DPL or the 
RPL selector. Doing so can result in a system crash and will prevent the 
application from running on compatible platforms. 

An application should not call this function more than once for an object. 
Depending on the system, the function might fail if an application calls it 
a second time for a given object without first calling the 
Giobal32CodeAliasFree function for the object. 

See Also Global32Alloc, Giobal32CodeAliasFree 

Giobal32CodeAliasFree 3.0 

Syntax #inc1ude <winmem32.h> 
WORD GlobaI32CodeAliasFree(wSelector, wAlias, wFlags) 

function GlobaI32CodeAliasFree(wSelector, wAlias, wFlags: Word): Word; 

The Giobal32CodeAliasFree function frees the 16:32 (USE32) 
code-segment alias selector previously created by a call to the 
Giobal32CodeAlias function. 

Parameters wSelector 

wAlias 

wFlags 

Specifies the selector of the object for which the alias is to 
be freed. This must be the selector returned by a previous 
call to the Giobal32Alloc function. 

Specifies the USE32 code-segment alias selector to be freed. 
This must be the alias returned by a previous call to the 
Giobal32CodeAlias function. 

Reserved; must be zero. 

Return Value The return value is zero if the function is successful. Otherwise, it is an 
error value, which can be one of the following: 

WM32_Insufficient_Mem 
WM32_Insufficient_Sels 
WM32_Invalid_Arg 
WM32_Invalid_Flags 
WM32_Invalid_Func 

See Also Giobal32CodeAlias 

286 Windows API Guide 



Giobal32Realloc 

Giobal32Free 3.0 

Syntax #include <winmem32.h> 
WORD Globa132Free(wSelector, wFlags) 

function Globa132Free(wSelector, wFlags: Word): Word; 

The Giobal32Free function frees an object previously allocated by the 
Giobal32Alloc function. 

Parameters wSelector Specifies the selector of the object to be freed. This must be 
the selector returned by a previous call to the 
Giobal32Alloc function. 

wFlags Reserved; must be zero. 

Return Value The return value is zero if the function is successful. Otherwise, it is an 
error value, which can be one of the following: 

WM32_Insufficient_Mem 
WM32_Insufficient_Sels 
WM32_Invalid_Arg 
WM32_Invalid_Flags 
WM32_Invalid_Func 

Comments The Giobal32Alloc function frees the object itself; it also frees all aliases 
created for the object by the 32-bit memory application programming 
interface (API). 

Before terminating, an application must call this function to free each 
object allocated by the Giobal32Alloc function to ensure that all aliases 
created for the object are freed. 

See Also Giobal32Alloc, Giobal32Realloc 

Giobal32Realioc 3.0 

Syntax #include <winmem32.h> 
WORD Globa132Realloc(wSelector, dwNewSize, wFlags) 

function Globa132Realloc{wSelector: Word; swNewSize: Longint; wFlags: 
Word): Word; 

Chapter 4, Functions 287 



Giobal32Realloc 

The Giobal32Realloc function changes the size of a 32-bit memory object 
previously allocated by the Giobal32Alloc function. 

Parameters wSelector Specifies the selector of the object to be changed. This must 
be the selector returned by a previous call to the 
Giobal32Alloc function. 

dwNewSize 

wFlags 

Specifies the new size, in bytes, of the object. This value 
must be greater than zero and less than or equal to the size 
specified by the dwMaxSize parameter of the Giobal32Alloc 
function call that created the object. 

Reserved; must be zero. 

Return Value The return value is zero if the function is successful. Otherwise, it is an 
error value, which can be one of the following: 

WM32_Insufficient_Mem 
WM32_Insufficient_Sels 
WM32_Invalid_Arg 
WM32_Invalid_Flags 
WM32_Invalid_Func 

Comments If this function fails, the previous state of the object is unchanged. If the 
function succeeds, it updated the state of the object and the state of all 
aliases to the object created by the 32-bit memory application 
programming interface (API) functions. For this reason, an application 
must call the the Giobal32Realloc function to change the size of the 
object. Using other Windows functions to manipulate the object results in 
corrupted aliases. 

This function does not change the selector specified by the wSelector 
parameter. If this function succeeds, the new valid range of offsets for the 
selector is zero through (but not including) dwNewSize. 

The system determines the appropriate granularity of the object. As a 
result, the size of the object (and the selector size limit) may be greater 
than the requested size by up to 4095 bytes (4K minus 1). 

See Also Global32Alloc, Giobal32Free 

288 Windows API Guide 



GlobalEntryHandle 

GlobalEntryHandle 3.1 

Syntax #include <toolhelp.h> 

Parameters 

BOOL GlobalEntryHandleOpge, hglb) 

function GlobalEntryHandleOpGlobal: PGlobalEntry; hltem: THandle): 
Bool; 

The GlobalEntryHandle function fills the specified structure with 
information that describes the given global memory object. 

Ipge Points to a GLOBALENTRV structure that receives 
information about the global memory object. The 
GLOBALENTRV structure has the following form: 

#include <toolhelp.h> 

typedef struct tagGLOBALENTRY { /* ge */ 
DWORD dwSizei 
DWORD dwAddreSSi 
DWORD dwBlockSizei 
HGLOBAL hBlocki 
WORD wcLocki 
WORD wcPageLocki 
WORD wFlagsi 
BOOL wHeapPresenti 
HGLOBAL hOwneri 
WORD wTypei 
WORD wDatai 
DWORD dwNexti 
DWORD dwNextAlti 

GLOBALENTRYi 

hglb Identifies the global memory object to be described. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. The function fails if the hglb value is an invalid handle or selector. 

Comments This function retrieves information about a global memory handle or 
selector. Debuggers use this function to obtain the segment number of a 
segment loaded from an executable file. 

Before calling the GlobalEntryHandle function, an application must 
initialize the GLOBALENTRV structure and specify its size, in bytes, in the 
dwSize member. 

See Also GlobalEntryModule, GlobalFirst, Globallnfo, GlobalNext 

Chapter 4, Functions 289 



GlobalEntryModule 

GlobalEntryModule 3.1 

Syntax #include <toolhelp.h> 
BaaL GlobalEntryModuleOpge, hmod, wSeg) 

function GlobalEntryModuleOpGlobal: PGlobalEntry; hModule: THandle; 
wSeg: Word): Bool; 

The GlobalEntryModule function fills the specified structure by lpge with 
information about the specified module segment. 

Parameters lpge Points to a GLOBALENTRY structure that receives 
information about the segment specified in the wSeg 
parameter. The GLOBALENTRY structure has the 
following form: 

#include <toolhelp.h> 

typedef struct tagGLOBALENTRY { /* ge */ 
DWORD dwSize; 
DWORD dwAddress; 
DWORD dwBlockSize; 
HGLOBAL hBlock; 
WORD wCLock; 
WORD wcPageLock; 
WORD wFlags; 
BaaL wHeapPresent; 
HGLOBAL hOwner; 
WORD wType; 
WORD wData; 
DWORD dwNext; 
DWORD dwNextAlt; 

GLOBALENTRY; 

hmod Identifies the module that owns the segment. 

wSeg Specifies the segment to be described in the 
GLOBALENTRY structure. The number of the first 
segment in the module is 1. Segment numbers are always 
contiguous, so if the last valid segment number is 10, all 
segment numbers 1 through 10 are also valid. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. This function fails if the segment in the wSeg parameter does not 
exist in the module specified in the hmod parameter. 

Comments Debuggers can use the GlobalEntryModule function to retrieve global 
heap information about a specific segment loaded from an executable file. 

290 Windows API Guide 



GlobalFirst 

Typically, the debugger will have symbols that refer to segment numbers; 
this function translates the segment numbers to heap information. 

Before calling GlobalEntryModule, an application must initialize the 
GLOBALENTRY structure and specify its size, in bytes, in the dwSize 
member. 

See Also GlobalEntryHandle, GlobalFirst, Globallnfo, GlobalNext 

GlobalFirst 3.1 

Syntax #include <toolhelp.h> 
BOOL GlobalFirst(lpge, wFlags) 

function GlobalFirst(lpGlobal: PGlobalEntry; wFlags: Word): Bool; 

The GlobalFirst function fills the specified structure with information that 
describes the first object on the global heap. 

Parameters Ipge 

. wFlags 

Chapter 4, Functions 

Points to a GLOBALENTRY structure that receives 
information about the global memory object. The 
GLOBALENTRY structure has the following form: 

#include <toolhelp.h> 

typedef struct tagGLOBALENTRY { /* ge */ 
DWORD dwSize; 
DWORD dwAddress; 
DWORD dwBlockSize; 
HGLOBAL hBlock; 
WORD wcLock; 
WORD wcPageLock; 
WORD wFlags; 
BOOL wHeapPresent; 
HGLOBAL hOwner; 
WORD wType; 
WORD wData; 
DWORD dwNext; 
DWORD dwNextAlt; 

GLOBALENTRY; 

Specifies the heap to use. This parameter can be one of the 
following values: 

291 



GlobalHandleToSel 

Value Meaning 

Structure pointed to by lpge will receive information about 
the first object on the complete global heap. 
Structure will receive information about the first object on 
the free list. 
Structure will receive information about the first object on 
the least-recently-used (LRU) list. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The GlobalFirst function can be used to begin a global heap walk. An 
application can examine subsequent objects on the global heap by using 
the GlobalNext function. Calls to GlobalNext must have the same wFlags 
value as that specified in GlobalFirst. 

Before calling GlobalFirst, an application must initialize the 
GLOBALENTRY structure and specify its size, in bytes, in the dwSize 
member. 

See Also GlobalEntryHandle, GlobalEntryModule, Globallnfo, GlobalNext 

GlobalHandle ToSel 

Syntax #include <toolhelp.h> 
WORD GlobalHandleToSel(hglb) 

function GlobalHandleToSel(hMem: THandle): Word; 

3.1 

The GlobalHandleToSel function converts the given handle to a selector. 

Parameters hglb Identifies the global memory object to be converted. 

Return Value The return value is the selector of the given object if the function is 
successful. Otherwise, it is zero. 

Comments The GlobalHandleToSel function converts a global handle to a selector 
appropriate for Windows, version 3.0 or 3.1, depending on which version 
is running. A debugging application might use this selector to access a 
global memory object if the object is not discardable or if the object's 
attributes are irrelevant. 

See Also GlobalAlloc 

292 Windows API Guide 



GlobalNext 

Globallnfo 3.1 

Syntax #include <toolhelp.h> 
BOOL GlobalInfo(lpgi) 

function GlobalInfo(lpGlobalInfo: PGlobalInfo): Bool; 

The Globallnfo function fills the specified structure with information that 
describes the global heap. 

Parameters Ipgi Points to a GLOBALINFO structure that receives 
information about the global heap. The GLOBALINFO 
structure has the following form: 

#include <toolhelp.h> 

typedef struct tagGLOBALINFO { /* gi */ 
DWORD dwSizei 
WORD wcltemsi 
WORD wcltemsFreei 
WORD wcltemsLRUi 

GLOBALINFOi 

Return Value The return value is nonzero if the function successful. Otherwise, it is zero. 

Comments The information in the structure can be used to determine how much 
memory to allocate for a global heap walk. 

Before calling the Globallnfo function, an application must initialize the 
GLOBALINFO structure and specify its size, in bytes, in the dwSize 
member. 

See Also GlobalEntryHandle, GlobalEntryModule, GlobalFirst, GlobalNext 

GlobalNext 3.1 

Syntax #include <toolhelp.h> 
BOOL GlobalNextOpge, flags) 

function GlobalNextOpGlobal: PGlobalEntry; wFlags: Word): Bool; 

The GlobalNext function fills the specified structure with information that 
describes the next object on the global heap. 

Chapter 4, Functions 293 



GlobalNext 

Parameters lpge Points to a GLOBALENTRY structure that receives 
information about the global memory object. The 
GLOBALENTRY structure has the following form: 

#include <toolhelp.h> 

typedef struct tagGLOBALENTRY { /* ge */ 
DWORD dwSizei 
DWORD dwAddreSSi 
DWORD dwBlockSizei 
HGLOBAL hBlocki 

WORD wcLocki 
WORD wcPageLocki 
WORD wFlagsi 

BOOL wHeapPresenti 
HGLOBAL hOwner i 
WORD wTypei 

WORD wDatai 
DWORD dwNexti 
DWORD dwNextAlti 

GLOBALENTRYi 

flags Specifies heap to use. This parameter can be one of the 
following values: 

Value Meaning 

GLOBAL_ALL Structure pointed by the Ipge parameter will receive 
information about the first object on the complete global 
heap. 

GLOBAL_FREE Structure will receive information about the first object on 
the free list. 

GLOBAL_LRU Structure will receive information about the first object on 
the least-recently-used (LRU) list. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The GlobalNext function can be used to continue a global heap walk 
started by the GlobalFirst, GlobalEntryHandle, or GlobalEntryModule 
functions. 

If GlobalFirst starts a heap walk, the flags value used in GlobalNext must 
be the same as the value used in GlobalFirst. 

See Also GlobalEntryHandle, GlobalEntryModule, GlobalFirst, Globallnfo 

294 Windows API Guide 



HardwareProc 

GrayStringProc 2.x 

Syntax BOOL CALLBACK GrayStringProc(hdc, IpData, cch) 

The GrayStringProc function is an application-defined callback function 
that draws a string as a result of a call to the GrayString function. 

Parameters hdc 

IpData 

cch 

Identifies a device context with a bitmap of at least the 
width and height specified by the ex and cy parameters 
passed to the GrayString function. 

Points to the string to be drawn. 

Specifies the length, in characters, of the string. 

Return Value The callback function should return TRUE to indicate success. Otherwise 
it should return FALSE. 

Comments The callback function must draw an image relative to the coordinates (0,0). 

GrayStringProc is a placeholder for the application-defined function 
name. The actual name must be exported by including it in an EXPORTS 
statement in the application's module-definition (.DEF) file. 

See Also GrayString 

HardwareProc 3.1 

Syntax LRESULT CALLBACK HardwareProc(code, wParam, IParam) 

The HardwareProc function is an application-defined callback function 
that the system calls whenever the application calls the GetMessage or 
PeekMessage function and there is a hardware event to process. Mouse 
events and keyboard events are not processed by this hook. 

Parameters code 

wParam 

Chapter 4, Functions 

Specifies whether the callback function should process the 
message or call the CallNextHookEx function. If this value 
is less than zero, the callback function should pass the 
message to CallNextHookEx without further processing. If 
this value is HC_NOREMOVE, the application is using the 
PeekMessage function with the PM_NOREMOVE option, 
and the message will not be removed from the system 
queue. 

Specifies a NULL value. 

295 



hardware_event 

IParam Points to a HARDWAREHOOKSTRUCT structure. The 
HARDWAREHOOKSTRUCT structure has the following 
form: 

typedef struet tagHARDWAREHOOKSTRUCT 
HWND hWndi 
UINT wMessagei 
WPARAM wParami 
LPARAM lParami 

HARDWAREHOOKSTRUCTi 

/* hhs */ 

Return Value The callback function should return zero to allow the system to process 
the message; it should be 1 if the message is to be discarded. 

Comments This callback function should not install a playback hook because the 
function cannot use the GetMessageExtralnfo function to get the extra 
information associated with the message. 

The callback function must use the Pascal calling convention and must be 
declared FAR. An application must install the callback function by 
specifying the WH_HARDWARE filter type and the procedure-instance 
address of the callback function in a call to the SetWindowsHookEx 
function. 

HardwareProc is a placeholder for the library-defined function name. The 
actual name must be exported by including it in an EXPORTS statement 
in the library's module-definition (.DEF) file. 

See Also CallNextHookEx, GetMessageExtralnfo, SetWindowsHookEx 

hardware_event 3.1 

296 

extrn hardware event :far 

mov ax, Msg 
mov ex, ParamL 
mov dx, ParamH 
mov si, hwnd 
mov di, wParam 
eCall hardware event 

message 
low-order word of lParam of the message 
high-order word of lParam of the message 
handle of the destination window 
wParam of the message 

The hardware_event function places a hardware-related message into the 
system message queue. This function allows a driver for a non-standard 
hardware device to place a message into the queue. 

Windows API Guide 



Parameters Msg 

ParamL 

IParamH 

hwnd 

wParam 

hmemcpy 

Specifies the message to place in the system message 
queue. 

Specifies the low-order word of the IParam parameter of 
the message. 

Specifies the high-order word of the IParam parameter of 
the message. 

Identifies the window to which the message is directed. 
This parameter also becomes the low-order word of the 
dwExtralnfo parameter associated with the message. An 
application can determine the value of this parameter by 
calling the GetMessageExtralnfo function. 

Specifies the wParam parameter of the message. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments An application should not use this function to place keyboard or mouse 
messages into the system message queue. 

An application may only call the hardware_event function from an 
assembly language routine. The application must declare the function as 
follows: 

extrn hardware event :far 

If the application includes CMACROS.lNC, the application can declare 
the function as follows: 

extrnFP hardware event. 

See Also GetMessageExtralnfo 

hmemcpy 3.1 

Syntax void hmemcpy(hpvDest, hpvSource, cbCopy) 

procedure hmemcpy(hpvDest, hpvSource: Pointer; cbeopy: Longint); 

The hmemcpy function copies bytes from a source buffer to a destination 
buffer. This function supports huge memory objects (that is, objects larger 
than 64K, allocated using the GlobalAlioc function). 

Parameters hpvDest 

hpvSource 

Chapter 4, Functions 

Points to a buffer that receives the copied bytes. 

Points to a buffer that contains the bytes to be copied. 

297 



cbCopy Specifies the number of bytes to be copied. 

Return Value This function does not return a value. 

See Also _hread, _hwrite, Istrcpy 

_hread 3.1 

Syntax long _hread(hf, hpvBuffer, cbBuffer) 

The _hread function reads data from the specified file. This function 
supports huge memory objects (that is, objects larger than 64K, allocated 
using the GlobalAlloc function). 

Parameters hf 

hpvBuffer 

cbBuffer 

Identifies the file to be read. 

Points to a buffer that is to receive the data read from the 
file. 

Specifies the number of bytes to be read from the file. 

Return Value The return value indicates the number of bytes that the function read 
from the file, if the function is successful. If the number of bytes read is 
less than the number specified in cbBuffer, the function reached the end of 
the file (EOF) before reading the specified number of bytes. The return 
value is HFILE_ERROR if the function fails. 

See Also _Iread, hmemcpy, _hwrite 

_hwrite 3.1 

Syntax long _hwrite(hf, hpvBuffer, cbBuffer) 

The _hwrite function writes data to the specified file. This function 
supports huge memory objects (that is, objects larger than 64K, allocated 
using the GlobalAlloc function). 

Parameters hf 

hpvBuffer 

cbBuffer 

Identifies the file to be written to. 

Points to a buffer that contains the data to be written to the 
file. 

Specifies the number of bytes to be written to the file. 

Return Value The return value indicates the number of bytes written to the file, if the 
function is successful. Otherwise, the return value is HFILE_ERROR. 

298 Windows API Guide 



InterruptRegister 

Comments The buffer specified by hpvBuffer cannot extend past the end of a segment. 

See Also hmemcpy, _hread, _Iwrite 

InterruptRegister 3.1 

Syntax #inc1ude <toolhelp.h> 
BOOL InterruptRegister(htask, IpfnIntCallback) 

function InterruptRegister(hTask: THandle; IpfnIntCallBack: 
TIntCallBack): Bool; 

The InterruptRegister function installs a callback function to handle all 
system interrupts. 

Parameters htask 

IpfnlntCallback 

Identifies the task that is registering the callback 
function. The htask value is for registration 
purposes, not for filtering interrupts. Typically, 
this value is NULL, indicating the current task. 
The only time this value is not NULL is when an 
application requires more than one interrupt 
handler. 

Points to the interrupt callback function that will 
handle interrupts. The Tool Helper library calls 
this function whenever a task receives an interrupt. 

The IpfnlntCallback value is normally the return 
value of a call to the MakeProclnstance function. 
This causes the interrupt callback function to be 
entered with the AX register set to the selector of 
the application's data segment. Usually, an 
exported function prolog contains the following 
code: 

rnov ds,ax 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The syntax of the function pointed to by IpfnlntCallback is as follows: 

void Interru ptRegisterCallback( void) 

TIntCallBack = procedure; 

Chapter 4, Functions 299 



InterruptRegister 

300 

InterruptRegisterCaliback is a placeholder for the application-defined 
function name. The actual name must be exported by including it an 
EXPORTS in the application's module-definition file. 

An interrupt callback function must be reentrant, must be page-locked, 
and must explicitly preserve all register values. When the Tool Helper 
library calls the function, the stack will be organized as shown in the 
following illustration. 

The SS and SP values will not be on the stack unless a low-stack fault 
occurred. This fault is indicated by the high bit of the interrupt number 
being set. 

When Windows calls a callback function, the AX register contains the DS 
value for the instance of the application that contains the callback 
function. For more information about this process, see the 
MakeProclnstance function. 

Typically, an interrupt callback function is exported. If it is not exported, 
the developer should verify that the appropriate stack frame is generated, 
including the correct DS value. 

An interrupt callback function must save and restore all register values. 
The function must also do one of the following: 

III Execute an retf instruction if it does not handle the interrupt. The Tool 
Helper library will pass the interrupt to the next appropriate handler in 
the interrupt handler list. 

II Terminate the application by using the TerminateApp function. 

EI Correct the problem that caused the interrupt, clear the first 10 bytes of 
the stack, and execute an iret instruction. This action will restart 
execution at the specified address. An application may change this 
address, if necessary. 

II Execute a nonlocal goto to a known position in the application by using 
the Catch and Throw functions. This type of interrupt handling can be 
hazardous; the system may be in an unstable state and another fault 
may occur. Applications that handle interrupts in this way must verify 
that the fault was a result of the application's code. 

The Tool Helper library supports the following interrupts: 

Windows API Guide 



InterruptRegister 

Name Number Meaning 

INT_DIVO a Divide-error exception 
INT_1 1 Debugger interrupt 
INT_3 3 Breakpoint interrupt 
INT_UDINSTR 6 Invalid-opcode exception 
I NT_STKFAULT 12 Stack exception 
INT_GPFAULT 13 General protection violation 
INT_BADPAGEFAULT 14 Page fault not caused by normal 

virtual-memory operation 
INT_CTLALTSYS RQ 256 User pressed CTRL+ALT+SYS RQ 

The Tool Helper library returns interrupt numbers as word values. 
Normal software interrupts and processor faults are represented by 
numbers in the range 0 through 255. Interrupts specific to Tool Helper are 
represented by numbers greater than 255. 

Some developers may wish to use CTRL+ALT+SYS RQ (Interrupt 256) to 
break into the debugger. Be cautious about implementing this interrupt, 
because the point at which execution stops will probably be in a sensitive 
part of the Windows kernel. AlllnterruptRegisterCaliback functions must 
be page-locked to prevent problems when this interrupt is used. In 
addition, the debugger probably will not be able to perform user-interface 
functions. However, the debugger can use Tool Helper functions to set 
breakpoints and gather information. The debugger may also be able to 
use a debugging terminal or secondary screen to display information. 

Low-stack Faults 
A low-stack fault occurs when inadequate stack space is available on the 
faulting application's stack. For example, if any fault occurs when there is 
less than 128 bytes of stack space available or if runaway recursion 
depletes the stack, a low-stack fault occurs. The Tool Helper library 
processes a low-stack fault differently than it processes other faults. 

A low-stack fault is indicated by the high-order bit of the interrupt 
number being set. For example, if a stack fault occurs and the SP value 
becomes invalid, the Tool Helper library will return the fault number as 
Ox800C rather than OxOOOC. 

Interrupt handlers designed to process low-stack faults must be aware 
that the Tool Helper library has passed a fault frame on a stack other that 
the faulting application's stack. The SS:SP value is on the stack because it 
was pushed before the rest of the information in the stack frame. The 
SS:SP value is available only for advisory purposes. 

Chapter 4, Functions 301 



InterruptUnRegister 

An interrupt handler should never restart the faulting instruction, 
because this will cause the system to crash. The handler may terminate 
the application with TerminateApp or pass the fault to the next handler in 
the interrupt-handler list. 

Interrupt handlers should not assume that all stack faults are low-stack 
faults. For example, if an application accesses a stack-relative variable that 
is out of range, a stack fault will occur. This type of fault can be processed 
in the same manner as any general protection (GP) fault. If the high-order 
bit of the interrupt number is not set, the instruction can be restarted. 

Interrupt handlers also should not assume that all low-stack faults are 
stack faults. Any fault that occurs when there is less than 128 bytes of 
stack available will cause a low-stack fault. 

Interrupt callback functions that are not designed to process low-stack 
faults should execute an retf instruction so that the Tool Helper library 
will pass the fault to the next appropriate handler in the interrupt-handler 
list. 

See Also Catch, InterruptUnRegister, NotifyRegister, NotifyUnRegister, 
TerminateApp, Throw 

InterruptUnRegister 

Syntax #include <toolhelp.h> 
BaaL InterruptUnRegister(htask) 

function InterruptUnRegister(hTask: THandle): Bool; 

3.1 

The InterruptUnRegister function restores the default interrupt handle for 
system interrupts. 

Parameters htask Identifies the task. If this value is NULL, it identifies the 
current task. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments After this function is executed, the Tool Helper library will pass all 
interrupts it receives to the system's default interrupt handler. 

See Also InterruptRegister, NotifyRegister, NotifyUnRegister, TerminateApp 

302 Windows API Guide 



IsBadCodePfr 

IsBadCodePtr 3.1 

Syntax BOOL IsBadCodePtr{lpfn) 

function IsBadCodePtr{lpfn: TFarProc): Bool; 

The IsBadCodePtr function determines whether a pointer to executable 
code is valid. 

Parameters [pfn Points to a function. 

Return Value The return value is nonzero if the pointer is bad (that is, if it does not 
point to executable code). The return value is zero if the pointer is good. 

See Also IsBadHugeReadPtr, IsBadHugeWritePtr,lsBadReadPtr,lsBadStringPtr, 
Is BadWritePtr 

Chapter 4, Functions 303 



IsBadHugeReadPtr 

IsBadHugeReadptr 3.1 

Syntax BaaL IsBadHugeReadPtr(lp, cb) 

function IsBadHugeReadPtr(lp: Pointer; cb: Longint): Baal; 

The IsBadHugeReadPtr function determines whether a huge pointer to 
readable memory is valid. 

Parameters Ip 

cb 

Points to the beginning of a block of allocated memory. 
The data object may reside anywhere in memory and may 
exceed 64K in size. 

Specifies the number of bytes of memory that were 
allocated. 

Return Value The return value is nonzero if the pointer is bad (that is, if it does not 
point to readable memory of the specified size). The return value is zero if 
the pointer is good. 

See Also IsBadCodePtr, IsBadHugeWritePtr, IsBadReadPtr, IsBadStringPtr, 
IsBadWritePtr 

IsBadHugeWriteptr 

Syntax BaaL IsBadHugeWritePtr(lp, cb) 

function IsBadHugeWritePtr(lp: Pointer; cb: Longint): Baal; 

3.1 

The IsBadHugeWritePtr function determines whether a huge pointer to 
writable memory is valid. 

Parameters Ip 

cb 

Points to the beginning of a block of allocated memory. 
The data object may reside anywhere in memory and may 
exceed 64K in size. 

Specifies the number of bytes of memory that were 
allocated. 

Return Value The return value is nonzero if the pointer is bad (that is, if it does not 
point to writable memory of the specified size). The return value is zero if 
the pointer is good. 

See Also IsBadCodePtr, IsBadHugeReadPtr, IsBadReadPtr, IsBadStringPtr, 
IsBadWritePtr 

304 Windows API Guide 



IsBodStringPfr 

IsBadReadPtr 3.1 

Syntax BOOL IsBadReadPtr(lp, cb) 

function IsBadReadPtr(lp: Pointer; cb: Word): Baal; 

The IsBadReadPtr function determines whether a pointer to readable 
memory is valid. 

Parameters Ip 

cb 

Points to the beginning of a block of allocated memory. 

Specifies the number of bytes of memory that were 
allocated. 

Return Value The return value is nonzero if the pointer is bad (that is, if it does not 
point to readable memory of the specified size). The return value is zero if 
the pointer is good. 

See Also IsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr,lsBadStringPtr, 
IsBadWritePtr 

IsBadStringPtr 3.1 

Syntax BOOL IsBadStringPtr(lpsz, cchMax) 

function IsBadStringPtr(lpsz: PChar; cchMax: Word): Baal; 

The IsBadStringPtr function determines whether a pointer to a string is 
valid. 

Parameters Ipsz Points to a null-terminated string. 

cchMax Specifies the maximum size of the string, in bytes. 

Return Value The return value is nonzero if the pointer is bad (that is, if it does not 
point to a string of the specified size). The return value is zero if the 
pointer is good. 

See Also IsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr, 
IsBadWritePtr 

Chapter 4, Functions 305 



IsBodWritePfr 

IsBadWritePtr 3.1 

Syntax BaaL IsBadWritePtr(lp, cb) 

function IsBadWritePtr(lp: Pointer; cb: Word): Baal; 

The IsBadWritePtr function determines whether a pointer to writable 
memory is valid. 

Parameters Ip 

cb 

Points to the beginning of a block of allocated memory. 

Specifies the number of bytes of memory that were 
allocated. 

Return Value The return value is nonzero if the pointer is bad (that is, if it does not 
point to writable memory of the specified size). The return value is zero if 
the pointer is good. 

See Also IsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr, 
IsBadStringPtr 

IsGDIObject 3.1 

Syntax BaaL IsGDIObject(hobj) 

function IsGDIObject(Obj: THandle): Baal; 

The IsGDIObject function determines whether the specified handle is not 
the handle of a graphics device interface (GDI) object. 

Parameters hobj Specifies a handle to test. 

Return Value The return value is nonzero if the handle may be the handle of a GDI 
object. It is zero if the handle is not the handle of a GDI object. 

Comments An application cannot use IsGDIObject to guarantee that a given handle is 
to a GDI object. However, this function can be used to guarantee that a 
given handle is not to a GDI object. 

See Also GetObject 

306 Windows API Guide 



JournalPlaybackProc 

IsMenu 3.1 

Syntax BOOL IsMenu(hmenu) 

function IsMenu(Menu: HMenu): Bool; 

The IsMenu function determines whether the given handle is a menu 
handle. 

Parameters hmenu Identifies the handle to be tested. 

Return Value The return value is zero if the handle is definitely not a menu handle. A 
nonzero return value does not guarantee that the handle is a menu 
handle, however; for nonzero return values, the application should 
conduct further tests to verify the handle. 

Comments An application should use this function only to ensure that a given handle 
is not a menu handle. 

See Also CreateMenu, CreatePopupMenu, DestroyMenu, GetMenu 

IsTosk 3.1 

Syntax BOOL IsTask(htask) 

function IsTask(Task: THandle): Bool; 

The IsTask function determines whether the given task handle is valid. 

Parameters htask Identifies a task. 

Return Value The return value is nonzero if the task handle is valid. Otherwise, it is zero. 

JournalPlaybackProc 3.1 

Syntax LRESULT CALLBACK JournaIPlaybackProc(code, wParam, IParam) 

Chapter 4, Functions 

The JournalPlaybackProc function is a library-defined callback function 
that a library can use to insert mouse and keyboard messages into the 
system message queue. Typically, a library uses this function to play back 
a series of mouse and keyboard messages that were recorded earlier by 
using the JournalRecordProc function. Regular mouse and keyboard 
input is disabled as long as a JournalPlaybackProc function is installed. 

307 



JournalPlaybackProc 

Parameters code 

wParam 

IParam 

Specifies whether the callback function should process the 
message or call the CallNextHookEx function. If this 
parameter is less than zero, the callback function should 
pass the message to CallNextHookEx without further 
processing. 

Specifies a NULL value. 

Points to an EVENTMSG structure that represents the 
message being processed by the callback function. The 
EVENTMSG structure has the following form: 

typedef struct tagEVENTMSG 
urNT message; 
urNT pararnL; 
UINT pararnHi 
DWORD time; 

EVENTMSG; 

1* em *1 

Return Value The callback function should return a value that represents the amount of 
time, in clock ticks, that the system should wait before processing the 
message. This value can be computed by calculating the difference 
between the time members of the current and previous input messages. If 
the function returns zero, the message is processed immediately. 

Comments The JournalPlaybackProc function should copy an input message to the 
IParam parameter. The message must have been recorded by using a 
JournalRecordProc callback function, which should not modify the 
message. 

Once the function returns control to the system, the message continues to 
be processed. If the code parameter is HC_SKIP, the filter function should 
prepare to return the next recorded event message on its next call. 

This callback function should reside in a dynamic-link library. 

An application must install the callback function by specifying the 
WH---10URNALPLA YBACK filter type and the procedure-instance 
address of the callback function in a call to the SetWindowsHookEx 
function. 

JournalPlaybackProc is a placeholder for the library-defined function 
name. The actual name must be exported by including it in an EXPORTS 
statement in the library's module-definition file. 

See Also CallNextHookEx, JournalRecordProc, SetWindowsHookEx 

308 Windows API Guide 



JournalRecordProc 

JournalRecordProc 3.1 

Syntax LRESULT CALLBACK JournalRecordProdcode, wParam, IParam) 

The JournalRecordProc function is a library-defined callback function 
that records messages that the system removes from the system message 
queue. Later, a library can use a JournalPlaybackProc function to play 
back the messages. 

Parameters code 

wParam 

IParam 

Specifies whether the callback function should process the 
message or call the CallNextHookEx function. If this 
parameter is less than zero, the callback function should 
pass the message to CallNextHookEx without further 
processing. 

Specifies a NULL value. 

Points to an MSG structure. The MSG structure has the 
following form: 

typedef struct tagMSG 
HWND hwnd; 
UINT message; 
WPARAM wParam; 
LPARAM lParam; 
DWORD time; 
POINT pt; 

MSG; 

/* msg */ 

Return Value The callback function should return zero. 

Comments A JournalRecordProc callback function should copy but not modify the 
messages. After control returns to the system, the message continues to be 
processed. The callback function does not require a return value. 

This callback function must be in a dynamic-link library. 

An application must install the callback function by specifying the 
WH--10URNALRECORD filter type and the procedure-instance address 
of the callback function in a call to the SetWindowsHookEx function. 

JournalRecordProc is a placeholder for the library-defined function 
name. The actual name must be exported by including it in an EXPORTS 
statement in the library's module-definition file. 

See Also CallNextHookEx, JournalPlaybackProc, SetWindowsHookEx 

Chapter 4, Functions 309 



KeyboardProc 

KeyboardProc 3.1 

310 

Syntax LRESULT CALLBACK KeyboardProc(code, wParam, IParam) 

The KeyboardProc function is a library-defined callback function that the 
system calls whenever the application calls the GetMessage or 
PeekMessage function and there is a WM_KEYUP or WM_KEYDOWN 
keyboard message to process. 

Parameters code 

wParam 

IParam 

Specifies whether the callback function should process the 
message or call the CaliNextHookEx function. If this value 
is HC_NOREMOVE, the application is using the 
PeekMessage function with the PM_NOREMOVE option, 
and the message will not be removed from the system 
queue. If this value is less than zero, the callback function 
should pass the message to CaliNextHookEx without 
further processing. 

Specifies the virtual-key code of the given key. 

Specifies the repeat count, scan code, extended key, 
previous key state, context code, and key-transition state, 
as shown in the following table. (Bit 0 is the low-order bit): 

Bit 

0-15 

16-23 

24 

25-26 
27-28 
29 

30 

31 

Description 

Specifies the repeat count. The value is the number of 
times the keystroke is repeated as a result of the user 
holding down the key. 
Specifies the scan code. The value depends on the 
original equipment manufacturer (OEM). 
Specifies whether the key is an extended key, such as a 
function key or a key on the numeric keypad. The 
value is 1 if it is an extended key; otherwise, it is O. 
Not used. 
Used internally by Windows. 
Specifies the context code. The value is 1 if the ALT key 
is held down while the key is pressed; otherwise, the 
value is O. 
Specifies the previous key state. The value is 1 if the 
key is down before the message is sent, or it is 0 if the 
key is up. 
SpeCifies the key-transition state. The value is 1 if the 
key is being released, or it is 0 if the key is being 
pressed. 

Windows API Guide 



LibMain 

Return Value The callback function should return 0 if the message should be processed 
by the system; it should return 1 if the message should be discarded. 

Comments This callback function must be in a dynamic-link library. 

An application must install the callback function by specifying the 
WH_KEYBOARO filter type and the procedure-instance address of the 
callback function in a call to the SetWindowsHookEx function. 

KeyboardProc is a placeholder for the library-defined function name. The 
actual name must be exported by including it in an EXPORTS statement 
in the library's module-definition file. 

See Also CaliNextHookEx, GetMessage, PeekMessage, SetWindowsHookEx 

LibMain 2.x 

Syntax int CALLBACK LibMain(hinst, wOataSeg, cbHeapSize, IpszCmdLine) 

The LibMain function is called by the system to initialize a dynamic-link 
library (OLL). A OLL must contain the LibMain function if the library is 
linked with the file LIBENTRY.OBJ. 

Parameters hinst Identifies the instance of the OLL. 

wDataSeg Specifies the value of the data segment (OS) register. 

cbHeapSize Specifies the size of the heap defined in the 
module-definition file. (The LibEntry routine in 
LIBENTRY.OBJ uses this value to initialize the local heap.) 

IpszCmdLine Points to a null-terminated string specifying command-line 
information. This parameter is rarely used by OLLs. 

Return Value The function should return 1 if it is successful. Otherwise, it should return 
o. 

Comments The LibMain function is called by LibEntry, which is called by Windows 
when the OLL is loaded. The Lib Entry routine is provided in the 
LIBENTRY.OBJ module. LibEntry initializes the OLL's heap (if a 
HEAPSIZE value is specified in the OLL's module-definition file) before 
calling the LibMain function. 

Example The following example shows a typical LibMain function: 

Chapter 4, Functions 311 



LineDDAProc 

int CALLBACK LibMain(HINSTANCE hinst, WORD wDataSeg, WORD cbHeap, 
LPSTR lpszCmdLine ) 

HGLOBAL hgblClassStruct; 
LPWNDCLASS lpClassStruct; 
static HINSTANCE hinstLib; 

/* Has the library been initialized yet? */ 

if (hinstLib == NULL) { 
hgblClassStruct = GlobalAlloc(GHND, sizeof(WNDCLASS)); 
if (hgblClassStruct != NULL) { 

lpClassStruct = (LPWNDCLASS) GlobalLock(hgblClassStruct); 
if (lpClassStruct != NULL) { 

/* Define the class attributes. */ 

lpClassStruct->style = CS_HREDRAW I CS VREDRAW 
CS_DBLCLKS I CS_GLOBALCLASS; 

lpClassStruct->lpfnWndProc = DllWndProc; 
lpClassStruct->cbWndExtra = 0; 
lpClassStruct->hInstance = hinst; 
lpClassStruct->hIcon = NULL; 
lpClassStruct->hCursor = LoadCursor(NULL, IDC_ARROW); 
lpClassStruct->hbrBackground = 

(HBRUSH) (COLOR_WINDOW + 1); 
lpClassStruct->lpszMenuName = NULL; 
lpClassStruct->lpszClassName = "MyClassName"; 

hinstLib = (RegisterClass(lpClassStruct)) ? 
hinst : NULL; 

GlobalUnlock(hgblClassStruct); 

GlobalFree(hgblClassStruct); 

return (hinstLib? 1 0); /* return 1 success; 0 fail */ 

See Also GlobalAlloc, GlobalFree, GlobalLock, GlobalUnlock, WEP 

LineDDAProc 3.1 

312 

Syntax void CALLBACK LineDDAProc(xPos, yPos, IpData) 

The LineDDAProc function is an application-defined callback function 
that processes coordinates from the LineDDA function. 

Parameters xPos 

yPos 

IpData 

Specifies the x-coordinate of the current point. 

Specifies the y-coordinate of the current point. 

Points to the application-defined data. 

Windows API Guide 



LoadProc 

Return Value This function does not return a value. 

Comments An application must register this function by passing its address to the 
LineDDA function. 

LineDDAProc is a placeholder for the application-defined function name. 
The actual name must be exported by including it in an EXPORTS 
statement in the application's module-definition file. 

See Also LineDDA 

LoadProc 2.x 

Syntax HGLOBAL CALLBACK LoadProc(hglbMem, hinst, hrsrcResInfo) 

The LoadProc function is an application-defined callback function that 
receives information about a resource to be locked and can process that 
information as needed. 

Parameters hglbMem Identifies a memory object that contains a resource. This 
parameter is NULL if the resource has not yet been loaded. 

hinst Identifies the instance of the module whose executable file 
contains the resource. 

hrsrcReslnfo Identifies the resource. The resource must have been 
created by using the FindResource function. 

Return Value The return value is a global memory handle for memory that was 
allocated using the GMEM_DDESHARE flag in the GlobalAlioc function. 

Comments If an attempt to lock the memory object identified by the hglbMem 
parameter fails, this means the resource has been discarded and must be 
reloaded. 

LoadProc is a placeholder for the application-defined function name. The 
actual name must be exported by including it in an EXPORTS statement 
in the application's module-definition file. 

See Also FindResource, GlobalAlloc, SetResourceHandler 

Chapter 4, Functions 313 



LocolFirst 

LocalFirst 3.1 

Syntax #include <toolhelp.h> 
BOOL LocalFirst(lple, hglbHeap) 

function LocalFirst(lpLocal: PLocalEntry; hHeap: THandle): Bool; 

The LocalFirst function fills the specified structure with information that 
describes the first object on the local heap. 

Parameters Iple Points to a LOCALENTRY structure that will receive 
information about the local memory object. The 
LOCALENTRY structure has the following form: 

hglbHeap 

#include <toolhelp.h> 

typedef struct tagLOCALENTRY { /* Ie */ 
DWORD dwSize; 
HLOCAL hHandIe; 
WORD wAddress; 
WORD wSize; 
WORD wFIags; 
WORD wcLock; 
WORD wType; 
WORD hHeap; 
WORD wHeapType; 
WORD wNext; 

LOCALENTRY; 

Identifies the local heap. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments . The LocalFirst function can be used to begin a local heap walk. An 
application can examine subsequent objects on the local heap by using the 
LocalNext function. 

Before calling LocalFirst, an application must initialize the LOCALENTRY 
structure and specify its size, in bytes, in the dwSize member. 

See Also Locallnfo, LocalNext 

314 Windows API Guide 



LocalNext 

Locallnfo 3.1 

Syntax #include <toolhelp.h> 
BOOL LocalInfo(lpli, hglbHeap) 

function LocalInfo(lpLocal: PLocalInfo; hHeap: THandle}: Bool; 

The Locallnfo function fills the specified structure with information that 
describes the local heap. 

Parameters Ipli 

hglbHeap 

Points to a LOCALINFO structure that will receive 
information about the local heap. The LOCALINFO 
structure has the following form: 

#include <toolhelp.h> 

typedef struct tagLOCALINFO { /* li */ 
DWORD dwSize; 
WORD wcItems; 

LOCALINFO; 

Identifies the local heap to be described. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The information in the LOCALINFO structure can be used to determine 
how much memory to allocate for a local heap walk. 

Before calling Locallnfo, an application must initialize the LOCALINFO 
structure and specify its size, in bytes, in the dwSize member. 

See Also LocalFirst, LocalNext 

Local Next 3.1 

Syntax #include <toolhelp.h> 
BOOL LocalNext(lple) 

function LocalNext(lpLocal: PLocalEntry): Boolean; 

The LocalNext function fills the specified structure with information that 
describes the next object on the local heap. 

Chapter 4, Functions 315 



Locklnput 

Parameters Iple Points to a LOCALENTRY structure that will receive 
information about the local memory object. The 
LOCALENTRY structure has the following form: 

#include <toolhelp.h> 

typedef struct tagLOCALENTRY { /* le */ 
DWORD dwSize; 
HLOCAL hHandle; 
WORD wAddress; 
WORD wSize; 
WORD wFlags; 
WORD wCLock; 
WORD wType; 
WORD hHeap; 
WORD wHeapType; 
WORD wNext; 

LOCALENTRY; 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The LocalNext function can be used to continue a local heap walk started 
by the LocalFirst function. 

See Also LocalFirst, Locallnfo 

Locklnput 3.1 

Syntax BOOL LockInput(hReserved, hwndInput, flock) 

function LockInput(hl: THandle; hwndInput: HWnd; flock: Bool): Bool; 

The Locklnput function locks input to all tasks except the current one, if 
the fLock parameter is TRUE. The given window is made system modal; 
that is, it will receive all input. If fLock is FALSE, Locklnput unlocks input 
and restores the system to its unlocked state. 

Parameters hReserved 

hwndlnput 

fLock 

This parameter is reserved and must be NULL. 

Identifies the window that is to receive all input. This 
window must be in the current task. If fLock is FALSE, this 
parameter should be NULL. 

Indicates whether to lock or unlock input. A value of 
TRUE locks input; a value of FALSE unlocks input. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero. 

316 Windows API Guide 



LockWindowUpdate 

Comments Before entering hard mode, a Windows-based debugger calls Locklnput, 
specifying TRUE for the fLock parameter. This action saves the current 
global state. To exit hard mode, the debugger calls Locklnput, specifying 
FALSE for fLock. This restores the global state to the conditions that 
existed when the debugger entered hard mode. A debugger must restore 
the global state before exiting. Calls to Locklnput cannot be nested. 

See Also DirectedYield 

LockWindowUpdate 

Syntax BOOL LockWindowUpdate(hwndLock) 

function LockWindowUpdate(Wnd: HWnd): Bool; 

The LockWindowUpdate function disables or reenables drawing in the 
given window. A locked window cannot be moved. Only one window 
can be locked at a time. 

3.1 

Parameters hwndLock Identifies the window in which drawing will be disabled. 
If this parameter is NULL, drawing in the locked window 
is enabled. 

Return Value The return value is nonzero if the function is successful. It is zero if a 
failure occurs or if the LockWindowUpdate function has been used to lock 
another window. 

Comments If an application with a locked window (or any locked child windows) 
calls the GetDC, GetDCEx, or BeginPaint function, the called function 
returns a device context whose visible region is empty. This will occur 
until the application unlocks the window by calling LockWindowUpdate, 
specifying a value of NULL for hwndLock. 

While window updates are locked, the system keeps track of the 
bounding rectangle of any drawing operations to device contexts 
associated with a locked window. When drawing is reenabled, this 
bounding rectangle is invalidated in the locked window and its child 
windows to force an eventual WM_P AINT message to update the screen. 
If no drawing has occurred while the window updates were locked, no 
area is invalidated. 

The LockWindowUpdate function does not make the given window 
invisible and does not clear the WS_ VISIBLE style bit. 

Chapter 4, Functions 317 



Log Error 

LogError 3.1 

318 

Syntax void LogError(uErr,lpvInfo) 

procedure LogError(Err: Word; Info: Pointer); 

The Log Error function identifies the most recent system error. An 
application's interrupt callback function typically calls LogError to return 
error information to the user. 

Parameters uE rr Specifies the type of error that occurred. The lpvlnfo 
parameter may point to more information about the error, 
depending on the value of uErr. This parameter may be 
one or more of the following values: 

Value 

ERR_ALLOCRES 
ERR_BADINDEX 

ERR_BYTE 
ERR_ CREATEDC 

ERR_CREATEDLG 

ERR_CREATEDLG2 

ERR_ CREATEMENU 
ERR_ CREATEMETA 
ERR_CREATEWND 

ERR_DCBUSY 
ERR_DELOBJSELECTED 

ERR_DWORD 
ERR_GALLOC 
ERR_GLOCK 
ERR_ GREALLOC 
ERR_LALLOC 
ERR_LLOCK 
ERR_LOADMENU 

Meaning 

AllocResource failed. 
Bad index to GetClassLong, 
GetClassWord, GetWindowLong, 
GetWindowWord, SetClassLong, 
SetClassWord, SetWindowLong, 
or SetWindowWord. 
Invalid 8-bit parameter. 
CreateCompatibleDC, Create DC, 
or CreatelC failed. 
Could not create dialog box 
because LoadMenu failed. 
Could not create dialog box 
because CreateWindow failed. 
Could not create menu. 
CreateMetaFile failed. 
Could not create window because 
the class was not found. 
Device context (DC) cache is full. 
Program is trying to delete a 
bitmap that is selected into the 
DC. 
Invalid 32-bit parameter. 
GlobalAlloc failed. 
GlobalLock failed. 
GlobalReAlloc failed. 
LocalAlloc failed. 
LocalLock failed. 
LoadMenu failed. 

Windows API Guide 



Ipvlnfo 

Value 

ERR_LOADMODULE 

ERR_LOADSTR 
ERR_LOCKRES 
ERR_LREALLOC 

ERR_NESTEDBEGINPAINT 

ERR_REGISTERCLASS 

ERR_SIZE_MASK 

ERR_STRUCEXTRA 

ERR_WARNING 
ERR_WORD 

LogParamError 

Meaning 

LoadModule failed. 
LoadString failed. 
LockResource failed. 
LocalReAlioc failed. 
Program contains nested 
BeginPaint calls. 
RegisterClass failed because the 
class is already registered. 
Program is trying to select a 
bitmap that is already selected. 
Identifies which 2 bits of uErr 
specify the size of the invalid 
parameter. 
Program is using unallocated 
space. 
A non-fatal error occurred. 
Invalid 16-bit parameter. 

Points to more information about the error. The value of 
Ipvlnfo depends on the value of uErr. If the value of (uErr & 
ERR_SIZE_MASK) is 0, Ipvlnfo is undefined. Currently, no 
uErr code has defined meanings for Ipvlnfo. 

Return Value This function does not return a value. 

Comments The errors identified by Log Error may be trapped by the callback function 
that NotifyRegister installs. 

Error values whose low 12 bits are less than Ox07FF are reserved for use 
by Windows. 

See Also LogParamError, NotifyRegister 

LogParamError 3.1 

Syntax void LogParamError(uErr,lpfn,lpvParam) 

procedure LogParamError(Err: Word; fn: TFarProc; Param: Pointer); 

The LogParamError function identifies the most recent parameter 
validation error. An application's interrupt callback function typically 
calls LogParamError to return information about an invalid parameter to 
the user. 

Chapter 4, Functions 319 



LogParamError 

Parameters uErr 

320 

Specifies the type of parameter validation error that 
occurred. The lpvParam parameter may point to more 
information about the error, depending on the value of 
uErr. This parameter may be one or more of the following 
values: 

Value 

ERR_BAD _ATOM 
ERR_BAD_CID 

ERR_BAD_COORDS 
ERR_BAD _DFLAGS 
ERR_BAD _DINDEX 

ERR_BAD _FLAGS 
ERR_BAD _FUNC_PTR 
ERR_BAD _ GDC OBJECT 

ERR_BAD _GLOBAL_HANDLE 
ERR_BAD_HANDLE 
ERR_BAD_HBITMAP 
ERR_BAD _HBRUSH 
ERR_BAD_HCURSOR 
ERR_BAD _HDC 

ERR_BAD _HDRVR 
ERR_BAD _HDWP 

ERR_BAD_HFILE 
ERR_BAD _HFONT 
ERR_BAD _HICON 
ERR_BAD _HINSTANCE 
ERR_BAD_HMENU 
ERR_BAD_HMETAFILE 
ERR_BAD _HMODULE 
ERR_BAD _HPALETTE 
ERR_BAD _HPEN 
ERR_BAD _HRGN 
ERR_BAD_HWND 
ERR_BAD _INDEX 

Meaning 

Invalid atom. 
Invalid communications 
identifier (CID). 
Invalid x,y coordinates. 
Invalid 32-bit flags. 
Invalid 32-bit index or index 
out-of-range. 
Invalid 32-bit signed or 
unsigned value. 
Invalid bit flags. 
Invalid function pointer. 
Invalid graphics device 
interface (GDI) object. 
Invalid global handle. 
Invalid generic handle. 
Invalid bitmap handle. 
Invalid brush handle. 
Invalid cursor handle. 
Invalid device context (DC) 
handle. 
Invalid driver handle. 
Invalid handle of a 
window-position structure. 
Invalid file handle. 
Invalid font handle. 
Invalid icon handle. 
Invalid instance handle. 
Invalid menu handle. 
Invalid metafile handle. 
Invalid module handle. 
Invalid palette handle. 
Invalid pen handle. 
Invalid region handle. 
Invalid window handle. 
Invalid index or index 
out-of-range. 
Invalid local handle. 

Windows API Guide 



lpfn 

lpvParam 

Value 

ERR_BAD _PTR 
ERR_BAD _SELECTOR 
ERR_BAD _STRING_PTR 

ERR_BYTE 
ERR_DWORD 
ERR_PARAM 

ERR_WORD 

LogParamError 

Meaning 

Invalid pointer. 
Invalid selector. 
Invalid zero-terminated string 
pointer. 
Invalid 16-bit signed or 
unsigned value. 
Invalid 8-bit parameter. 
Invalid 32-bit parameter. 
A parameter validation error 
occurred. This flag is always 
set. 
Identifies which 2 bits of uErr 
specify the size of the invalid 
parameter. 
An invalid parameter was 
detected, but the error is not 
serious enough to cause the 
function to fail. The invalid 
parameter is reported, but the 
call runs as usual. 
Invalid 16-bit parameter. 

Specifies the address at which the parameter error 
occurred. This value is NULL if the address is unknown. 

Points to more information about the error. The value of 
lpvParam depends on the value of uErr. If the value of (uErr 
& ERR_SIZE_MASK) is 0, lpvParam is undefined. 
Currently, no uErr code has defined meanings for lpvParam. 

Return Value This function does not return a value. 

Comments The errors identified by LogParamError may be trapped by the callback 
function that NotifyRegister installs. 

Error values whose low 12 bits are less than Ox07FF are reserved for use 
by Windows. 

The size of the value passed in lpvParam is determined by the values of 
the bits selected by ERR_SIZE_MASK, as follows: 

switch (err & ERR_SIZE_MASK) 
{ 

case ERR BYTE: /* 8-bit invalid parameter */ 
b = LOBYTE(param)i 
breaki 

Chapter 4, Functions 321 



LlClose 

case ERR WORD: /* 16-bit invalid parameter */ 
w = LOWORD(param); 
break; 

case ERR DWORD: 
1 = (DWORD)param; 
break: 

default: 
break; 

See Also Log Error, NotifyRegister 

/* 32-bit invalid parameter */ 

/* invalid parameter value is unknown */ 

LZClose 3.' 

322 

Syntax #include <lzexpand.h> 
void LZClose(hO 

procedure LZClose(LZFile: Integer); 

The LZClose function closes a file that was opened by the LZOpenFile or 
OpenFile function. 

Parameters hf Identifies the source file. 

Return Value This function does not return a value. 

Comments If the file was compressed by Microsoft File Compression Utility 
(COMPRESS.EXE) and opened by the LZOpenFile function, LZClose frees 
any global heap space that was required to expand the file. 

Example The following example uses LZClose to close a file opened by LZOpenFile: 

char szSrc[] = {"readme.txt"}; 
char s zDst [] = {" readme. bak" } ; 
OFSTRUCT ofStrSrc; 
OFSTRUCT ofStrDest; 
HFlLE hfSrcFile, hfDstFile; 

/* Open the source file. * / 

hfSrcFile = LZOpenFile(szSrc, &ofStrSrc, OF_READ); 

/* Create the destination file. * / 

hfDstFile = LZOpenFile(szDst, &ofStrDest, OF_CREATE); 

/* Copy the source file to the destination file. * / 

LZCopy(hfSrcFile, hfDstFile); 

Windows API Guide 



/* Close the files. */ 

LZClose(hfSrcFile)i 
LZClose(hfDstFile)i 

See Also Open File, LZOpenFile 

LZCopy 

LZCopy 3.1 

Syntax #include <lzexpand.h> 
LONG LZCopy(hfSource, hfDest) 

function LZCopy(Source, Dest: Integer): Longint; 

The LZCopy function copies a source file to a destination file. If the source 
file was compressed by Microsoft File Compression Utility 
(COMPRESS.EXE), this function creates a decompressed destination file. 
If the source file was not compressed, this function duplicates the original 
file. 

Parameters hfSource Identifies the source file. (This handle is returned by the 
LZOpenFile function when a compressed file is opened.) 

hfDest Identifies the destination file. 

Return Value The return value is the size, in bytes, of the destination file if the function 
is successful. Otherwise, it is an error value that is less than zero and may 
be one of the following: 

Value 

LZERROR_BADlNHANDLE 

LZERROR_BADOUTHANDLE 

LZERROR_GLOBALLOC 

LZERROR_GLOBLOCK 

LZERROR_READ 
LZERROR_UNKNOWNALG 

LZERROR_ WRITE 

Chapter 4, Functions 

Meaning 

The handle identifying the source file was not 
valid. 
The handle identifying the destination file 
was not valid. 
There is insufficient memory for the required 
buffers. 
The handle identifying the internal data 
structures is invalid. 
The source file format was not valid. 
The source file was compressed with an 
unrecognized compression algorithm. 
There is insufficient space for the output file. 

323 



LZDone 

Comments This function is designed for single-file copy operations. (Use the 
CopyLZFile function for multiple-file copy operations.) 

If the function is successful, the file identified by hfDest is uncompressed. 

If the source or destination file is opened by a C run-time function (rather 
than the Jopen or OpenFile function), it must be opened in binary mode. 

Example The following example uses the LZCopy function to copy a file: 

char s zSrc [ 1 = {" readme. txt" } ; 
char s zDst [1 = {" readme. bak" } ; 
OFSTRUCT ofStrSrc; 
OFSTRUCT ofStrDest; 
HFlLE hfSrcFile, hfDstFile; 

/* Open the source file. * / 

hfSrcFile = LZOpenFile(szSrc, &ofStrSrc, OF_READ); 

/* Create the destination file. * / 

hfDstFile = LZOpenFile(szDst, &ofStrDest, OF_CREATE); 

/* Copy the source file to the destination file. * / 

LZCopy(hfSrcFile, hfDstFile); 

/* Close the files. * / 

LZClose(hfSrcFile); 
LZClose(hfDstFile); 

See Also CopyLZFiJe, _Iopen, LZOpenFile, OpenFiJe 

llDone 3.' 

Syntax #include <lzexpand.h> 
void LZDone(void) 

procedure LZDone; 

The LZDone function frees buffers that the LZStart function allocated for 
multiple-file copy operations. 

Parameters This function has no parameters. 

Return Value This function does not return a value. 

324 Windows API Guide 



LZlnit 

Comments Applications that copy multiple files should call LZStart before copying 
the files with the CopyLZFile function. LZStart allocates buffers for the 
file copy operations. 

Example The following example uses LZOone to free buffers allocated by LZStart: 

#define NUM_FILES 4 

char *szSrc[NUM_FILES] 
{"readme. txt", "data. txt", "update. txt", "list. txt"}; 

char*szDest[NUM_FILES]= 
{"readme.bak", "data.bak", "update.bak", "list.bak"}; 

OFSTRUCT ofStrSrc; 
OFSTRUCT ofStrDest; 
HFILE hfSrcFile, hfDstFile; 
int i; 

/* Allocate internal buffers for the CopyLZFile function. * / 

LZStart(); 

/ * Open, copy, and then close the files. * / 

for (i = 0; i < NUM_FILES; i++) { 
hfSrcFile = LZOpenFile(szSrc[i], &ofStrSrc, OF_READ); 
hfDstFile = LZOpenFile(szDest[i], &ofStrDest, OF_CREATE); 
CopyLZFile(hfSrcFile, hfDstFile); 
LZClose(hfSrcFile) ; 
LZClose(hfDstFile) ; 

LZDone () ; /* free the internal buffers * / 

See Also CopyLZFile, LZCopy, LZStart 

LZlnit 3.1 

Syntax #include <lzexpand.h> 
HFILE LZInit(hfSrc) 

function LZInit(Source: Integer): Integer; 

The LZlnit function allocates memory for, creates, and initializes the 
internal data structures that are required to decompress files. 

Parameters hfSrc Identifies the source file. 

Return Value The return value is the original file handle if the function is successful and 
the file is not compressed. If the function is successful and the file is 
compressed, the return value is a new file handle. If the function fails, the 

Chapter 4, Functions 325 



LZlnit 

326 

return value is an error value that is less than zero and may be one of the 
following: 

Value 

LZERROR_BADINHANDLE 
LZERROR_GLOBALLOC 

LZERROR_GLOBLOCK 

LZERROR_READ 
LZERROR_UNKNOWNALG 

Meaning 

The handle identifying the source file is invalid. 
There is insufficient memory for the required 
internal data structures. This value is returned 
when an application attempts to open more 
than 16 files. 
The handle identifying global memory is 
invalid. (The internal call to the GlobalLock 
function failed.) 
The source file format is invalid. 
The file was com pressed with an unrecognized 
compression algorithm. 

Comments A maximum of 16 compressed files can be open at any given time. 

Example The following example uses LZlnit to initialize the internal structures that 
are required to decompress a file: 

char szSrc [] = {"readme. cmp"}; 
char szFileName[128]; 
OFSTRUCT ofStrSrc; 
OFSTRUCT ofStrDest; 
HFILE hfSrcFile, hfDstFile, hfCompFile; 
int cbRead; 
BYTE abBuf[512]; 

/* Open the compressed source file. * / 

hfSrcFile = OpenFile(szSrc, &ofStrSrc, OF_READ); 

/* 
* Initialize internal data structures for the decompression 
* operation. 
*/ 

hfCompFile = LZInit(hfSrcFile); 

/* Retrieve the original name for the compressed file. * / 

GetExpandedName(szSrc, szFileName); 

/* Create the destination file using the original name. * / 

hfDstFile = LZOpenFile(szFileName, &ofStrDest, OF_CREATE); 

/* Copy the compressed source file to the destination file. * / 

do 
if ((cbRead = LZRead(hfCompFile, abBuf, sizeof(abBuf») > 0) 

_lwrite(hfDstFile, abBuf, cbRead); 

Windows API Guide 



else { 

. /* handle error condition */ 

while (cbRead == sizeof(abBuf»i 

/* Close the files. * / 

LZClose(hfSrcFile)i 
LZClose(hfDstFile)i 

LZOpenFile 

LZOpenFile 3.1 

Syntax #include <lzexpand.h> 
HFILE LZOpenFile(lpszFile, lpof, style) 

function LZOpenFile(FileName: PChar; var ReOpenBuf: TOFStruct; Style: 
Word): Integer; 

The LZOpenFile function creates, opens, reopens, or deletes the file 
specified by the string to which IpszFile points. 

Parameters IpszFile 

lpaf 

Points to a string that specifies the name of a file. 

Points to the OFSTRUCT structure that is to receive 
information about the file when the file is opened. The 
structure can be used in subsequent calls to LZOpenFile to 
refer to the open file. 

The szPathName member of this structure contains 
characters from the OEM character set. 

style Specifies the action to be taken. These styles can be 
combined by using the bitwise OR operator: 

Value Meaning 

OF_CANCEL Adds a Cancel button to the OF_PROMPT dialog 
box. Choosing the Cancel button directs 
LZOpenFile to return a file-not-found error 
message. 

OF_CREATE Directs LZOpenFile to create a new file. If the file 
already exists, it is truncated to zero length. 

OF_DELETE Deletes the file. 
OF_EXIST Opens the file, and then closes it. This action is 

used to test for file existence. 
OF_PARSE Fills the OFSTRUCT structure, but carries out no 

other action. 

Chapter 4, Functions 327 



LZOpenFile 

328 

Value 

OF_READ 
OF _READWRITE 
OF_REOPEN 

OF _SHARE_DENY _WRITE 

Meaning 

Displays a dialog box if the requested file does 
not exist. The dialog box infonns the user that 
Windows cannot find the file and prompts the 
user to insert the disk containing the file in 
drive A. 
Opens the file for reading only. 
Opens the file for reading and writing. 
Opens the file using information in the reopen 
buffer. 
Opens the file without denying other programs 
read access or write access to the file. 
LZOpenFile fails if the file has been opened in 
compatibility mode by any other program. 
Opens the file and denies other programs read 
access to the file. LZOpenFile fails if the file has 
been opened in compatibility mode or for read 
access by any other program. 
Opens the file and denies other programs write 
access to the file. LZOpenFile fails if the file has 
been opened in compatibility mode or for write 
access by any other program. 
Opens the file in exclusive mode, denying other 
programs both read access and write access to 
the file. LZOpenFile fails if the file has been 
opened in any other mode for read access or 
write access, even by the current program. 
Opens the file for writing only. 

Return Value The return value is a handle identifying the file if the function is 
successful and the value specified by style is not OF_READ. If the file is 
compressed and opened with style set to the OF_READ value, the return 
value is a special file handle. If the function fails, the return value is -1. 

Comments If style is OF_READ (or OF_READ and any of the OF _SHARE_ flags) and 
the file is compressed, LZOpenFile calls the LZlnit function, which 
performs the required initialization for the decompression operations. 

Example The following example uses LZOpenFile to open a source file and create a 
destination file into which the source file can be copied: 

char szSrc[] = {"readme.txt"}; 
char s zDst [ ] = {" readme. bak" } ; 
OFSTRUCT ofStrSrc; 
OFSTRUCT ofStrDest; 
HFlLE hfSrcFile, hfDstFile; 

Windows API Guide 



LZRead 

/* Open the source file. * / 

hfSrcFile = LZOpenFile(szSrc, &ofStrSrc, OF_READ); 

/* Create the destination file. * / 

hfDstFile = LZOpenFile(szDst, &ofStrDest, OF_CREATE); 

/* Copy the source file to the destination file. * / 

LZCopy(hfSrcFile, hfDstFile); 

/* Close the files. * / 

LZClose(hfSrcFile); 
LZClose(hfDstFile); 

See Also LZlnit 

LZRead 3.1 

Syntax #include <lzexpand.h> 
int LZRead(hf, IpvBuf, cb) 

function LZRead(LZFile: Integer; Buf: PChar; Count: Integer): Integer; 

The LZRead function reads into a buffer bytes from a file. 

Parameters hf Identifies the source file. 

IpvBuf Points to a buffer that is to receive the bytes read from the 
file. 

cb Specifies the maximum number of bytes to be read. 

Return Value The return value is the actual number of bytes read if the function is 
successful. Otherwise, it is an error value that is less than zero and may be 
any of the following: 

Value 

LZERROR_BADINHANDLE 

LZERROR_BADVALUE 
LZERROR_GLOBLOCK 

LZERROR_READ 
LZERROR_UNKNOWNALG 

Chapter 4, Functions 

Meaning 

The handle identifying the source file was 
invalid. 
The cb parameter specified a negative value. 
The handle identifying required initialization 
data is invalid. 
The format of the source file was invalid. 
The file was compressed with an unrecognized 
com pression algorithm. 

329 



LZRead 

330 

Comments If the file is not compressed, LZRead calls the _Iread function, which 
performs the read operation. 

If the file is compressed, LZRead emulates _I read on an expanded image 
of the file and copies the bytes of data into the buffer to which IpvBuf 
points. 

If the source file was compressed by Microsoft File Compression Utility 
(COMPRESS.EXE), the LZOpenFile, LZSeek, and LZRead functions can 
be called instead of the OpenFile,_"seek, and _Iread functions. 

Example The following example uses LZRead to copy and decompress a 
compressed file: 

char szSrc [) = {"readme. crnp"}; 
char szFileName[128)i 
OFSTRUCT ofStrSrci 
OFSTRUCT ofStrDesti 
HFILE hfSrcFile, hfDstFile, hfCompFilei 
int cbReadi 
BYTE abBuf[512)i 

/* Open the compressed source file. * / 

hfSrcFile = OpenFile(szSrc, &ofStrSrc, OF_READ)i 

/* 
* Initialize internal data structures for the decompression 
* operation. 
*/ 

hfCompFile = LZInit(hfSrcFile)i 

/* Retrieve the original name for the compressed file. * / 

GetExpandedName(szSrc, szFileName)i 

/* Create the destination file using the original name. * / 

hfDstFile = LZOpenFile(szFileName, &ofStrDest, OF_CREATE)i 

/* Copy the compressed source file to the destination file. * / 

do 
if ((cbRead = LZRead(hfCompFile, abBuf, sizeof(abBuf))) > 0) 

_lwrite(hfDstFile, abBuf, cbRead)i 
else { 

/* handle error condition */ 

while (cbRead == sizeof(abBuf))i 

/* Close the files. */ 

Windows API Guide 



LZClose(hfSrcFile); 
LZClose(hfDstFile); 

LlSeek 

See Also _II seek, _I read, LZOpenFile, LZRead, LZSeek 

LZSeek 3.1 

Syntax #include <lzexpand.h> 
LONG LZSeek(hf, IOffset, nOrigin) 

function LZSeek(LZFile: Integer; SeekTo: Longint; Mode: Integer): 
Longint; 

The LZSeek function moves a file pointer from its original position to a 
new position. 

Parameters hf Identifies the source file. 

1 Offset 

nOrigin 

Specifies the number of bytes by which the file pointer 
should be moved. 

Specifies the starting position of the pointer. This 
parameter must be one of the following values: 

Value 

o 

1 

2 

Meaning 

Move the file pointer IOffset bytes from the beginning 
of the file. 
Move the file pointer [Offset bytes from the current 
position. 
Move the file pointer IOffset bytes from the end of the 
file. 

Return Value The return value is the offset from the beginning of the file to the new 
pointer position, if the function is successful. Otherwise, it is an error 
value that is less than zero and may be one of the following: 

Value 

LZERROR_BADINHANDLE 

LZERROR_BADVALUE 

LZERROR_GLOBLOCK 

Chapter 4, Functions 

Meaning 

The handle identifying the source file was 
invalid. 
One of the parameters exceeds the range of 
valid values. 
The handle identifying the initialization data is 
invalid. 

331 



LZStart 

Comments If the file is not compressed, LZSeek calls the _lIseek function and moves 
the file pointer by the specified offset. 

If the file is compressed, LZSeek emulates _lIseek on an expanded image 
of the file. 

See Also _lIseek 

LZStart 3.1 

332 

Syntax #inc1ude <lzexpand.h> 
int LZStart(void) 

function LZStart: Integer; 

The LZStart function allocates the buffers that the CopyLZFile function 
uses to copy a source file to a destination file. 

Parameters This function has no parameters. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
LZERROR_ GLOBALLOC. 

Comments Applications that copy (or copy and decompress) multiple consecutive 
files should call the LZStart, CopyLZFile, and LZDone functions. 
Applications that copy a single file should call the LZCopy function. 

Example The following example uses LZStart to allocate buffers used by 
CopyLZFile: 

#define NUM FILES 4 

char *szSrc[NUM_FILES] 
{"readme. txt", "data. txt", "update. txt", "list. txt"}; 

char*szDest[NUM_FILES]= 
{"readme.bak", "data.bak", "update.bak", "list.bak"}; 

OFSTRUCT ofStrSrc; 
OFSTRUCT ofStrDest; 
HFILE hfSrcFile, hfDstFile; 
int i; 

/* Allocate internal buffers for the CopyLZFile function. * / 

LZStart(); 

/* Open, copy, and then close the files. */ 

for (i = 0; i < NUM FILES; i++) { 
hfSrcFile = LZopenFile(szSrc[i], &ofStrSrc, OF_READ); 

Windows API Guide 



MapWindowPoints 

hfDstFile = LZOpenFile(szDest[i], &ofStrDest, OF_CREATE); 
CopyLZFile(hfSrcFile, hfDstFile); 
LZClose(hfSrcFile); 
LZClose(hfDstFile); 

LZDone(); /* free the internal buffers */ 

See Also CopyLZFile, LZCopy, LZDone 

MapWindowPoints 3.1 

Syntax void MapWindowPoints(hwndFrom, hwndTo, lppt, cPoints) 

procedure MapWindowPoints(FromWnd, ToWnd: HWnd; var Point; 
Count: Word); 

The MapWindowPoints function converts (maps) a set of points from a 
coordinate space relative to one window to a coordinate space relative to 
another window. 

Parameters hwndFrom Identifies the window from which points are converted. If 
this parameter is NULL or HWND _DESKTOP, the points 
are assumed to be in screen coordinates. 

hwndTo 

lppt 

Chapter 4, Functions 

Identifies the window to which points are converted. If 
this parameter is NULL or HWND_DESKTOP, the points 
are converted to screen coord ina tes. 

Points to an array of POINT structures that contain the set 
of points to be converted. This parameter can also point to 
a RECT structure, in which case the cPoints parameter 
should be set to 2. The POINT structure has the following 
form: 

typedef struct tagPOINT 
int x; 
int y; 

POINT; 

/* pt */ 

The RECT structure has the following form: 

typedef struct tagRECT 
int left; 
int top; 
int right; 
int bottom; 

RECT; 

/* rc */ 

333 



MemManlnfo 

cPoints Specifies the number of POINT structures in the array 
pointed to by the Ippt parameter. 

Return Value This function does not return a value. 

See Also ClientToScreen, ScreenToClient 

MemManlnfo 3.1 

334 

Syntax #include <toolhelp.h> 
BaaL MemManInfo(lpmmi) 

function MemManInfo(lpEnhMode: PMemManInfo): Bool; 

The MemManlnfo function fills the specified structure with status and 
performance information about the memory manager. This function is 
most useful in 386 enhanced mode but can also be used in standard mode. 

Parameters Ipmmi Points to a MEMMANINFO structure that will receive 
information about the memory manager. The 
MEMMANINFO structure has the following form: 

#include <toolhelp.h> 

typedef struct tagMEMMANINFO 
DWORD dwSize; 
DWORD dwLargestFreeBlock; 
DWORD dwMaxPagesAvailable; 
DWORD dwMaxPagesLockable; 
DWORD dwTotalLinearSpace; 
DWORD dwTotalUnlockedPages; 
DWORD dwFreePages; 
DWORD dwTotalPages; 
DWORD dwFreeLinearSpace; 
DWORD dwSwapFilePages; 
WORD wPageSize; 

MEMMANINFO; 

/* mmi */ 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments This function is included for advisory purposes. 

Before calling MemManlnfo, an application must initialize the 
MEMMANINFO structure and specify its size, in bytes, in the dwSize 
member. 

Windows API Guide 



MemoryRead 

MemoryRead 3.1 

Syntax #include <toolhelp.h> 
DWORD MemoryRead(wSel, dwOffset, IpvBuf, dwcb) 

function MemoryRead(wSel: Word; dwOffset: Longint; IpBuffer: PChar; 
dwcb: Longint): Longint; 

The MemoryRead function copies memory from the specified global heap 
object to the specified buffer. 

Parameters wSel 

dwOffset 

IpvBuf 

dwcb 

Specifies the global heap object from which to read. This 
value must be a selector on the global heap; if the value is 
an alias selector or a selector in a tiled selector array, 
MemoryRead will fail. 

Specifies the offset in the object specified in the wSel 
parameter at which to begin reading. The dwOffset value 
may point anywhere within the object; it may be greater 
than 64K if the object is larger than 64K. 

Points to the buffer to which MemoryRead will copy the 
memory from the object. This buffer must be large enough 
to contain the entire amount of memory copied to it. If the 
application is running under low memory conditions, 
IpvBuf should be in a fixed object while MemoryRead 
copies data to it. 

Specifies the number of bytes to copy from the object to the 
buffer pointed to by IpvBuf. 

Return Value The return value is the number of bytes copied from wSel to IpvBuf. If wSel 
is invalid or if dwOffset is out of the selector's range, the return value is zero. 

Comments The MemoryRead function enables developers to examine memory 
without consideration for selector tiling and aliasing. MemoryRead reads 
memory in read-write or read-only objects. This function can be used in 
any size object owned by any task. It is not necessary to compute selector 
array offsets. 

The MemoryRead and MemoryWrite functions are designed to read and 
write objects loaded by the LoadModule function or allocated by the 
GlobalAlioc function. Developers should not split off the selector portion 
of a far pointer and use this as the value for wSel, unless the selector is 
known to be on the global heap. 

See Also MemoryWrite 

Chapter 4, Functions 335 



MemoryWrite 

MemoryWrite 3.1 

Syntax #include <toolhelp.h> 
DWORD MemoryWrite(wSel, dwOffset,lpvBuf, dwcb) 

function MemoryWrite(wSel: Word; dwOffset: Longint; IpBuffer: PChar; 
dwcb: Longint): Longint; 

The MemoryWrite function copies memory from the specified buffer to 
the specified global heap object. 

Parameters wSel 

dwOffset 

IpvBuf 

dwcb 

Specifies the global heap object to which MemoryWrite will 
write. This value must be a selector on the global heap; if 
the value is an alias selector or a selector in a tiled selector 
array, MemoryWrite will fail. 

Specifies the offset in the object at which to begin writing. 
The dwOffset value may point anywhere within the object; 
it may be greater than 64K if the object is larger than 64K. 

Points to the buffer from which MemoryWrite will copy the 
memory to the object. If the application is running under 
low memory conditions, IpvBuf should be in a fixed object 
while MemoryWrite copies data from it. 

Specifies the number of bytes to copy to the object from the 
buffer pointed to by IpvBuf. 

Return Value The return value is the number of bytes copied from IpvBuf to wSel. If the 
selector is invalid or if dwOffset is out of the selector's range, the return 
value is zero. 

Comments The MemoryWrite function enables developers to modify memory 
without consideration for selector tiling and aliasing. MemoryWrite writes 
memory in read-write or read-only objects. This function can be used in 
any size object owned by any task. It is not necessary to make alias objects 
writable or to compute selector array offsets. 

The MemoryRead and MemoryWrite functions are designed to read and 
write objects loaded by the LoadModule function or allocated by the 
GlobalAlioc function. Developers should not split off the selector portion 
of a far pointer and use this as the value for wSel, unless the selector is 
known to be on the global heap. 

See Also MemoryRead 

336 Windows API Guide 



MessageProc 

MessageProc 3.1 

Syntax LRESULT CALLBACK MessageProc(code, wParam, IParam) 

The MessageProc function is an application- or library-defined callback 
function that the system calls after a dialog box, message box, or menu 
has retrieved a message, but before the message is processed. The callback 
function can process or modify the messages. 

Parameters code Specifies the type of message being processed. This 
parameter can be one of the following values: 

wParam 

IParam 

Value 

MSGF _DIALOG BOX 

Meaning 

Messages inside a dialog box or 
message box procedure are being 
processed. 
Keyboard and mouse messages in a 
menu are being processed. 

If the code parameter is less than zero, the callback function 
must pass the message to CallNextHookEx without further 
processing and return the value returned by 
CallNextHookEx. 

Specifies a NULL value. 

Points to an MSG structure. The MSG structure has the 
following form: 

typedef struct tagMSG 
HWND hwnd; 

UINT message; 
WPARAM wParam; 
LPARAM lParam; 
DWORD time; 
POINT pt; 

MSG; 

/* msg */ 

Return Value The callback function should return a nonzero value if it processes the 
message; it should return zero if it does not process the message. 

Comments The WH_MSGFILTER filter type is the only task-specific filter. A task 
may install this filter. 

Chapter 4, Functions 

An application must install the callback function by specifying the 
WH_MSGFILTER filter type and the procedure-instance address of the 
callback function in a call to the SetWindowsHookEx function. 

337 



ModuleFindHandle 

MessageProc is a placeholder for the library-defined function name. The 
actual name must be exported by including it in an EXPORTS statement 
in the library's module-definition file. 

See Also CaliNextHookEx, SetWindowsHookEx 

ModuleFindHandle 3.1 

338 

Syntax #include <toolhelp.h> 
HMODULE ModuleFindHandleOpme, hmod) 

function ModuleFindHandleOpModule: PModuleEntry; hModule: 
THandle): THandle; 

The ModuleFindHandle function fills the specified structure with 
information that describes the given module. 

Parameters Ipme Points to a MODULEENTRY structure that will receive 
information about the module. The MODULEENTRY 
structure has the following form: 

#include <toolhelp.h> 

typedef struct tagMODULEENTRY { /* me */ 
DWORD dwSize; 
char szModule[MAX_MODULE_NAME + 1); 
HMODULE hModule; 
WORD wcUsage; 
char szExePath[MAX_PATH + 1); 
WORD wNext; 

MODULEENTRY; 

hmod Identifies the module to be described. 

Return Value The return value is the handle of the given module if the function is 
successful. Otherwise, it is NULL. 

Comments The ModuleFindHandle function returns information about a currently 
loaded module whose module handle is known. 

This function can be used to begin a walk through the list of all currently 
loaded modules. An application can examine subsequent items in the 
module list by using the ModuleNext function. 

Windows API Guide 



ModuleFindName 

Before calling ModuleFindHandle, an application must initialize the 
MODULEENTRY structure and specify its size, in bytes, in the dwSize 
member. 

See Also ModuleFindName, ModuleFirst, ModuleNext 

ModuleFindName 

Syntax #include <toolhelp.h> 
HMODULE ModuleFindName(lpme,lpszName) 

function ModuleFindNameOpModule: PModuleEntry; IpstrName: 
PChar): THandle; 

The ModuleFindName function fills the specified structure with 
information that describes the module with the specified name. 

Parameters lpme 

lpszName 

Points to a MODULEENTRY structure that will receive 
information about the module. The MODULEENTRY 
structure has the following form: 

#inc1ude <too1he1p.h> 

typedef struct tagMODULEENTRY { /* me */ 
DWORD dwSize; 
char szModu1e[MAX_MODULE_NAME + 1]; 
HMODULE hModu1e; 
WORD wcUsage; 
char szExePath[MAX_PATH + 1]; 
WORD wNext; 

MODULEENTRY; 

Specifies the name of the module to be described. 

3.1 

Return Value The return value is the handle named in the IpszName parameter, if the 
function is successful. Otherwise, it is NULL. 

Comments The ModuleFindName function returns information about a currently 
loaded module by looking up the module's name in the module list. 

Chapter 4, Functions 

This function can be used to begin a walk through the list of all currently 
loaded modules. An application can examine subsequent items in the 
module list by using the ModuleNext function. 

339 



ModuleFirst 

Before calling ModuleFindName, an application must initialize the 
MODULEENTRY structure and specify its size, in bytes, in the dwSize 
member. 

See Also ModuleFindHandle, ModuleFirst, ModuleNext 

ModuleFirst 3.1 

Syntax #inc1ude <toolhelp.h> 
BOOL ModuleFirst(lpme) 

function ModuleFirstOpModule: PModuleEntry): Bool; 

The ModuleFirst function fills the specified structure with information 
that describes the first module in the list of all currently loaded modules. 

Parameters lpme Points to a MODULEENTRY structure that will receive 
information about the first module. The MODULE ENTRY 
structure has the following form: 

#include <toolhelp.h> 

typedef struct tagMODULEENTRY { /* me */ 
DWORD dwSize; 

char szModule [MAX ~ODULE _NAME + 1]; 

HMODULE hModule; 
WORD wcUsage; 

char szExePath[MAX_PATH + 1]; 
WORD wNext; 

MODULEENTRY; 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The ModuleFirst function can be used to begin a walk through the list of 
all currently loaded modules. An application can examine subsequent 
items in the module list by using the ModuleNext function. 

Before calling ModuleFirst, an application must initialize the 
MODULEENTRY structure and specify its size, in bytes, in the dwSize 
member. 

See Also ModuleFindHandle, ModuleFindName, ModuleNext 

340 Windows API Guide 



ModuleNext 

ModuleNext 3.1 

Syntax #include <toolhelp.h> 
BOOL ModuleNext(lpme) 

function ModuleNextOpModule: PModuleEntry): Bool; 

The ModuleNext function fills the specified structure with information 
that describes the next module in the list of all currently loaded modules. 

Parameters Ipme Points to a MODULEENTRY structure that will receive 
information about the next module. The MODULEENTRY 
structure has the following form: 

#include <toolhelp.h> 

typedef struct tagMODULEENTRY { /* me */ 
DWORD dwSize; 
char szModule[MAX_MODULE_NAME + 1]; 
HMODULE hModule; 
WORD wcUsage; 
char szExePath[MAX_PATH + 1]; 
WORD wNext; 

MODULEENTRY; 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The ModuleNext function can be used to continue a walk through the list 
of all currently loaded modules. The walk must have been started by the 
ModuleFirst, ModuleFindName, or ModuleFindHandle function. 

See Also ModuleFindHandle, ModuleFindName, ModuleFirst 

Chapter 4, Functions 341 



MouseProc 

MouseProc 3. 1 

Syntax LRESUL T CALLBACK MouseProc(code, wParam, IParam) 

The MouseProc function is a library-defined callback function that the 
system calls whenever an application calls the GetMessage or 
PeekMessage function and there is a mouse message to be processed. 

Parameters code 

wParam 

IParam 

Specifies whether the callback function should process the 
message or call the CallNextHookEx function. If this value 
is less than zero, the callback function should pass the 
message to CallNextHookEx without further processing. If 
this value is HC_NOREMOVE, the application is using a 
PeekMessage function with the PM_NOREMOVE option, 
and the message will not be removed from the system 
queue. 

Specifies the identifier of the mouse message. 

Points to a MOUSEHOOKSTRUCT structure containing 
information about the mouse. The MOUSEHOOKSTRUCT 
structure has the following form: 

typedef struct tagMOUSEHOOKSTRUCT { /* IDS */ 
POINT ptj 
HWND hwndj 
UINT wHitTestCodej 
DWORD dwExtralnfoj 

} MOUSEHOOKSTRUCTj 

The callback function should return a to allow the system to process the 
message; it should return 1 to discard the message. 

Comments This callback function should not install a JournalPlaybackProc callback 
function. 

An application must install the callback function by specifying the 
WH_MOUSE filter type and the procedure-instance address of the 
callback function in a call to the SetWindowsHookEx function. 

MouseProc is a placeholder for the library-defined function name. The 
actual name must be exported by including it in an EXPORTS statement 
in the library's module-definition file. 

See Also CallNextHookEx, GetMessage, PeekMessage, SetWindowsHookEx 

342 Windows API Guide 



NotifyProc 

MoveToEx 3.1 

Syntax BOOL MoveToEx(hdc, nX, nY, IpPoint) 

function MoveToEx(DC: HDC; nX, n Y: Integer; Point: PPoint): Bool; 

The MoveToEx function moves the current position to the point specified 
by the nX and nYparameters, optionally returning the previous position. 

Parameters hdc 

nX 

nY 

IpPoint 

Identifies the device context. 

Specifies the logical x-coordinate of the new position. 

Specifies the logical y-coordinate of the new position. 

Points to a POINT structure in which the previous current 
position will be stored. If this parameter is NULL, no 
previous position is returned. The POINT structure has the 
following form: 

typedef struct tagPOINT 
int x; 
int y; 

POINT; 

/* pt */ 

Return Value The return value is nonzero if the call is successful. Otherwise, it is zero. 

See Also MoveTo 

NotifyProc 2.x 

Syntax BOOL CALLBACK NotifyProc(hglbl) 

The NotifyProc function is a library-defined callback function that the 
system calls whenever it is about to discard a global memory object 
allocated with the GMEM_NOTIFY flag. 

Parameters hglbl Identifies the global memory object being discarded. 

Return Value The callback function should return nonzero if the system is to discard the 
memory object, or zero if it should not. 

Comments The callback function is not necessarily called in the context of the 
application that owns the routine. For this reason, the callback function 
should not assume it is using the stack segment of the application. The 
callback function should not call any routine that might move memory. 

Chapter 4, Functions 343 



NotifyRegister 

The callback function must be in a fixed code segment of a dynamic-link 
library. 

NotifyProc is a placeholder for the application-defined function name. 
The actual name must be exported by including it in an EXPORTS 
statement in the library's module-definition statement. 

See Also GlobalNotify 

NotifyRegister 3 I 1 

344 

Syntax #include <toolhelp.h> 
BOOL NotifyRegister(htask, IpfnCallback, wFlags) 

function NotifyRegister(hTask: THandle; Ipfn: TNotifyCallBack; wFlags: 
Word): Bool; 

The NotifyRegister function installs a notification callback function for the 
given task. 

Parameters htask Identifies the task associated with the callback function. If 
this parameter is NULL, it identifies the current task. 

IpfnCallback Points to the notification callback function that is installed 
for the task. The kernel calls this function whenever it 
sends a notification to the task. 

wFlags 

The callback-function address is normally the return value 
of a call to MakeProclnstance. This causes the callback 
function to be entered with the AX register set to the 
selector of the application's data segment. Usually, an 
exported function prolog contains the following code: 

rnov ds,ax 

Specifies the optional notifications that the application will 
receive, in addition to the default notifications. This 
parameter can be NF _NORMAL or any combination of the 
following values: 

Windows API Guide 



Value 

NF _TASKSWITCH 

NotifyRegister 

Meaning 

The application will receive the default 
notifications but none of the 
notifications of task switching, system 
debugging errors, or debug strings. 
The application will receive 
task-switching notifications. To avoid 
poor performance, an application 
should not receive these notifications 
unless absolutely necessary. 
The application will receive notifica­
tions of system debugging errors. 

Return Value The return value is nonzero if the function was successful. Otherwise, it is 
zero. 

Callback Function The syntax of the function pointed to by IpfnCallback is as follows: 

BOOL NotifyRegisterCallback(wID, dwData) 
WORD wID; 
DWORD dwData; 

TNotifyCallBack = function(wID: Word; dwData: Longint): Bool; 

Parameters wID Indicates the type of notification and the value of the 
dwData parameter. The wID parameter may be one of the 
following values in Windows versions 3.0 and later: 

Value 

NFY _DELMODULE 

NFY_FREESEG 

NFY_INCHAR 

NFY_OUTSTR 

Chapter 4, Functions 

Meaning 

The low-order word of dwData is the 
handle of the module to be freed. 
The low-order byte of dwData contains 
the program exit code. 
The low-order word of dwData is the 
selector of the segment to be freed. 
The dwData parameter is not used. The 
notification callback function should 
return either the ASCII value for the 
keystroke or NULL. 
The dwData parameter points to an 
NFYLOADSEG structure. 
The dwData parameter points to the 
string to be displayed. 
The dwData parameter points to an 
NFYRIP structure. 

345 



NotifyRegister 

dwData 

Value 

NFY_UNKNOWN 

Meaning 

The dwData parameter points to an 
NFYSTARTDLL structure. 
The dwData parameter is the CS:IP of 
the starting address of the task. 
The kernel returned an unknown 
notification. 

In Windows version 3.1, wID may be one of the following 
values: 

Value 

NFY_LOGPARAMERROR 

NFY_TASKIN 

NFY_TASKOUT 

Meaning 

The dwData parameter points to 
an NFYLOGERROR structure. 
The dwData parameter points to 
an NFYLOGPARAMERROR 
structure. 
The dwData parameter is 
undefined. The callback 
function should call the 
GetCurrentTask function. 
The dwData parameter is 
undefined. The callback 
function should call 
GetCurrentTask. 

Specifies data, or specifies a pointer to data, or is 
undefined, depending on the value of wID. 

Return Value The return value of the callback function is nonzero if the callback 
function handled the notification. Otherwise, it is zero and the notification 
is passed to other callback functions. 

Comments A notification callback function must be able to ignore any unknown 
notification value. Typically, the notification callback function cannot use 
any Windows function, with the exception of the Tool Helper functions 
and PostMessage. 

NotifyRegisterCaliback is a placeholder for the application-defined 
function name. The actual name must be exported by including it in an 
EXPORTS statement in the application's module-definition file. 

See Also InterruptRegister, InterruptUnRegister, MakeProclnstance, 
NotifyUnRegister, TerminateApp 

346 Windows API Guide 



OffsetViewporfOrgEx 

NotifyUnRegister 3.1 

Syntax #include <toolhelp.h> 
BaaL NotifyUnRegister(htask) 

function Notify U nRegister(h Task: THandle): Bool; 

The NotifyUnRegister function restores the default notification handler. 

Parameters htask Identifies the task. If htask is NULL, it identifies the current 
task. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments After this function is executed, the given task no longer receives 
notifications from the kernel. 

See Also InterruptRegister, InterruptUnRegister, NotifyRegister, TerminateApp 

OffsetViewportOrgEx 3.1 

Syntax BaaL OffsetViewportOrgEx(hdc, nX, nY, IpPoint) 

function OffsetViewportOrgEx(OC: HOC; nX, n Y: Integer; Point: PPoint): 
Bool; 

The OffsetViewportOrgEx function modifies the viewport origin relative 
to the current values. The formulas are written as follows: 

xNewVO = xOldVO + X 
yNewVO = yOldVO + Y 

The new origin is the sum of the current origin and the nX and n Y values. 

Parameters hdc 

nX 

nY 

IpPoint 

Chapter 4, Functions 

Identifies the device context. 

Specifies the number of device units to add to the current 
origin's x-coordinate. 

Specifies the number of device units to add to the current 
origin's y-coordinate. 

Points to a POINT structure. The previous viewport origin 
(in device coordinates) is placed in this structure. If IpPoint 
is NULL, the previous viewport origin in not returned. 

347 



OffsetWindowOrgEx 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

OffsetWindowOrgEx 3.1 

348 

Syntax BOOL OffsetWindowOrgEx(hdc, nX, nY, IpPoint) 

function OffsetWindowOrgEx(DC: HDC; nX, n Y: Integer; Point: PPoint): 
Bool; 

The OffsetWindowOrgEx function modifies the viewport origin relative to 
the current values. The formulas are written as follows: 

xNewWO = xOldWO + X 
yNewWO = yOldWO + Y 

The new origin is the sum of the current origin and the nX and nYvalues. 

Parameters hdc 

nX 

nY 

IpPoint 

Identifies the device context. 

Specifies the number of logical units to add to the current 
origin's x-coordinate. 

Specifies the number of logical units to add to the current 
origin's y-coordinate. 

Points to a POINT structure. The previous window origin 
(in logical coordinates) is placed in this structure. If IpPoint 
is NULL, the previous origin is not returned. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Windows API Guide 



OleActivate 

OleActivate 3. 1 

Syntax #include <ole.h> 
OLESTATUS OleActivate(lpObject, verb, fShow, ffakeFocus, hwnd, 
lprcBound) 

function OleActivate(Self: POleObject; Verb: Word; Show, TakeFocus: 
Bool; hWnd: HWnd; Bounds: PRect): TOleStatus; 

The OleActivate function opens an object for an operation. Typically, the 
object is edited or played. 

Parameters lpObject 

verb 

fShaw 

[TakeFacus 

hwnd 

lprcBaund 

Points to the object to activate. 

Specifies which operation to perform (0 = the primary 
verb,l = the secondary verb, and so on). 

Specifies whether the window is to be shown. If the 
window is to be shown, this value is TRUE; otherwise, it is 
FALSE. 

Specifies whether the server should get the focus. If the 
server should get the focus, this value is TRUE; otherwise, 
it is FALSE. This parameter is relevant only if the fShaw 
parameter is TRUE. 

Identifies the window of the document containing the 
object. This parameter can be NULL. 

Points to a REeT structure containing the coordinates of 
the bounding rectangle in which the destination document 
displays the object. This parameter can be NULL. The 
mapping mode of the device context determines the units 
for these coordinates. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_OBJECT 
OLE_ WAIT_FOR_RELEASE 

Comments Typically, a server is launched in a separate window; editing then occurs 
asynchronously. The client is notified of changes to the object through the 
callback function. 

Chapter 4, Functions 349 



OleBlockServer 

A client application might set the fShow parameter to FALSE if a server 
needed to remain active without being visible on the display. (In this case, 
the application would also use the OleSetData function.) 

Client applications typically specify the primary verb when the user 
double-clicks an object. The server can take any action in response to the 
specified verb. If the server supports only one action, it takes that action 
no matter which value is passed in the verb parameter. 

In future releases of the object linking and embedding (OLE) protocol, the 
hwnd and IprcBound parameters will be used to help determine the 
placement of the server's editing window. 

See Also OleQueryOpen, OleSetData 

OleBlockServer 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleBlockServer(lhSrvr) 

function OleBlockServer(Server: LHServer): TOleStatus; 

The OleBlockServer function causes requests to the server to be queued 
until the server calls the OleUnblockServer function. 

Parameters IhSrvr Identifies the server for which requests are to be queued. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be OLE_ERROR_HANDLE. 

Comments The server must call the OleUnblockServer function after calling the 
OleBlockServer function. 

A server application can use the OleBlockServer and OleUnblockServer 
functions to control when the server library processes requests from client 
applications. Because only messages from the client to the server are 
blocked, a blocked server can continue to send messages to client 
applications. 

A server application receives a handle when it calls the 
OleRegisterServer function. 

See Also OleRegisterServer, OleUnblockServer 

350 Windows API Guide 



OleClone 

OleClone 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleCloneOpObject, IpClient, IhClientDoc, IpszObjname, 
IplpObject) 

function OleClone(OleObject: POleObject; Client: POleClient; ClientDoc: 
LHClientDoc; ObjName: PChar; var OleObject: POleObject): TOleStatus; 

The OleClone function makes a copy of an object. The copy is identical to 
the source object, but it is not connected to the server. 

Parameters IpObject Points to the object to copy. 

IpClient Points to an OLECLIENT structure for the new object. 

IhClientDoc Identifies the client document in which the object is to be 
created. 

IpszObjname Points to a null-terminated string specifying the client's 
name for the object. This name must be unique with 
respect to the names of any other objects in the document 
and cannot contain a slash mark ( /). 

IplpObject Points to a variable where the library will store the long 
pointer to the new object. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_HANDLE 
OLE_ERROR_ OBJECT 
OLE_ WAIT_FOR_RELEASE 

Comments Client applications often use the OleClone function to support the Undo 
command. 

A client application can supply a new OLECLIENT structure for the 
cloned object, if required. 

See Also OleEqual 

Chapter 4, Functions 351 



OleClose 

OleClose 3.1 

Syntax #include <ole.h> 
OLESTATUS OleCloseOpObject) 

function OleClose(Self: POleObject): TOleStatus; 

The OleClose function closes the specified open object. Closing an object 
terminates the connection with the server application. 

Parameters IpObject Points to the object to close. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_ OBJECT 
OLE_WAIT _FOR_RELEASE 

See Also OleActivate, OleDelete, OleReconnect 

OleCopyFromLink 

Syntax #include <ole.h> 
OLESTATUS OleCopyFromLinkOpObject, IpszProtocol, IpClient, 
IhClientDoc, IpszObjname, IplpObject) 

function OleCopyFromLink(OleObject: POleObject; Protocol: PChar; 
Client: POleClient; ClientDoc: LHClientDoc; ObjName: PChar; var 
OleObject: POleObject): TOleStatus; 

The OleCopyFromLink function makes an embedded copy of a linked 
object. 

Parameters IpObject Points to the linked object that is to be embedded. 

3.1 

IpszProtocol Points to a null-terminated string specifying the name of 
the protocol required for the new embedded object. 
Currently, this value can be StdFileEditing (the name of 
the object linking and embedding protocol). 

IpClient Points to an OLECLIENT structure for the new object. 

IhClientDoc Identifies the client document in which the object is to be 
created. 

352 Windows API Guide 



OleCopyToClipboard 

IpszObjname Points to a null-terminated string specifying the client's 
name for the object. 

IplpObject Points to a variable where the long pointer to the new 
object will be stored. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_HANDLE 
OLE_ERROR_NAME 
OLE_ERROR_OBJECT 
OLE_ERROR_PROTOCOL 
OLE_ WAIT_FOR_RELEASE 

Comments Making an embedded copy of a linked object may involve starting the 
server application. 

See Also OleObjectConvert 

OleCopyToClipboord 

Syntax #include <ole.h> 
OLESTA TUS OleCopyToClipboardOpObject) 

function OleCopyToClipboardCSelf: POleObject): TOleStatus; 

The OleCopyToClipboard function puts the specified object on the 
clipboard. 

Parameters IpObject Points to the object to copy to the clipboard. 

3.1 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be OLE_ERROR_OBJECT. 

Comments A client application typically calls the OleCopyToClipboard function 
when a user chooses the Copy or Cut command from the Edit menu. 

The client application should open and empty the clipboard, call the 
OleCopyToClipboard function, and close the clipboard. 

Chapter 4, Functions 353 



OleCreate 

OleCreate 3, 1 

354 

Syntax #include <ole.h> 
OLESTATUS OleCreate(lpszProtocol, IpClient, IpszClass, IhClientDoc, 
IpszObjname, IplpObject, renderopt, cfFormat) 

function OleCreate(Protocol: PChar; Client: POleClient; Class: PChar; 
ClientDoc: LHClientDoc; ObjectName: PChar; var OleObject: POleObject; 
RenderOpt: TOleOPT_Render; Format: TOleClipFormat): TOleStatus; 

The OleCreate function creates an embedded object of a specified class. 
The server is opened to perform the initial editing. 

Parameters IpszProtocol Points to a null-terminated string specifying the name of 
the protocol required for the new embedded object. 
Currently, this value can be StdFileEditing (the name of 
the object linking and embedding protocol). 

IpClient Points to an OLECLIENT structure for the new object. 

IpszClass Points to a null-terminated string specifying the registered 
name of the class of the object to be created. 

IhClientDoc Identifies the client document in which the object is to be 
created. 

IpszObjname Points to a null-terminated string specifying the client's 
name for the object. This name must be unique with 
respect to the names of any other objects in the document 
and cannot contain a slash mark (/). 

IplpObject Points to a variable where the library will store the long 
pointer to the new object. 

renderopt Specifies the client's preference for presentation data for 
the object. This parameter can be one of the following 
values: 

Value 

olerender_draw 

olerender _format 

Meaning 

The client calls the OleDraw function, and 
the library obtains and manages 
presentation data. 
The client calls the OleGetData function to 
retrieve data in a specific format. The 
library obtains and manages the data in 
the requested format, as specified by the 
cfFonnat parameter. 

Windows API Guide 



OleCreateFromClip 

Value Meaning 

olerender _none The client library does not obtain any 
presentation data and does not draw the 
object. 

Return Value cfFormat Specifies the clipboard format when the renderopt parameter is 
olerender_format. This clipboard format is used in a subsequent call to 
OleGetData. If this clipboard format is CF _METAFILEPICT, CF _DIB, or 
CF _BITMAP, the library manages the data and draws the object. The 
library does not support drawing for any other formats. The return value 
is OLE_OK if the function is successful. Otherwise, it is an error value, 
which may be one of the following: 

OLE_ERROR_HANDLE 
OLE_ERROR_NAME 
OLE_ERROR_PROTOCOL 
OLE_ WAIT_FOR_RELEASE 

Comments The olerender_none rendering option is typically used to support 
hyperlinks. With this option, the client does not call OleDraw and calls 
OleGetData only for ObjectLink, OwnerLink, and Native formats. 

The olerender_format rendering option allows a client to compute data 
(instead of painting it), use an unusual data format, or modify a standard 
data format. With this option, the client does not call Ole Draw . The client 
calls OleGetData to retrieve data in the specified format. 

The olerender_draw rendering option is the most typical option. It is the 
easiest rendering option for the client to implement (the client simply calls 
OleDraw), and it allows the most flexibility. An object handler can exploit 
this flexibility to store no presentation data, a private presentation data 
format, or several different formats that it can choose among dynamically. 
Future implementations of object linking and embedding (OLE) may also 
exploit the flexibility that is inherent in this option. 

See Also OleCreateFromClip, OleCreateFromTemplate, OleDraw, OleGetData 

OleCreateFromClip 

Syntax #include <ole.h> 
OLESTATUS OleCreateFromClipOpszProtocol, IpClient, IhClientDoc, 
IpszObjname, IplpObject, renderopt, cfFormat) 

3.1 

Chapter 4, Functions 355 



OleCreateFromClip 

356 

function OleCreateFromClip(Protocol: PChar; Client: POleClient; 
ClientDoc: LHClientDoc; ObjName: PChar; var OleObject: POleObject; 
RenderOpt: TOleOPT_Render; Format: TOleClipformat): TOleStatus; 

The OleCreateFromClip function creates an object from the clipboard. 

Parameters IpszProtocol Points to a null-terminated string specifying the name of 
the protocol required for the new embedded object. 
Currently, this value can be StdFileEditing (the name of 
the object linking and embedding protocol) or Static (for 
uneditable pictures only). 

IpClient Points to an OLECLIENT structure allocated and initialized 
by the client application. This pointer is used to locate the 
callback function and is passed in callback notifications. 

IhClientDoc Identifies the client document in which the object is being 
created. 

IpszObjname Points to a null-terminated string specifying the client's 
name for the object. This name must be unique with 
respect to the names of any other objects in the document 
and cannot contain a slash mark (/). 

IplpObject Points to a variable where the library will store the long 
pointer to the new object. 

renderopt Specifies the client's preference for presentation data for 
the object. This parameter can be one of the following 
values: 

cfFormat 

Value 

olerender _draw 

olerender _format 

olerender _none 

Meaning 

The client calls the OleDraw function, and 
the library obtains and manages 
presentation data. 
The client calls the OleGetData function to 
retrieve data in a specific format. The 
library obtains and manages the data in 
the requested format, as specified by the 
cfFonnat parameter. 
The client library does not obtain any 
presentation data and does not draw the 
object. 

Specifies the clipboard format when the renderopt 
parameter is olerender_format. This clipboard format is 
used in a subsequent call to OleGetData. If this clipboard 
format is CF _METAFILEPICT, CF _DIB, or CF _BITMAP, 

Windows API Guide 



OleCreateFromFile 

the library manages the data and draws the object. The 
library does not support drawing for any other formats. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_CLIP 
OLE_ERROR_FORMAT 
OLE_ERROR_HANDLE 
OLE_ERROR_NAME 
OLE_ERROR_OPTION 
OLE_ERROR_PROTOCOL 
OLE_ WAIT_FOR_RELEASE 

Comments The client application should open and empty the clipboard, call the 
OleCreateFromClip function, and close the clipboard. 

The olerender_none rendering option is typically used to support 
hyperlinks. With this option, the client does not call OleDraw and calls 
OleGetData only for ObjectLink, OwnerLink, and Native formats. 

The olerender_format rendering option allows a client to compute data 
(instead of painting it), use an unusual data format, or modify a standard 
data format. With this option, the client does not call OleDraw. The client 
calls OleGetData to retrieve data in the specified format. 

The olerender_draw rendering option is the most typical option. It is the 
easiest rendering option for the client to implement (the client simply calls 
OleDraw), and it allows the most flexibility. An object handler can exploit 
this flexibility to store no presentation data, a private presentation data 
format, or several different formats that it can choose among dynamically. 
Future implementations of object linking and embedding (OLE) may also 
exploit the flexibility that is inherent in this option. 

See Also OleCreate, OleCreateFromTemplate, OleDraw, OleGetData, 
OleQueryCreateFromClip 

OleCreateFromFile 

Syntax #include <ole.h> 
OLE STATUS OleCreateFromFile{lpszProtocol, IpClient, IpszClass, 
IpszFile,lhClientDoc,lpszObjname, IplpObject, renderopt, cfFormat) 

3.1 

function OleCreateFromFile(Protocol: PChar; Client: POleClient; Class, 

Chapter 4, Functions 357 



OleCreateFromFile 

OleFile: PChar; ClientDoc: LHClientDoc; ObjName: PChar; var OleObject: 
PoleObject; RenderOpt: TOleOPT_Render; Format: TOleClipFormat): 
TOleStatus; 

The OleCreateFromFile function creates an embedded object from the 
contents of a named file. 

Parameters IpszProtocol Points to a null-terminated string specifying the name of 
the protocol required for the new embedded object. 

358 

Currently, this value can be StdFileEditing (the name of 
the object linking and embedding protocol). 

IpClient Points to an OLECLIENT structure allocated and initialized 
by the client application. This pointer is used to locate the 
callback function and is passed in callback notifications. 

IpszClass Points to a null-terminated string specifying the name of 
the class for the new object. If this value is NULL, the 
library uses the extension of the filename pointed to by the 
IpszFile parameter to find the class name for the object. 

IpszFile Points to a null-terminated string specifying the name of 
the file containing the object. 

IhClientDoc Identifies the client document in which the object is being 
created. 

IpszObjname Points to a null-terminated string specifying the client's 
name for the object. This name must be unique with 
respect to the names of any other objects in the document 
and cannot contain a slash mark (/). 

IplpObject Points to a variable where the library will store the long 
pointer to the new object. 

renderopt Specifies the client's preference for presentation data for 
the object. This parameter can be one of the following 
values: 

Value 

olerender _draw 

olerender _format 

Meaning 

The client calls the OleO raw function, and 
the library obtains and manages 
presentation data. 
The client calls the OleGetOata function to 
retrieve data in a specific format. The 
library obtains and manages the data in 
the requested format, as specified by the 
cfFonnat parameter. 

Windows API Guide 



OleCreateFromFile 

Value 

olerender _none 

Meaning 

The client library does not obtain any 
presentation data and does not draw the 
object. 

cfFormat Specifies the clipboard format when the renderopt 
parameter is olerender_format. This clipboard format is 
used in a subsequent call to OleGetData. If this clipboard 
format is CF _MET AFILEPICT, CF _DIB, or CF _BITMAP, 
the library manages the data and draws the object. The 
library does not support drawing for any other formats. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_ CLASS 
OLE_ERROR_HANDLE 
OLE_ERROR_MEMORY 
OLE_ERROR_NAME 
OLE_ERROR_PROTOCOL 
OLE_ WAIT_FOR_RELEASE 

Comments When a client application calls the OleCreateFromFile function, the server 
is started to render the Native and presentation data and then is closed. (If 

the server and document are already open, this function simply retrieves 
the information, without closing the server.) The server does not show the 
object to the user for editing. 

The olerender_none rendering option is typically used to support 
hyperlinks. With this option, the client does not call OleDraw and calls 
OleGetData only for ObjectLink, OwnerLink, and Native formats. 

The olerender_format rendering option allows a client to compute data 
(instead of painting it), use an unusual data format, or modify a standard 
data format. With this option, the client does not call OleDraw. The client 
calls OleGetData to retrieve data in the specified format. 

The olerender_draw rendering option is the most typical option. It is the 
easiest rendering option for the client to implement (the client simply calls 
OleDraw), and it allows the most flexibility. An object handler can exploit 
this flexibility to store no presentation data, a private presentation data 
format, or several different formats that it can choose among dynamically. 
Future implementations of object linking and embedding (OLE) may also 
exploit the flexibility that is inherent in this option. 

Chapter 4, Functions 359 



OleCreateFromTemplate 

If a client application accepts files dropped from File Manager, it should 
respond to the WM_DROPFILES message by calling OleCreateFromFile 
and specifying Packager for the IpszClass parameter to indicate Microsoft 
Windows Object Packager. 

See Also OleCreate, OleCreateFromTemplate, OleDraw, OleGetData 

OleCreateFrom Template 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleCreateFromTemplate(lpszProtocol, IpClient, 
IpszTemplate, IhClientDoc, IpszObjname, IplpObject, renderopt, cfFormat) 

function OleCreateFromTemplate(Protocol: PChar; Client: POleClient; 
Template: PChar; ClientDoc: LHClientDoc; ObjName: PChar; var 
OleObject: POleObject; RenderOpt: TOleOPT _Render; Format: 
TOleClipFormat): TOleStatus; 

The OleCreateFromTemplate function creates an object by using another 
object as a template. The server is opened to perform the initial editing. 

Parameters IpszProtocol Points to a null-terminated string specifying the name of 
the protocol required for the new embedded object. 
Currently, this value can be StdFileEditing (the name of 
the object linking and embedding protocol). 

IpClient Points to an OLECLIENT structure for the new object. 

IpszTemplate Points to a null-terminated string specifying the path of the 
file to be used as a template for the new object. The server 
is opened for editing and loads the initial state of the new 
object from the named template file. 

IhClientDoc Identifies the client document in which the object is being 
created. 

IpszObjname Points to a null-terminated string specifying the client's 
name for the object. This name must be unique with 
respect to the names of any other objects in the document 
and cannot contain a slash mark (/). 

IplpObject Points to a variable where the library will store the long 
pointer to the new object. 

renderopt Specifies the client's preference for presentation data for 
the object. This parameter can be one of the following 
values: 

360 Windows API Guide 



cfFormat 

Value 

olerender_draw 

olerender _format 

olerender _none 

OleCreateFromTemplate 

Meaning 

The client calls the OleDraw function, and 
the library obtains and manages 
presentation data. 
The client calls the OleGetData function to 
retrieve data in a specific format. The 
library obtains and manages the data in 
the requested format, as specified by the 
cfFormat parameter. 
The client library does not obtain any 
presentation data and does not draw the 
object. 

Specifies the clipboard format when the renderopt 
parameter is olerender_format. This clipboard format is 
used in a subsequent call to the OleGetData function. If 
this clipboard format is CF _METAFILEPICT, CF _DIB, or 
CF _BITMAP, the library manages the data and draws the 
object. The library does not support drawing for any other 
formats. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_ CLASS 
OLE_ERROR_HANDLE 
OLE_ERROR_MEMORY 
OLE_ERROR_NAME 
OLE_ERROR_PROTOCOL 
OLE_ WAIT_FOR_RELEASE 

Comments The client library uses the filename extension of the file specified in the 
IpszTemplate parameter to identify the server for the object. The 
association between the extension and the server is stored in the 
registration database. 

The olerender_none rendering option is typically used to support 
hyperlinks. With this option, the client does not call OleDraw and calls 
OleGetData only for ObjectLink, OwnerLink, and Native formats. 

The olerender_format rendering option allows a client to compute data 
(instead of painting it), use an unusual data format, or modify a standard 
data format. With this option, the client does not call OleDraw. The client 
calls OleGetData to retrieve data in the specified format. 

Chapter 4, Functions 361 



OleCreatelnvisible 

The olerender_draw rendering option is the most typical option. It is the 
easiest rendering option for the client to implement (the client simply calls 
OleDraw), and it allows the most flexibility. An object handler can exploit 
this flexibility to store no presentation data, a private presentation data 
format, or several different formats that it can choose among dynamically. 
Future implementations of object linking and embedding (OLE) may also 
exploit the flexibility that is inherent in this option. 

See Also OleCreate, OleCreateFromClip, OleDraw, OleGetData, OleObjectConvert 

OleCreatelnvisible 

Syntax #include <ole.h> 
OLESTA TUS OleCreateInvisible{lpszProtocol, IpClient, IpszClass, 
IhClientDoc, IpszObjname, IplpObject, renderopt, cfFormat, fActivate) 

function OleCreateInvisible(Protocol: PChar; Client: POleClient; Class: 
PChar; ClientDoc: LHClientDoc; ObjName: PChar; var OleObject: 
POleObject; RenderOpt: TOleOPT_Render; Format: TOleClipFormat; 
Activate: Bool): TOleStatus; 

3.1 

The OleCreatelnvisible function creates an object without displaying the 
server application to the user. The function either starts the server to 
create the object or creates a blank object of the specified class and format 
without starting the server. 

Parameters IpszProtocol Points to a null-terminated string specifying the name of 
the protocol required for the new embedded object. 
Currently, this value can be StdFileEditing (the name of 
the object linking and embedding protocol) or Static (for 
uneditable pictures only). 

IpClient Points to an OLECLIENT structure allocated and initialized 
by the client application. This pointer is used to locate the 
callback function and is passed in callback notifications. 

IpszClass Points to a null-terminated string specifying the registered 
name of the class of the object to be created. 

IhClientDoc Identifies the client document in which the object is being 
created. 

IpszObjname Points to a null-terminated string specifying the client's 
name for the object. This name must be unique with 
respect to the names of any other objects in the document 
and cannot contain a slash mark ( /). 

362 Windows API Guide 



IplpObject 

renderopt 

cfFormat 

fActivate 

Chapter 4, Functions 

OleCreatelnvisible 

Points to a variable where the library will store the long 
pointer to the new object. 

Specifies the client's preference for presentation data for 
the object. This parameter can be one of the following 
values: 

Value 

olerender_draw 

olerender _format 

olerender _none 

Meaning 

The client calls the OleDraw function, and 
the library obtains and manages 
presentation data. 
The client calls the OleGetData function to 
retrieve data in a specific format. The 
library obtains and manages the data in 
the requested format, as specified by the 
c[Format parameter. 
The client library does not obtain any 
presentation data and does not draw the 
object. 

Specifies the clipboard format when the renderopt 
parameter is olerender_format. This clipboard format is 
used in a subsequent call to OleGetData. If this clipboard 
format is CF _METAFILEPICT, CF _OIB, or CF _BITMAP, 
the library manages the data and draws the object. The 
library does not support drawing for any other formats. 

Specifies whether to start the server for the object. If this 
parameter is TRUE the server is started (but not shown). If 
this parameter is FALSE, the server is not started and the 
function creates a blank object of the specified class and 
format. 

363 



OleCreateLinkFromClip 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_HANDLE 
OLE_ERROR_NAME 
OLE_ERROR_PROTOCOL 

Comments An application can avoid redrawing an object repeatedly by calling the 
OleCreatelnvisible function before using such functions as 
OleSetBounds, OleSetColorScheme, and OleSetTargetDevice to set up 
the object. After setting up the object, the application can either call the 
OleActivate function to display the object or call the OleUpdate and 
OleClose functions to update the object without displaying it. 

See Also OleActivate, OleClose, OleSetBounds, OleSetColorScheme, 
OleSetTargetDevice, OleUpdate 

OleCreateLinkFromClip 

Syntax #include <ole.h> 
OLESTA TUS OleCreateLinkFromClipOpszProtocol, IpClient, 
IhClientDoc, IpszObjname, IplpObject, renderopt, cfFormat) 

3.1 

function OleCreateLinkFromClip(Protocol: PChar; Client: POleClient; 
ClientDoc: LHClientDoc; ObjectName: PChar; var OleObject: POleObject; 
RenderOpt: TOleOPT_Render; Format: TOleClipFormat): TOleStatus; 

The OleCreateLinkFromClip function typically creates a link to an object 
from the clipboard. 

Parameters IpszProtocol Points to a null-terminated string specifying the name of 
the required protocol. Currently, this value can be 
StdFileEditing (the name of the object linking and 
embedding protocol). 

IpClient Points to an OLECLIENT structure allocated and initialized 
by the client application. This pointer is used to locate the 
callback function and is passed in callback notifications. 

IhCIientDoc Identifies the client document in which the object is being 
created. 

IpszObjname Points to a null-terminated string specifying the client's 
name for the object. This name must be unique with 
respect to the names of any other objects in the document 
and cannot contain a slash mark (/). 

364 Windows API Guide 



IplpObject 

renderopt 

cfFormat 

OleCreateLinkFromClip 

Points to a variable where the library will store the long 
pointer to the new object. 

Specifies the client's preference for presentation data for 
the object. This parameter can be one of the following 
values: 

Value 

olerender_draw 

olerender _format 

olerender _none 

Meaning 

The client calls the OleDraw function, and 
the library obtains and manages 
presentation data. 
The client calls the OleGetData function to 
retrieve data in a specific format. The 
library obtains and manages the data in 
the requested format, as specified by the 
c[Format parameter. 
The client library does not obtain any 
presentation data and does not draw the 
object. 

Specifies the clipboard format when the renderopt 
parameter is olerender_format. This clipboard format is 
used in a subsequent call to OleGetData. If this clipboard 
format is CF _MET AFILEPICT, CF _DIB, or CF _BITMAP, 
the library manages the data and draws the object. The 
library does not support drawing for any other formats. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_ CLIP 
OLE_ERROR_FORMA T 
OLE_ERROR_HANDLE 
OLE_ERROR_NAME 
OLE_ERROR_PROTOCOL 
OLE_ WAIT_FOR_RELEASE 

Comments The olerender_none rendering option is typically used to support 
hyperlinks. With this option, the client does not call the OleDraw function 
and calls OleGetData only for ObjectLink, OwnerLink, and Native 
formats. 

Chapter 4, Functions 

The olerender_format rendering option allows a client to compute data 
(instead of painting it), use an unusual data format, or modify a standard 
data format. With this option, the client does not call OleDraw. The client 
calls OleGetData to retrieve data in the specified format. 

365 



OleCreateLinkFromFile 

The olerender_draw rendering option is the most typical option. It is the 
easiest rendering option for the client to implement (the client simply calls 
OleDraw), and it allows the most flexibility. An object handler can exploit 
this flexibility to store no presentation data, a private presentation data 
format, or several different formats that it can choose among dynamically. 
Future implementations of object linking and embedding (OLE) may also 
exploit the flexibility that is inherent in this option. 

See Also OleCreate, OleCreateFromTemplate, OleDraw, OleGetData, 
OleQueryLinkFromClip 

OleCreateLinkFromFile 3.1 

366 

Syntax #include <ole.h> 
OLESTA TUS OleCreateLinkFromFile(lpszProtocol, IpClient, IpszClass, 
IpszFile, IpszItem, IhClientDoc, IpszObjname, IplpObject, renderopt, 
cfFormat) 

function OleCreateLinkFromFile(Protocol: PChar; Client: POle Client; 
Class, OleFile, Item: PChar; ClientDoc: LHClientDoc; ObjName: PChar; 
var OleObject: POleObject; RenderOpt: TOleOPT_Render; Format: 
TOleClipFormat): TOleStatus; 

The OleCreateLinkFromFile function creates a linked object from a file 
that contains an object. If necessary, the library starts the server to render 
the presentation data, but the object is not shown in the server for editing. 

Parameters IpszProtocol Points to a null-terminated string specifying the name of 
the required protocol. Currently, this value can be 
StdFileEditing (the name of the object linking and 
embedding protocol). 

IpClient 

IpszClass 

IpszFile 

IpszItem 

Points to an OLECLIENT structure allocated and initialized 
by the client application. This pointer is used to locate the 
callback function and is passed in callback notifications. 

Points to a null-terminated string specifying the name of 
the class for the new object. If this value is NULL, the 
library uses the extension of the filename pointed to by the 
IpszFile parameter to find the class name for the object. 

Points to a null-terminated string specifying the name of 
the file containing the object. 

Points to a null-terminated string identifying the part of 
the document to link to. If this value is NULL, the link is to 
the entire document. 

Windows API Guide 



OleCreateLinkFromFile 

IhClientDoc Identifies the client document in which the object is being 
created. 

IpszObjname Points to a null-terminated string specifying the client's 
name for the object. This name must be unique with 
respect to the names of any other objects in the document 
and cannot contain a slash mark (/). 

IplpObject Points to a variable where the library will store the long 
pointer to the new object. 

renderopt Specifies the client's preference for presentation data for 
the object. This parameter can be one of the following 
values: 

Value 

olerender_draw 

olerender_format 

olerender_none 

Meaning 

The client calls the OleDraw function, and 
the library obtains and manages 
presentation data. 
The client calls the OleGetData function to 
retrieve data in a specific format. The 
library obtains and manages the data in 
the requested format, as specified by the 
c[Format parameter. 
The client library does not obtain any 
presentation data and does not draw the 
object. 

cfFormat Specifies the clipboard format when the renderopt 
parameter is olerender_format. This clipboard format is 
used in a subsequent call to OleGetData. If this clipboard 
format is CF _METAFILEPICT, CF _DIB, or CF _BITMAP, 
the library manages the data and draws the object. The 
library does not support drawing for any other formats. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_ CLASS 
OLE_ERROR_HANDLE 
OLE_ERROR_MEMORY 
OLE_ERROR_NAME 
OLE_ERROR_PROTOCOL 
OLE_WAIT _FOR_RELEASE 

Comments The olerender_none rendering option is typically used to support 
hyperlinks. With this option, the client does not call OleDraw and calls 
OleGetData only for ObjectLink, OwnerLink, and Native formats. 

Chapter 4, Functions 367 



OleDelete 

The olerender_format rendering option allows a client to compute data 
(instead of painting it), use an unusual data format, or modify a standard 
data format. With this option, the client does not call OleDraw. The client 
calls OleGetData to retrieve data in the specified format. 

The olerender_draw rendering option is the most typical option. It is the 
easiest rendering option for the client to implement (the client simply calls 
OleDraw), and it allows the most flexibility. An object handler can exploit 
this flexibility to store no presentation data, a private presentation data 
format, or several different formats that it can choose among dynamically. 
Future implementations of object linking and embedding (OLE) may also 
exploit the flexibility that is inherent in this option. 

See Also OleCreate, OleCreateFromFile, OleCreateFromTemplate, OleDraw, 
OleGetData 

OleDelete 3.1 

Syntax #include <ole.h> 
OLEST A TUS OleDelete(lpObject) 

function OleDelete(Self: POleObject): TOleStatus; 

The OleDelete function deletes an object and frees memory that was 
associated with that object. If the object was open, it is closed. 

Parameters IpObject Points to the object to delete. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_ OBJECT 
OLE_WAIT _FOR_RELEASE 

Comments An application uses the OleDelete function when the object is no longer 
part of the client document. 

The OleDelete function, unlike OleRelease, indicates that the object has 
been permanently removed. 

See Also OleClose, OleRelease 

368 Windows API Guide 



OleDraw 

OleDraw 3.1 

Syntax #include <ole.h> 
OLE STATUS OleOraw(lpObject, hdc, IprcBounds, IprcWBounds, 
hdcFormat) 

function OleOraw(Self: POleObject; DC: HOC; var Bounds, WBounds, 
TRect; FormatOC: HOC): TOleStatus; 

The Ole Draw function draws a specified object into a bounding rectangle 
in a device context. 

Parameters lpObject Points to the object to draw. 

hdc Identifies the device context in which to draw the object. 

lprcBounds Points to a REeT structure defining the bounding 
rectangle, in logical units for the device context specified 
by the hdc parameter, in which to draw the object. 

lprc WBounds Points to a REeT structure defining the bounding 
rectangle if the hdc parameter specifies a metafile. The left 
and top members of the REeT structure should specify the 
window origin, and the right and bottom members should 
specify the window extents. 

hdcFormat Identifies a device context describing the target device for 
which to format the object. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_ABORT 
OLE_ERROR_BLANK 
OLE_ERROR_ORAW 
OLE_ERROR_MEMORY 
OLE_ERROR_OBJECT 

Comments This function returns OLE_ERROR_ABORT if the callback function 
returns FALSE during drawing. 

Chapter 4, Functions 

When the hdc parameter specifies a metafile device context, the rectangle 
specified by the lprc WBounds parameter contains the rectangle specified 
by the IprcBounds parameter. If hdc does not specify a metafile device 
context, the lprc WBounds parameter is ignored. 

369 



OleEnumFormats 

The library may use an object handler to render the object, and this object 
handler may need information about the target device. Therefore, the 
device-context handle specified by the hdcFormat parameter is required. 
The IprcBounds parameter identifies the rectangle on the device context 
(relative to its current mapping mode) that the object should be mapped 
onto. This may involve scaling the picture and can be used by client 
applications to impose a view scaling between the displayed view and the 
final printed image. 

An object handler should format an object as if it were to be drawn at the 
size specified by a call to the OleSetBounds function for the device 
context specified by the hdcFormat parameter. Often this formatting will 
already have been done by the server application; in this case, the library 
simply renders the presentation data with suitable scaling for the 
required bounding rectangle. If cropping or banding is required, the 
device context in which the object is drawn may include a clipping region 
smaller than the specified bounding rectangle. 

See Also OleSetBounds 

OleEnumFormats 3.1 

370 

Syntax #include <ole.h> 
OLECLIPFORMAT OleEnumFormats(lpObject, cfFormat) 

function OleEnumFormats(Self: POleObject; Format: TOleClipFormat): 
TOleClipFormat; 

The OleEnumFormats function enumerates the data formats that describe 
a specified object. 

Parameters IpObject 

cfFormat 

Points to the object to be queried. 

Specifies the format returned by the last call to the 
OleEnumFormats function. For the first call to this 
function, this parameter is zero. 

Return Value The return value is the next available format if any further formats are 
available. Otherwise, the return value is NULL. 

Comments When an application specifies NULL for the cfFormat parameter, the 
OleEnumFormats function returns the first available format. Whenever 
an application specifies a format that was returned by a previous call to 
OleEnumFormats, the function returns the next available format, in 

Windows API Guide 



OleEnumObjects 

sequence. When no more formats are available, the function returns 
NULL. 

See Also OleGetData 

OleEnumObjects 

Syntax #inc1ude <ole.h> 
OLESTA TUS OleEnumObjects(lhDoc, IplpObject) 

function OleEnumObjects(ClientDoc: LHClientDoc; var OleObject: 
POleObject): TOleStatus; 

The OleEnumObjects function enumerates the objects in a specified 
document. 

Parameters IhDoc 

IplpObject 

Identifies the document for which the objects are 
enumerated. 

Points to an object in the document when the function 
returns. For the first call to this function, this parameter 
should point to a NULL object. 

3.1 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_HANDLE 
OLE_ERROR_OBJECT 

Comments When an application specifies a NULL object for the IplpObject parameter, 
the OleEnumObjects function returns the first object in the document. 
Whenever an application specifies an object that was returned by a 
previous call to OleEnumObjects, the function returns the next object, in 
sequence. When there are no more objects in the document, the IplpObject 
parameter points to a NULL object. 

Only objects that have been loaded and not released are enumerated by 
this function. 

See Also OleDelete, OleRelease 

Chapter 4, Functions 371 



OleEqual 

OleEqual 3.1 

Syntax #include <ole.h> 
OLE STATUS OleEqualOpObjectl, IpObject2) 

function OleEqual(Self: POleObject; OleObject: POleObject): TOleStatus; 

The OleEqual function compares two objects for equality. 

Parameters IpObjectl 

IpObject2 

Points to the first object to test for equality. 

Points to the second object to test for equality. 

Return Value The return value is OLE_OK if the specified objects are equal. Otherwise, 
it is an error value, which may be one of the following: 

OLE_ERROR_ OBJECT 
OLE_ERROR_NOT_EQUAL 

Comments Embedded objects are equal if their class, item, and native data are 
identical. Linked objects are equal if their class, document, and item are 
identical. 

See Also OleClone, OleQueryOutOfDate 

OleExecute 3. 1 

372 

Syntax #include <ole.h> 
OLE STATUS OleExecute(lpObject, hglbCmds, reserved) 

function OleExecute(Self: POleObject; Commands: THandle; Reserved: 
Word): TOleStatus; 

The OleExecute function sends dynamic data exchange (DDE) execute 
commands to the server for the specified object. 

Parameters IpObject 

hglbCmds 

reserved 

Points to an object identifying the server to which DDE 
execute commands are sent. 

Identifies the memory containing one or more DDE 
execute commands. 

Reserved; must be zero. 

Windows API Guide 



OleGetOoto 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_ COMMAND 
OLE_ERROR_MEMORY 
OLE_ERROR_NOT_OPEN 
OLE_ERROR_ OBJECT 
OLE_ERROR_PROTOCOL 
OLE_ERROR_ST ATIC 
OLE_ WAIT_FOR_RELEASE 

Comments The client application should call the OleQueryProtocol function, 
specifying StdExecute, before calling the Ole Execute function. The 
OleQueryProtocol function succeeds if the server for an object supports 
the Ole Execute function. 

See Also OleQueryProtocol 

OleGetData 3. 1 

Syntax #include <ole.h> 
OLESTA TUS OleGetData(lpObject, cfFormat, IphData) 

function OleGetData(Self: POleObject; Format: TOleClipFormat; var Data: 
THandle): TOleStatus; 

The OleGetData function retrieves data in the requested format from the 
specified object and supplies the handle of a memory or graphics device 
interface (GDI) object containing the data. 

Parameters lpObject Points to the object from which data is retrieved. 

cfFormat 

lphData 

Chapter 4, Functions 

Specifies the format in which data is returned. This 
parameter can be one of the predefined clipboard formats 
or the value returned by the RegisterClipboardFormat 
function. 

Points to the handle of a memory object that contains the 
data when the function returns. 

373 



OleGetLinkUpdateOptions 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_BLANK 
OLE_ERROR_FORMAT 
OLE_ERROR_OBJECT 
OLE_ WARN_DELETE_DATA 

Comments If the OleGetData function returns OLE_ WARN_DELETE_DATA, the 
client application owns the data and should free the memory associated 
with the data when the client has finished using it. For other return 
values, the client should not free the memory or modify the data, because 
the data is controlled by the client library. If the application needs the 
data for long-term use, it should copy the data. 

The OleGetData function typically returns OLE_ W ARN_DELETE_DAT A 
if an object handler generates data for an object that the client library 
cannot interpret. In this case, the client application is responsible for 
controlling that data. 

When the OleGetData function specifies CF _METAFILE or CF _BITMAP, 
the IphData parameter points to a GDI object, not a memory object, when 
the function returns. OleGetData supplies the handle of a memory object 
for all other formats. 

See Also OleEnumFormats, OleSetData, RegisterClipboardFormat 

OleGetLinkUpdateOptions 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleGetLinkU pdateOptions(lpObject, lp U pdateOpt) 

function OleGetLinkUpdateOptions(Self: POleObject; var UpdateOpt: 
TOleOpt_Update): TOleStatus; 

The OleGetLinkUpdateOptions function retrieves the link-update options 
for the presentation of a specified object. 

Parameters IpObject Points to the object to query. 

IpUpdateOpt Points to a variable in which the function stores the current 
value of the link-update option for the specified object. The 
link-update option setting may be one of the following 
values: 

374 Windows API Guide 



OlelsDcMeta 

Value Meaning 

oleupdate_always Update the linked object whenever 
possible. This option supports the 
Automatic link-update radio button in the 
Links dialog box. 

oleupdate_oncall Update the linked object only on request 
from the client application. This option 
supports the Manual link-update radio 
bu tton in the Links dialog box. 

oleupdate_onsave Update the linked object when the source 
document is saved by the server. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_ OBJECT 
OLE_ERROR_STATIC 

See Also OleSetLinkUpdateOptions 

OlelsDcMeta 3.1 

Syntax #include <ole.h> 
BOOL OleIsDcMeta(hdc) 

function OlelsDcMeta(DC: HDC): Bool; 

The OlelsDcMeta function determines whether the specified device 
context is a metafile device context. 

Parameters hdc Identifies the device context to query. 

Return Value The return value is a positive value if the device context is a metafile 
device context. Otherwise, it is NULL. 

Chapter 4, Functions 375 



OleLoadFromStream 

OleLoadFromStream 3.' 

376 

Syntax #include <ole.h> 
OLESTATUS OleLoadFromStream(lpStream, IpszProtocol, IpClient, 
IhClientDoc, IpszObjname, IplpObject) 

function OleLoadFromStream(Stream: POleStream; Protocol: PChar; 
Client: POleClient; ClientDoc: LHClientDoc; ObjectName: PChar; var 
OleObject: POleObject): TOleStatus; 

The OleLoadFromStream function loads an object from the containing 
document. 

Parameters IpStream Points to an OLESTREAM structure that was allocated and 
initialized by the client application. The library calls the 
Get function in the OLESTREAMVTBL structure to obtain 
the data for the object. 

IpszProtocol Points to a null-terminated string specifying the name of 
the required protocol. Currently, this value can be 
StdFileEditing (the name of the object linking and 
embedding protocol) or Static (for uneditable pictures 
only). 

IpClient Points to an OLECLIENT structure allocated and initialized 
by the client application. This pointer is used to locate the 
callback function and is passed in callback notifications. 

IhClientDoc Identifies the client document in which the object is being 
created. 

IpszObjname Points to a null-terminated string specifying the client's 
name for the object. 

IplpObject Points to a variable in which the library stores a pointer to 
the loaded object. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_HANDLE 
OLE_ERROR_NAME 
OLE_ERROR_PROTOCOL 
OLE_ERROR_STREAM 
OLE_ WAIT_FOR_RELEASE 

Windows API Guide 



OleLockServer 

Comments To load an object, the client application needs only the location of that 
object in a file. A client typically loads an object only when the object is 
needed (for example, when it must be displayed). 

If an object cannot be loaded when the lpszProtocol parameter specifies 
StdFileEditing, the application can call the OleLoadFromStream function 
again, specifying Static. 

If the object is linked and the server and document are open, the library 
automatically makes the link between the client and server applications 
when an application calls OleLoadFromStream. 

See Also OleQuerySize, OleSaveToStream 

OleLockServer 3. 1 

Syntax #include <ole.h> 
OLESTATUS OleLockServer(lpObject, IphServer) 

function OleLockServer(OleObject: POleObject; var Server: LHServer): 
TOleStatus; 

The OleLockServer function is called by a client application to keep an 
open server application in memory. Keeping the server application in 
memory allows the client library to use the server application to open 
objects quickly. 

Parameters lpObject 

lphServer 

Points to an object the client library uses to identify the 
open server application to keep in memory. When the 
server has been locked, this object can be deleted. 

Points to the handle of the server application when the 
function returns. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_COMM 
OLE_ERROR_LAUNCH 
OLE_ERROR_ OBJECT 

Comments A client calls OleLockServer to speed the opening of objects when the 
same server is used for a number of different objects. Before the client 
terminates, it must call the OleUnlockServer function to release the server 
from memory. 

Chapter 4, Functions 377 



OleObjectConvert 

When OleLockServer is called more than once for a given server, even by 
different client applications, the server's lock count is increased. Each call 
to OleUnlockServer decrements the lock count. The server remains locked 
until the lock count is zero. If the object identified by the lpObject 
parameter is deleted before calling the OleUnlockServer function, 
OleUnlockServer must still be called to decrement the lock count. 

If necessary, a server can terminate even though a client has called the 
OleLockServer function. 

See Also OleUnlockServer 

OleObjectConvert 

Syntax #include <ole.h> 
OLE STATUS OleObjectConvert(lpObject, IpszProtocol, IpClient, 
IhClientDoc, IpszObjname, IplpObject) 

function OleObjectConvert(OleObject: POleObject; Protocol: PChar; 
Client: POleClient; ClientDoc: LHClientDoc; ObjName: PChar; var 
OleObject: POleObject): TOleStatus; 

3.1 

The OleObjectConvert function creates a new object that supports a 
specified protocol by converting an existing object. This function neither 
deletes nor replaces the original object. 

Parameters lpObject Points to the object to convert. 

lpszProtocol Points to a null-terminated string specifying the name of 
the required protocol. Currently this value can be Static 
(for uneditable pictures only). 

lpClient Points to an OLECLIENT structure for the new object. 

lhClientDoc Identifies the client document in which the object is being 
created. 

lpszObjname Points to a null-terminated string specifying the client's 
name for the object. This name must be unique with 
respect to the names of any other objects in the document 
and cannot contain a slash mark (/). 

lplpObject Points to a variable in which the library stores a pointer to 
the new object. 

378 Windows API Guide 



OleQueryBounds 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_HANDLE 
OLE_ERROR_NAME 
OLE_ERROR_OBJECT 
OLE_ERROR_ST ATlC 

Comments The only conversion currently supported is that of changing a linked or 
embedded object to a static object. 

See Also OleClone 

OleQueryBounds 3.1 

Syntax #include <ole.h> 
OLE STATUS OleQueryBoundsOpObject, IpBounds) 

function OleQueryBounds(Self: POleObject; var Bounds: TRect): 
TOleStatus; 

The OleQueryBounds function retrieves the extents of the bounding 
rectangle on the target device for the specified object. The coordinates are 
in MM_HlMETRlC units. 

Parameters IpObject 

IpBoun~s 

Points to the object to query. 

Points to a RECT structure for the extents of the bounding 
rectangle. The members of the RECT structure have the 
following meanings: 

Member Meaning 

reet.left 0 
reeUop 0 
reet.right x-extent 
reet.bottom y-extent 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_BLANK 
OLE_ERROR_MEMORY 
OLE_ERROR_OBJECT 

Chapter 4, Functions 379 



OleQueryClientVersion 

See Also OleSetBounds, SetMapMode 

OleQueryClientVersion 3.1 

Syntax #include <ole.h> 
DWORD OleQueryClientVersion(void) 

function OleQueryClientVersion: Longint; 

The OleQueryClientVersion function retrieves the version number of the 
client library. 

Parameters This function has no parameters. 

Return Value The return value is a doubleword value. The major version number is in 
the low-order byte of the low-order word, and the minor version number 
is in the high-order byte of the low-order word. The high-order word is 
reserved. 

See Also OleQueryServerVersion 

OleQueryCreateFromClip 3.1 

380 

Syntax #include <ole.h> 
OLE STATUS OleQueryCreateFromClip{lpszProtocol, renderopt, 
cfFormat) 

function OleQueryCreateFromClip(Protocol: PChar; render_opt: 
TOleOPT_Render; Format: TOleClipFormat): TOleStatus; 

The OleQueryCreateFromClip function checks whether the object on the 
clipboard supports the specified protocol and rendering options. 

Parameters IpszProtocol Points to a null-terminated string specifying the name of 
the protocol needed by the client. Currently, this value can 
be StdFileEditing (the name of the object linking and 
embedding protocol) or Static (for uneditable pictures 
only). 

renderopt Specifies the client's preference for presentation data for 
the object. This parameter can be one of the following 
values: 

Windows API Guide 



cfFormat 

Value 

olerender _draw 

olerender _format 

olerender_none 

OleQueryCreateFromClip 

Meaning 

The client calls the OleO raw function, and 
the library obtains and manages 
presentation data. 
The library obtains and manages the data 
in the requested format, as specified by the 
cfFonnat parameter. 
The client library does not obtain any 
presentation data and does not draw the 
object. 

Specifies the clipboard format. This parameter is used only 
when the renderopt parameter is olerender_format. If the 
clipboard format is CF _METAFILEPICT, CF _DIB, or 
CF _BITMAP, the library manages the data and draws the 
object. The library does not support drawing for any other 
formats. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_FORMAT 
OLE_ERROR_PROTOCOL 

Comments The OleQueryCreateFromClip function is typically used to check whether 
to enable a Paste command. 

The olerender_none rendering option is typically used to support 
hyperlinks. With this option, the client does not call OleDraw and calls the 
OleGetData function only for ObjectLink, OwnerLink, and Native formats. 

The olerender_format rendering option allows a client to compute data 
(instead of painting it), use an unusual data format, or modify a standard 
data format. With this option the client does not call OleDraw. The client 
calls OleGetData to retrieve data in the specified format. 

The olerender_draw rendering option is the most typical option. It is the 
easiest rendering option for the client to implement (the client simply calls 
OleDraw), and it allows the most flexibility. An object handler can exploit 
this flexibility to store no presentation data, a private presentation data 
format, or several different formats that it can choose among dynamically. 
Future implementations of object linking and embedding (OLE) may also 
exploit the flexibility that is inherent in this option. 

See Also OleCreateFromClip, OleDraw, OleGetData 

Chapter 4, Functions 381 



OleQueryLinkFromClip 

OleQueryLinkFromClip 3.1 

382 

Syntax #include <ole.h> 
OLE STATUS OleQueryLinkFromClip(lpszProtocol, renderopt, cfFormat) 

function OleQueryLinkFromClip(Protocol: PChar; render_opt: 
TOleOPT_Render; Format: TOleClipFormat): TOleStatus; 

The OleQueryLinkFromClip function checks whether a client application 
can use the data on the clipboard to produce a linked object that supports 
the specified protocol and rendering options. 

Parameters lpszProtocol 

renderopt 

cfFormat 

Points to a null-terminated string specifying the name of 
the protocol needed by the client. Currently this value can 
be StdFileEditing (the name of the object linking and 
embedding protocol). 

Specifies the client's preference for presentation data for 
the object. This parameter can be one of the following 
values: 

Value 

olerender_draw 

olerender _format 

olerender _none 

Meaning 

The client calls the OleO raw function, and 
the library obtains and manages 
presentation data. 
The library obtains and manages the data 
in the requested format, as specified by the 
cfFormat parameter. 
The client library does not obtain any 
presentation data and does not draw the 
object. 

Specifies the clipboard format. This parameter is used only 
when the renderopt parameter is olerender_format. If this 
clipboard format is CF _METAFILEPICT, CF _DIB, or 
CF _BITMAP, the library manages the data and draws the 
object. The library does not support drawing for any other 
formats. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_FORMAT 
OLE_ERROR_PROTOCOL 

Windows API Guide 



OleQueryName 

Comments The OleQueryLinkFromClip function is typically used to check whether to 
enable a Paste Link command. 

The olerender_none rendering option is typically used to support 
hyperlinks. With this option, the client does not call OleDraw and calls the 
OleGetData function only for ObjectLink, OwnerLink, and Native formats. 

The olerender_format rendering option allows a client to compute data 
(instead of painting it), use an unusual data format, or modify a standard 
data format. With this option, the client does not call OleDraw. The client 
calls OleGetData to retrieve data in the specified format. 

The olerender_draw rendering option is the most typical option. It is the 
easiest rendering option for the client to implement (the client simply calls 
OleDraw), and it allows the most flexibility. An object handler can exploit 
this flexibility to store no presentation data, a private presentation data 
format, or several different formats that it can choose among dynamically. 
Future implementations of object linking and embedding (OLE) may also 
exploit the flexibility that is inherent in this option. 

See Also OleCreateLinkFromClip, OleDraw, OleGetData 

OleQueryName 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleQueryName(lpObject, IpszObject, IpwBuffSize) 

function OleQueryName(Self: POleObject; Name: PChar; var NameSize: 
Word): TOleStatus; 

The OleQueryName function retrieves the name of a specified object. 

Parameters IpObject 

IpszObject 

IpwBuffSize 

Chapter 4, Functions 

Points to the object whose name is being queried. 

Points to a character array that contains a null-terminated 
string. When the function returns, this string specifies the 
name of the object. 

Points to a variable containing the size, in bytes, of the 
buffer pointed to by the IpszObject parameter. When the 
function returns, this value is the number of bytes copied 
to the buffer. 

383 



OleQueryOpen 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be OLE_ERROR_ OBJECT. 

See Also Ole Rename 

OleQueryOpen 3.1 

Syntax #include <ole.h> 
OLESTATUS OleQueryOpen(lpObject) 

function OleQueryOpen(Self: POleObject): TOleStatus; 

The OleQueryOpen function checks whether the specified object is open. 

Parameters IpObject Points to the object to query. 

Return Value The return value is OLE_OK if the object is open. Otherwise, it is an error 
value, which may be one of the following: 

OLE_ERROR_COMM 
OLE_ERROR_OBJECT 
OLE_ERROR_ST ATIC 

See Also OleActivate 

OleQueryOutOfDate 3.1 

384 

Syntax #include <ole.h> 
OLESTATUS OleQueryOutOfDate(lpObject) 

function OleQueryOutOfDate(Self: POleObject): TOleStatus; 

The OleQueryOutOfDate function checks whether an object is out-of-date. 

Parameters IpObject Points to the object to query. 

Return Value The return value is OLE_OK if the object is up-to-date. Otherwise, it is an 
error value, which may be one of the following: 

OLE_ERROR_OBJECT 
OLE_ERROR_ OUTOFDATE 

Windows API Guide 



OleQueryProtocol 

Comments The OleQueryOutOfDate function has not been implemented for the 
current version of object linking and embedding (OLE). For linked 
objects, OleQueryOutOfDate always returns OLE_OK. 

A linked object might be out-of-date if the document that is the source for 
the link has been updated. An embedded object that contains links to 
other objects might also be out-of-date. 

See Also OleEqual, OleUpdate 

OleQueryProtocol 3.1 

Syntax #include <ole.h> 
void FAR* OleQueryProtocol(lpobj, IpszProtocol) 

function OleQueryProtocol(Self: POleObject; Protocol: PChar): Pointer; 

The OleQueryProtocol function checks whether an object supports a 
specified protocol. 

Parameters Ipobj Points to the object to query. 

IpszProtocol Points to a null-terminated string specifying the name of 
the requested protocol. This value can be StdFileEditing or 
StdExecute. 

Return Value The return value is a void pointer to an OLEOBJECT structure if the 
function is successful, or it is NULL if the object does not support the 
requested protocol. The library can return OLE_WAIT_FOR_RELEASE 
when an application calls this function. 

Comments The OleQueryProtocol function queries whether the specified protocol is 
supported and returns a modified object pointer that allows access to the 
function table for the protocol. This modified object pointer points to a 
structure that has the same form as the OLEOBJECT structure; the new 
structure also points to a table of functions and may contain additional 
state information. The new pointer does not point to a different object-if 
the object is deleted, secondary pointers become invalid. If a protocol 
includes delete functions, calling a delete function invalidates all pointers 
to that object. 

Chapter 4, Functions 385 



OleQueryReleaseError 

A client application typically calls OleQueryProtocol, specifying 
StdExecute for the IpszProtocol parameter, before calling the Ole Execute 
function. This allows the client application to check whether the server for 
an object supports dynamic data exchange (DDE) execute commands. 

See Also Ole Execute 

OleQueryReleaseError 3.1 

Syntax #include <ole.h> 
OLE STATUS OleQueryReleaseErrorOpobj) 

function OleQueryReleaseError(Self: POleObject): TOleStatus; 

The OleQueryReleaseError function checks the error value for an 
asynchronous operation on an object. 

Parameters Ipobj Points to an object for which the error value is to be 
queried. 

Return Value The return value, if the function is successful, is either OLE_OK if the 
asynchronous operation completed successfully or the error value for that 
operation. If the pointer passed in the Ipobj parameter is invalid, the 
function returns OLE_ERROR_OBJECT. 

Comments A client application receives the OLE_RELEASE notification when an 
asynchronous operation has terminated. The client should then call 
OleQueryReleaseError to check whether the operation has terminated 
successfully or with an error value. 

See Also OleQueryReleaseMethod, OleQueryReleaseStatus 

OleQueryReleaseMethod 3.1 

386 

Syntax #include <ole.h> 
OLE_RELEASE_METHOD OleQueryReleaseMethodOpobj) 

function OleQueryReleaseMethod(Self: POleObject): 
TOle_Release_Method; 

The OleQueryReleaseMethod function finds out the operation that 
finished for the specified object. 

Windows API Guide 



OleQueryReleaseMethod 

Parameters Ipobj Points to an object for which the operation is to be queried. 

Return Value The return value indicates the server operation (method) that finished. It 
can be one of the following values: 

Value 

OLE_ACTIVATE 
OLE_CLOSE 
OLE_COPYFROMLNK 
OLE_CREATE 
OLE_CREATEFROMFILE 
OLE_CREATEFROMTEMPLATE 
OLE_ CREATEINVISIBLE 
OLE_CREATELINKFROMFILE 
OLE_DELETE 
OLE_EMBPASTE 
OLE_LNKPASTE 
OLE_LOADFROMSTREAM 
OLE_NONE 
OLE_OTHER 

OLE_RECONNECT 
OLE_REQUESTDATA 
OLE_RUN 
OLE_SERVERUNLAUNCH 
OLE_SETDATA 
OLE_SETUPDATEOPTIONS 
OLE_SHOW 
OLE_UPDATE 

Server operation 

Activate 
Close 
CopyFromLink (autoreconnect) 
Create 
CreateFromFile 
CreateFromTemplate 
CreateInvisible 
CreateLinkFromFile 
Object Delete 
Paste and Update 
PasteLink (autoreconnect) 
LoadFromStream (autoreconnect) 
No operation active 
Other miscellaneous asynchronous 
operations 
Reconnect 
OleRequestData 
Run 
Server is stopping 
OleSetData 
Setting update options 
Show 
Update 

If the pointer passed in the Ipobj parameter is invalid, the function returns 
OLE_ERROR_OBJECT. 

Comments A client application receives the OLE_RELEASE notification when an 
asynchronous operation has ended. The client can then call 
OleQueryReleaseMethod to check which operation caused the library to 
send the OLE_RELEASE notification. The client calls 
OleQueryReleas~Error to determine whether the operation terminated 
successfully or with an error value. 

See Also OleQueryReleaseError,OleQueryReleaseStatus 

Chapter 4, Functions 387 



OleQueryReleaseStatus 

OleQueryReleaseStatus 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleQueryReleaseStatus{lpobj) 

function OleQueryReleaseStatus(Self: POleObject): TOleStatus; 

The OleQueryReleaseStatus function determines whether an operation 
has finished for the specified object. 

Parameters Ipobj Points to an object for which the operation is queried. 

Return Value The return value, if the function is successful, is either OLE_BUSY if an 
operation is in progress or OLE_OK. If the pointer passed in the Ipobj 
parameter is invalid, the function returns OLE_ERROR_OBJECT. 

See Also OleQueryReleaseError, OleQueryReleaseMethod 

OleQueryServerVersion 3.1 

Syntax #include <ole.h> 
DWORD OleQueryServerVersion(void) 

function OleQueryServerVersion: Longint; 

The OleQueryServerVersion function retrieves the version number of the 
server library. 

Parameters This function has no parameters. 

Return Value The return value is a doubleword value. The major version number is in 
the low-order byte of the low-order word, and the minor version number 
is in the high-order byte of the low-order word. The high-order word is 
reserved. 

See Also OleQueryClientVersion 

388 Windows API Guide 



OleQueryType 

OleQuerySize 3. 1 

Syntax #include <ole.h> 
OLE STATUS OleQuerySize(lpObject, pdwSize) 

function OleQuerySize(Self: POleObject; var Size: Longint): TOleStatus; 

The OleQuerySize function retrieves the size of the specified object. 

Parameters IpObject Points to the object to query. 

pdwSize Points to a variable for the size of the object. This variable 
contains the size of the object when the function returns. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_BLANK 
OLE_ERROR_MEMORY 
OLE_ERROR_OBJECT 

See Also OleLoadFromStream 

OleQueryType 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleQueryTypeOpObject, lpType) 

function OleQueryType(Self: POleObject; var LinkType: Longint): 
TOleStatus; 

The OleQueryType function checks whether a specified object is 
embedded, linked, or static. 

Parameters IpObject 

IpType 

Points to the object for which the type is to be queried. 

Points to a long variable that contains the type of the object 
when the function returns. This parameter can be one of 
the following values: 

Chapter 4, Functions 

Value 

aT_EMBEDDED 
aT_LINK 
aT_STATIC 

Meaning 

Object is embedded. 
Object is a link. 
Object is a static picture. 

389 



OleReconnect 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_ GENERIC 
OLE_ERROR_ OBJECT 

See Also OleEnumFormats 

OleReconnect 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleReconnect(lpObject) 

function OleReconnect(Self: POleObject): TOleStatus; 

The OleReconnect function reestablishes a link to an open linked object. 
If the specified object is not open, this function does not open it. 

Parameters lpObject Points to the object to reconnect to. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_NOT_LINK 
OLE_ERROR_ OBJECT 
OLE_ERROR_ST ATIC 
OLE_ WAIT_FOR_RELEASE 

Comments A client application can use OleReconnect to keep the presentation for a 
linked object up-to-date. 

See Also OleActivate, OleClose, OleUpdate 

OleRegisterClientDoc 3.1 

390 

Syntax #include <ole.h> 
OLEST A TUS OleRegisterClientDoc(lpszClass, IpszDoc, reserved, IplhDoc) 

function OleRegisterClientDoc(Class, Doc: PChar; Reserved: Longint; var 
Doc: LHClientDoc): TOleStatus; 

Windows API Guide 



OleRegisterServer 

The OleRegisterClientDoc function registers an open client document 
with the library and returns the handle of that document. 

Parameters IpszClass Points to a null-terminated string specifying the class of 
the client document. 

IpszDoc Points to a null-terminated string specifying the location of 
the client document. (This value should be a fully qualified 
path.) 

reserved 

IplhDoc 

Reserved. Must be zero. 

Points to the handle of the client document when the 
function returns. This handle is used to identify the 
document in other document-management functions. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_ALREADY_REGISTERED 
OLE_ERROR_MEMORY 
OLE_ERROR_NAME 

Comments When a document being copied onto the clipboard exists only because the 
client application is copying Native data that contains objects, the name 
specified in the IpszDoc parameter must be Clipboard. 

Client applications should register open documents with the library and 
notify the library when a document is renamed, closed, saved, or restored 
to a changed state. 

See Also OleRenameClientDoc, OleRevertClientDoc, OleRevokeClientDoc, 
OleSavedClientDoc 

OleRegisterServer 

Syntax #include <ole.h> 
OLESTATUS OleRegisterServer(lpszClass, lpsrvr, lplhserver, hinst, 
srvruse) 

function OleRegisterServer(Class: PChar; ServerDef: POleServer; var 
Server: LHServer; Inst: THandle; Use: TOle_Server_Use): TOleStatus; 

3.1 

The OleRegisterServer function registers the specified server, class name, 
and instance with the server library. 

Chapter 4, Functions 391 



OleRegisterServer 

Parameters IpszClass Points to a null-terminated string specifying the class name 
being registered. 

Ipsrvr 

Iplhserver 

hinst 

srvruse 

Points to an OLESERVER structure allocated and 
initialized by the server application. 

Points to a variable of type LHSERVER in which the 
library stores the handle of the server. This handle is used 
in such functions as OleRegisterServerDoc and 
OleRevokeServer. 

Identifies the instance of the server application. This 
handle is used to ensure that clients connect to the correct 
instance of a server application. 

Specifies whether the server uses a single instance or 
multiple instances to support multiple objects. This value 
must be either OLE_SERVER_SINGLE or 
OLE_SERVER_MULTI. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_ CLASS 
OLE_ERROR_MEMORY 
OLE_ERROR_PROTECT _ ONL Y 

Comments When the server application starts, it creates an OLESERVER structure 
and calls the OleRegisterServer function. Servers that support several 
class names can allocate a structure for each or reuse the same structure. 
The class name is passed to server-application functions that are called 
through the library, so that servers supporting more than one class can 
check which class is being requested. 

The srvruse parameter is used when the libraries open an object. When 
OLE_SERVER_MULTI is specified for this parameter and all current 
instances are already editing an object, a new instance of the server is 
started. Servers that support the multiple document interface (MDI) 
typically specify OLE_SERVER_SINGLE. 

See Also OleRegisterServerDoc, OleRevokeServer 

392 Windows API Guide 



OleRegisterServerDoc 

OleRegisterServerDoc 3.1 

Syntax #include <ole.h> 
OLE STATUS OleRegisterServerDoc(lhsrvr, IpszDocN arne, lpdoc, lplhdoc) 

function OleRegisterServerDocCServer: LHServer; DocName: PChar; 
DocDef: POleServerDoc; var Doc: LHServerDoc): TOleStatus; 

The OleRegisterServerDoc function registers a document with the server 
library in case other client applications have links to it. A server 
application uses this function when the server is started with the 
IEmbedding filename option or when it creates or opens a document that is 
not requested by the library. 

Parameters Ihsrvr Identifies the server. Server applications obtain this handle 
by calling the OleRegisterServer function. 

IpszDocName Points to a null-terminated string specifying the 
permanent name for the document. This parameter should 
be a fully qualified path. 

Ipdoc Points to an OLESERVERDOC structure allocated and 
initialized by the server application. 

Iplhdoc Points to a handle that will identify the document. This 
parameter points to the handle when the function returns. 

Return Value If the function is successful, the return value is OLE_OK. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_ADDRESS 
OLE_ERROR_HANDLE 
OLE_ERROR_MEMORY 

Comments If the document was created or opened in response to a request from the 
server library, the server should not register the document by using 
OleRegisterServerDoc. Instead, the server should return a pointer to the 
OLESERVERDOC structure through the parameter to the relevant 
function. 

See Also OleRegisterServer,OleRevokeServerDoc 

Chapter 4, Functions 393 



OleRelease 

OleRelease 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleRelease(lpObject) 

function OleRelease(Self: POleObject): TOleStatus; 

The OleRelease function releases an object from memory and closes it if it 
was open. This function does not indicate that the object has been deleted 
from the client document. 

Parameters IpObject Points to the object to release. 

Return Value If the function is successful, the return value is OLE_OK. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_ OBJECT 
OLE_WAIT _FOR_RELEASE 

Comments The OleRelease function should be called for all objects when closing the 
client document. 

See Also OleDelete 

OleRename 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleRename(lpObject, lpszNewname) 

function OleRename(Self: POleObject; NewName: PChar): TOleStatus; 

The Ole Rename function renames an object. 

Parameters IpObject Points to the object that is being renamed. 

IpszNewname Points to a null-terminated string specifying the new name 
of the object. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be OLE_ERROR_ OBJECT. 

394 Windows API Guide 



OleRenameClientDoc 

Comments Object names need not be seen by the user. They must be unique within 
the containing document and must be preserved when the document is 
saved. 

See Also OleQueryName 

OleRenameClientDoc 3.1 

Syntax #include <ole.h> 
OLE STATUS OleRenameClientDoc(lhClientDoc, IpszNewDocname) 

function OleRenameClientDoc(ClientDoc: LHClientDoc; NewDocName; 
PChar): TOleStatus; 

The OleRenameClientDoc function informs the client library that a 
document has been renamed. A client application calls this function when 
a document name has changed-for example, when the user chooses the 
Save or Save As command from the File menu. 

Parameters lhClientDoc 

lpszNewDocname 

Identifies the document that has been renamed. 

Points to a null-terminated string specifying the 
new name of the document. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be OLE_ERROR_HANDLE. 

Comments Client applications should register open documents with the library and 
notify the library when a document is renamed, closed, saved, or restored 
to a changed state. 

See Also OleRegisterClientDoc, OleRevertClientDoc, OleRevokeClientDoc, 
OleSavedClientDoc 

Chapter 4, Functions 395 



OleRenameServerDoc 

OleRenameServerDoc 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleRenameServerDocOhDoc, lpszDocName) 

function OleRenameServerDoc(Doc: LHServerDoc; NewName: PChar): 
TOleStatus; 

The OleRenameServerDoc function informs the server library that a 
document has been renamed. 

Parameters IhDoc Identifies the document that has been renamed. 

IpszDocName Points to a null-terminated string specifying the new name 
of the document. This parameter is typically a fully 
qualified path. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_HANDLE 
OLE_ERROR_MEMORY 

Comments The OleRenameServerDoc function has the same effect as sending the 
OLE_RENAMED notification to the client application's callback function. 
The server application calls this function when it renames a document to 
which the active links need to be reconnected or when the user chooses 
the Save As command from the File menu while working with an 
embedded object. 

Server applications should register open documents with the server 
library and notify the library when a document is renamed, closed, saved, 
or restored to a changed state. 

See Also OleRegisterServerDoc, OleRevertServerDoc, OleRevokeServerDoc, 
OleSavedServerDoc 

OleRequestData 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleRequestData(lpObject, cfFormat) 

function OleRequestData(Self: POleObject; Format: TOleClipFormat): 
TOleStatus; 

396 Windows API Guide 



OleRevertClientDoc 

The OleRequestData function requests the library to retrieve data in a 
specified format from a server. 

Parameters lpObject Points to the object that is associated with the server from 
which data is to be retrieved. 

cfFormat Specifies the format in which data is to be returned. This 
parameter can be one of the predefined clipboard formats 
or the value returned by the RegisterClipboardFormat 
function. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_NOT_OPEN 
OLE_ERROR_ OBJECT 
OLE_ERROR_ST ATIC 
OLE_WAIT _FOR_RELEASE 

Comments The client application should be connected to the server application when 
the client calls the Ole Request Data function. When the client receives the 
OLE_RELEASE notification, it can retrieve the data from the object by 
using the OleGetData function or query the data by using such functions 
as OleQueryBounds. 

If the requested data format is the same as the presentation data for the 
object, the library manages the data and updates the presentation. 

The OleRequestData function returns OLE_ WAIT_FOR_RELEASE if the 
server is busy. In this case, the application should continue to dispatch 
messages until it receives a callback notification with the OLE_RELEASE 
argument. 

See Also OleEnumFormats, OleGetData, OleSetData, RegisterClipboardFormat 

OleRevertClientDoc 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleRevertClientDocOhClientDoc) 

function OleRevertClientDoc(ClientDoc: LHClientDoc): TOleStatus; 

The OleRevertClientDoc function informs the library that a document has 
been restored to a previously saved condition. 

Chapter 4, Functions 397 



OleReverfServerDoc 

Parameters IhClientDoc Identifies the document that has been restored to its saved 
state. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be OLE_ERROR_HANDLE. 

Comments A client application should call the OleRevertClientDoc function when it 
reloads a document without saving changes to the document. 

Client applications should register open documents with the library and 
notify the library when a document is renamed, closed, saved, or restored 
to a saved state. 

See Also OleRegisterClientDoc, OleRenameClientDoc, OleRevokeClientDoc, 
OleSavedClientDoc 

Ole RevertServerDoc 

Syntax #include <ole.h> 
OLESTA TUS OleRevertServerDocOhDoc) 

function OleRevertServerDodDoc: LHServerDoc): TOleStatus; 

The OleRevertServerDoc function informs the server library that the 
server has restored a document to its saved state without closing it. 

3.1 

Parameters IhDoc Identifies the document that has been restored to its saved 
state. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be OLE_ERROR_HANDLE. 

Comments Server applications should register open documents with the server 
library and notify the library when a document is renamed, closed, saved, 
or restored to a saved state. 

See Also OleRegisterServerDoc, OleRenameServerDoc, OleRevokeServerDoc, 
OleSavedServerDoc 

398 Windows API Guide 



OleRevokeObject 

OleRevokeClientDoc 

Syntax #include <ole.h> 
OLEsT A TUs OleRevokeClientDocOhClientDoc) 

function OleRevokeClientDodClientDoc: LHClientDoc): TOlestatus; 

The OleRevokeClientDoc function informs the client library that a 
document is no longer open. 

3.1 

Parameters IhClientDoc Identifies the document that is no longer open. This handle 
is invalid following the call to OleRevokeClientDoc. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_HANDLE 
OLE_ERROR_NOT_EMPTY 

Comments The client application should delete all the objects in a document before 
calling OleRevokeClientDoc. 

Client applications should register open documents with the library and 
notify the library when a document is renamed, closed, saved, or restored 
to a changed state. 

See Also OleRegisterClientDoc, OleRenameClientDoc, OleRevertClientDoc, 
OleSavedClientDoc 

OleRevokeObject 

Syntax #inc1ude <ole.h> 
OLE STATUS OleRevokeObject(lpClient) 

function OleRevokeObject<Client: POleClient): TOlestatus; 

3.1 

The OleRevokeObject function revokes access to an object. A server 
application typically calls this function when the user destroys an object. 

Parameters IpClient 

Chapter 4, Functions 

Points to the OLECLIENT structure associated with the 
object being revoked. 

399 



OleRevokeServer 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

See Also OleRevokeServer,OleRevokeServerDoc 

OleRevokeServer 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleRevokeServerOhServer) 

function OleRevokeServer(Server: LHServer): TOleStatus; 

The OleRevokeServer function is called by a server application to close 
any registered documents. 

Parameters IhServer Identifies the server to revoke. A server application obtains 
this handle in a call to the OleRegisterServer function. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_HANDLE 
OLE_ W AIT_FOR_RELEASE 

Comments The OleRevokeServer function returns OLE_WAIT_FOR_RELEASE if 
communications between clients and the server are in the process of 
terminating. In this case, the server application should continue to send 
and dispatch messages until the library calls the server's Release function. 

See Also OleRegisterServer, OleRevokeObject, OleRevokeServerDoc 

OleRevokeServerDoc 3.1 

400 

Syntax #include <ole.h> 
OLESTA TUS OleRevokeServerDocOhdoc) 

function OleRevokeServerDoc(Doc: LHServerDoc): TOleStatus; 

The OleRevokeServerDoc function revokes the specified document. A 
server application calls this function when a registered document is being 
closed or otherwise made unavailable to client applications. 

Windows API Guide 



OleSavedClientDoc 

Parameters Ihdoc Identifies the document to revoke. This handle was 
returned by a call to the OleRegisterServerDoc function or 
was associated with a document by using one of the 
server-supplied functions that create documents. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_HANDLE 
OLE_WAIT _FOR_RELEASE 

Comments If this function returns OLE_WAIT_FOR_RELEASE, the server 
application should not free the OLESERVERDOC structure or exit until 
the library calls the server's Release function. 

See Also OleRegisterServerDoc, OleRevokeObject, OleRevokeServer 

OleSavedClientDoc 

Syntax #include <ole.h> 
OLE STATUS OleSavedClientDoc(lhClientDoc) 

function OleSavedClientDoc(ClientDoc: LHClientDoc): TOleStatus; 

The OleSavedClientDoc function informs the client library that a 
document has been saved. 

Parameters IhClientDoc Identifies the document that has been saved. 

3.1 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be OLE_ERROR_HANDLE. 

Comments Client applications should register open documents with the client library 
and notify the library when a document is renamed, closed, saved, or 
restored to a saved state. 

See Also OleRegisterClientDoc, OleRenameClientDoc, OleRevertClientDoc, 
OleRevokeClientDoc 

Chapter 4, Functions 401 



OleSavedServerDoc 

OleSavedServerDoc 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleSavedServerDodlhDoc) 

function OleSavedServerDoc(Doc: LHServerDoc): TOleStatus; 

The OleSavedServerDoc function informs the server library that a 
document has been saved. 

Parameters IhDoc Identifies the document that has been saved. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_ CANT _ UPDATE_CLIENT 
OLE_ERROR_HANDLE 

Comments The OleSavedServerDoc function has the same effect as sending the 
OLE_SAVED notification to the client application's callback function. The 
server application calls this function when saving a document or when 
updating an embedded object without closing the document. 

When a server application receives the 
OLE_ERROR_ CANT _ UPDATE_CLIENT error value, it should display a 
message box indicating that the user cannot update the document until 
the server terminates. 

Server applications should register open documents with the server 
library and notify the library when a document is renamed, closed, saved, 
or restored to a saved state. 

See Also OleRegisterServerDoc, OleRenameServerDoc, OleRevertServerDoc, 
OleRevokeServerDoc 

OleSave ToStream 3.1 

Syntax #include <ole.h> 
OLESTATUS OleSaveToStream(lpObject,lpStream) 

function OleSaveToStream(Self: POleObject; Stream: POleStream): 
TOleStatus; 

The OleSaveToStream function saves an object to the stream. 

402 Windows API Guide 



OleSetBounds 

Parameters IpObject Points to the object to be saved to the stream. 

IpStream Points to an OLESTREAM structure allocated and 
initialized by the client application. The library calls the 
Put function in the OLESTREAM structure to store the data 
from the object. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_BLANK 
OLE_ERROR_MEMORY 
OLE_ERROR_ OBJECT 
OLE_ERROR_STREAM 

Comments An application can use the OleQuerySize function to find the number of 
bytes to allocate for the object. 

See Also OleLoadFromStream,OleQuerySize 

OleSetBounds 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleSetBounds(lpObjed, IprcBound) 

function OleSetBounds(Self: POleObject; var Bounds: TRect): TOleStatus; 

The OleSetBounds function sets the coordinates of the bounding 
rectangle for the specified object on the target device. 

Parameters IpObject Points to the object for which the bounding rectangle is set. 

Points to a RECT structure containing the coordinates of 
the bounding rectangle. The coordinates are specified in 
MM_HIMETRIC units. Neither the width nor height of an 
object should exceed 32,767 MM_HIMETRIC units. 

IprcBound 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

Chapter 4, Functions 

OLE_BUSY 
OLE_ERROR_MEMORY 
OLE_ERROR_OBJECT 
OLE_WAIT _FOR_RELEASE 

403 



OleSetColorScheme 

The OleSetBounds function returns OLE_ERROR_ OBJECT when it is 
called for a linked object. 

Comments The OleSetBounds function is ignored for linked objects, because the size 
of a linked object is determined by the source document for the link. 

A client application uses OleSetBounds to change the bounding 
rectangle. The client does not need to call OleSetBounds every time a 
server is opened. 

The bounding rectangle specified in the OleSetBounds function does not 
necessarily have the same dimensions as the rectangle specified in the call 
to the OleDraw function. These dimensions may be different because of 
the view scaling used by the container application. An application can use 
OleSetBounds to cause the server to reformat the picture to fit the 
rectangle more closely. 

In the MM_HIMETRIC mapping mode, the positive y-direction is up. 

See Also OleDraw, OleQueryBounds, SetMapMode 

OleSetColorScheme 3.1 

404 

Syntax #include <ole.h> 
OLESTATUS OleSetColorSchemeOpObject, lpPalette) 

function OleSetColorScheme{Self: POleObjecti var Palette: TLogPalette): 
TOleStatusi 

The OleSetColorScheme function specifies the palette a client application 
recommends be used when the server application edits the specified 
object. The server application can ignore the recommended palette. 

Parameters IpObject 

IpPalette 

Points to an OLEOBJECT structure describing the object 
for which a palette is recommended. 

Points to a LOG PALETTE structure specifying the 
recommended palette. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_COMM 
OLE_ERROR_MEMORY 

Windows API Guide 



OLE_ERROR_OBJECT 
OLE_ERROR_PALETTE 
OLE_ERROR_STATIC 
OLE_ WAIT_FOR_RELEASE 

OleSetData 

The OleSetColorScheme function returns OLE_ERROR_ OBJECT when it 
is called for a linked object. 

Comments A client application uses OleSetColorScheme to change the color scheme. 
The client does not need to call OleSetColorScheme every time a server is 
opened. 

The first palette entry in the LOGPALETTE structure specifies the 
foreground color recommended by the client application. The second 
palette entry specifies the background color. The first half of the 
remaining palette entries are fill colors, and the second half are colors for 
lines and text. 

Client applications should specify an even number of palette entries. 
When there is an uneven number of entries, the server interprets the odd 
entry as a fill color; that is, if there are five entries, three are interpreted as 
fill colors and two as line and text colors. 

When server applications render metafiles, they should use the suggested 
palette. 

OleSetData 3. 1 

Syntax #include <ole.h> 
OLESTATUS OleSetData(lpObject, cfFormat, hData) 

function OleSetData(Self: POleObject; Format: TOleClipFormat; Data: 
THandle): TOleStatus; 

The OleSetData function sends data in the specified format to the server 
associated with a specified object. 

Parameters IpObject Points to an object specifying the server to which data is to 
be sent. 

Chapter 4, Functions 

c[Format 

hData 

Specifies the format of the data. 

Identifies a memory object containing the data in the 
specified format. 

405 



OleSetHostNames 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_BLANK 
OLE_ERROR_MEMORY 
OLE_ERROR_NOT _OPEN 
OLE_ERROR_ OBJECT 
OLE_ WAIT_FOR_RELEASE 

If the specified object cannot accept the data, the function returns an error 
value. If the server is not open and the requested data format is different 
from the format of the presentation data, the return value is 
OLE_ERROR_NOT_OPEN. 

See Also OleGetData, OleRequestData 

OleSetHostNames 3.1 

406 

Syntax #include <ole.h> 
OLE STATUS OleSetHostNames(lpObject, lpszClient, lpszClientObj) 

function OleSetHostNames(Self: POleObject; ClientName, ObjectName: 
PChar): TOleStatus; 

The OleSetHostNames function specifies the name of the client 
application and the client's name for the specified object. This information 
is used in window titles when the object is being edited in the server 
application. 

Parameters IpObject Points to the object for which a name is to be set. 

IpszClient Points to a null-terminated string specifying the name of 
the client application. 

IpszClientObj Points to a null-terminated string specifying the client's 
name for the object. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_MEMORY 
OLE_ERROR_ OBJECT 
OLE_ WAIT_FOR_RELEASE 

Windows API Guide 



OleSetLinkUpdateOptions 

The OleSetHostNames function returns OLE_ERROR_OBJECT when it is 
called for a linked object. 

Comments When a server application is started for editing of an embedded object, it 
displays in its title bar the string specified in the IpszClientObj parameter. 
The object name specified in this string should be the name of the client 
document containing the object. 

A client application uses OleSetHostNames to set the name of an object 
the first time that object is activated or to change the name of an object. 
The client does not need to call OleSetHostNames every time a server is 
opened. 

OleSetLinkUpdateOptions 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleSetLinkUpdateOptions(lpObject, UpdateOpt) 

function OleSetLinkUpdateOptions(Self: POleObject; UpdateOpt: 
TOleOpt_Update): TOleStatus; 

The OleSetLinkUpdateOptions function sets the link-update options for 
the presentation of the specified object. 

Parameters IpObject 

UpdateOpt 

Points to the object for which the link-update option is set. 

Specifies the link-update option for the specified object. 
This parameter can be one of the following values: 

Option Description 

oleupdate_always Update the linked object whenever 
possible. This option supports the 
Automatic link-update radio button in the 
Links dialog box. 

oleupdate_oncall Update the linked object only on request 
from the client application. This option 
supports the Manual link-update radio 
button in the Links dialog box. 

oleupdate_onsave Update the linked object when the source 
document is saved by the server. 

Chapter 4, Functions 407 



OleSetTargetDevice 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_ OBJECT 
OLE_ERROR_OPTION 
OLE_ERROR_STATIC 
OLE_ WAIT_FaR_RELEASE 

See Also OleGetLinkUpdateOptions 

OleSetTargetDevice 

Syntax #include <ole.h> 
OLESTA TUS OleSetTargetDevice(lpObject, hotd) 

3.1 

function OleSetTargetDevice(Self: POleObject; TargetDevice: THandle): 
TOleStatus; 

The OleSetTargetDevice function specifies the target output device for an 
object. 

Parameters IpObject 

hotd 

Points to the object for which a target device is specified. 

Identifies an OLETARGETDEVICE structure that describes 
the target device for the object. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_MEMORY 
OLE_ERROR_ OBJECT 
OLE_ERROR_STATIC 
OLE_WAIT _FOR_RELEASE 

Comments The OleSetTargetDevice function allows a linked or embedded object to 
be formatted correctly for a target device, even when the object is 
rendered on a different device. A client application should call this 
function whenever the target device changes, so that servers can be 
notified to change the rendering of the object, if necessary. The client 
application should call the OleUpdate function to ensure that the 
information is sent to the server, so that the server can make the necessary 
changes to the object's presentation. The client application should call the 

408 Windows API Guide 



OleUnblockServer 

library to redraw the object if it receives a notification from the server that 
the object has changed. 

A client application uses the OleSetTargetDevice function to change the 
target device. The client does not need to call OleSetTargetDevice every 
time a server is opened. 

OleUnblockServer 3.1 

Syntax #include <ole.h> 
OLE STATUS OleUnblockServer(lhSrvr, IpfRequest) 

function OleUnblockServer(Server: LHServer; var Requests: Bool): 
TOleStatus; 

The OleUnblockServer function processes a request from a queue created 
by calling the OleBlockServer function. 

Parameters IhSrvr 

IpfRequest 

Identifies the server for which requests were queued. 

Points to a flag indicating whether there are further 
requests in the queue. If there are further requests in the 
queue, this flag is TRUE when the function returns. 
Otherwise, it is FALSE when the function returns. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_HANDLE 
OLE_ERROR_MEMORY 

Comments A server application can use the OleBlockServer and OleUnblockServer 
functions to control when the server library processes requests from client 
applications. It is best to use OleUnblockServer outside the GetMessage 
function in a message loop, unblocking all blocked messages before 
getting the next message. Unblocking message loops should not be run 
inside server-defined functions that are called by the library. 

See Also OleBlockServer 



OleUnlockServer 

OleUnlockServer 3.1 

Syntax #include <ole.h> 
OLESTA TUS OleU nlockServer(hServer) 

function OleUnlockServer(Server: LHServer): TOleStatus; 

The OleUnlockServer function unlocks a server that was locked by the 
OleLockServer function. 

Parameters hServer Identifies the server to release from memory. This handle 
was retrieved by a call to the OleLockServer function. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_HANDLE 
OLE_WAIT _FOR_RELEASE 

Comments When the OleLockServer function is called more than once for a given 
server, the server's lock count is incremented. Each call to 
OleUnlockServer decrements the lock count. The server remains locked 
until the lock count is zero. 

If the OleUnlockServer function returns OLE_ WAIT _FOR_RELEASE, the 
application should call the OleQueryReleaseStatus function to determine 
whether the unlocking process has finished. In the call to 
OleQueryReleaseStatus, the application can cast the server handle to a 
long pointer to an object linking and embedding (OLE) object 
(LPOLEOBJECT): 

OleQueryReleaseStatus((LPOLEOBJECT) lhserver); 

When OleQueryReleaseStatus no longer returns OLE_BUSY, the server 
has been unlocked. 

See Also OleLockServer, OleQueryReleaseStatus 

410 Windows API Guide 



OpenDriver 

OleUpdate 3.1 

Syntax #include <ole.h> 
OLE STATUS OleUpdate(lpObject) 

function OleUpdate(Self: POleObject): TOleStatus; 

The OleUpdate function updates the specified object. This function 
updates the presentation of the object and ensures that the object is 
up-to-date with respect to any linked objects it contains. 

Parameters lpObject Points to the object to be updated. 

Return Value The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_BUSY 
OLE_ERROR_OBJECT 
OLE_ERROR_STATIC 
OLE_ WAIT_FOR_RELEASE 

See Also OleQueryOutOfDate 

OpenDriver 3.1 

Syntax HDRVR OpenDriver(lpDriverName, IpSectionName, IParam) 

function OpenDriv~r(DriverName, SectionName: PChar; IParam2: 
Longint): THandle; 

The Open Driver function performs necessary initialization operations 
such as setting members in installable-driver structures to their default values. 

Parameters lpDriverName 

lpSectionName 

lParam 

Points to a null-terminated string that specifies the 
name of an installable driver. 

Points to a null-terminated string that specifies the 
name of a section in the SYSTEM.lNI file. 

Specifies driver-specific information. 

Return Value The return value is a handle of the installable driver, if the function is 
successful. Otherwise it is NULL. 

Chapter 4, Functions 411 



PrintDlg 

Comments The string to which IpDriverNamepoints must be identical to the name of 
the installable driver as it appears in the SYSTEM.lNI file. 

If the name of the installable driver appears in the [driver] section of the 
SYSTEM.lNI file, the string pointed to by IpSectionName should be NULL. 
Otherwise this string should specify the name of the section in 
SYSTEM.lNI that contains the driver name. 

When an application opens a driver for the first time, Windows calls the 
DriverProc function with the DRV _LOAD, DRV _ENABLE, and 
DRV _OPEN messages. When subsequent instances of the driver are 
opened, only DRV _OPEN is sent. 

The value specified in the IParam parameter is passed to the IParam2 
parameter of the DriverProc function. 

See Also CloseDriver, DriverProc 

PrintDlg 3 I 1 

Syntax #inc1ude <commdlg.h> 
BOOL PrintDlgOppd) 

function PrintDlg(var PrintDlg: TPrintDlg): Bool; 

The PrintDlg function displays a Print dialog box or a Print Setup dialog 
box. The Print dialog box makes it possible for the user to specify the 
properties of a particular print job. The Print Setup dialog box makes it 
possible for the user to select additional job properties and configure the 
printer. 

Parameters Ippd Points to a PRINTDLG structure that contains information 
used to initialize the dialog box. When the PrintDlg 
function returns, this structure contains information about 
the user's selections. 

The PRINTDLG structure has the following form: 

#include <commdlg.h> 

typedef struct tagPD { /* pd */ 
DWORD lStructSize; 
HWND hwndOwner; 
HGLOBAL hDevMode; 
HGLOBAL hDevNames; 
HOC hDC; 
DWORD Flags; 

412 Windows API Guide 



PrintDlg 

UINT nFromPage; 
UINT nToPage; 
UINT nMinP age; 
UINT nMaxPage; 
UINT nCopies; 
HINSTANCE hInstance; 
LPARAM lCustData; 
UINT (CALLBACK* lpfnPrintHook) (HWND, UINT, WPARAM, LPARAM); 

UINT (CALLBACK* lpfnSetupHook) (HWND, UINT, WPARAM, LPARAM); 

LPCSTR lpPrintTemplateName; 
LPCSTR lpSetupTemplateName; 
HGLOBAL hPrintTemplate; 
HGLOBAL hSetupTemplate; 

PRINTDLG; 

Return Value The return value is nonzero if the function successfully configures the 
printer. The return value is zero if an error occurs, if the user chooses the 
Cancel button, or if the user chooses the Close command on the System 
menu to close the dialog box. (The return value is also zero if the user 
chooses the Setup button to display the Print Setup dialog box, chooses 
the OK button in the Print Setup dialog box, and then chooses the Cancel 
button in the Print dialog box.) 

Errors Use the CommDlgExtendedError function to retrieve the error value, 
which may be one of the following: 

Chapter 4, Functions 413 



PrintDlg 

414 

CDERR_FINDRESFAILURE 
CDERR_INITIALlZATION 
CDERR_LOADRESFAILURE 
CDERR_LOADSTRFAILURE 
CDERR_LOCKRESFAILURE 
CDERR_MEMALLOCFAILURE 
CDERR_MEMLOCKFAILURE 
CDERR_NOHINSTANCE 
CDERR_NOHOOK 
CDERR_NOTEMPLATE 
CDERR_STRUCTSIZE 

PDERR_ CREATEICFAILURE 
PDERR_DEFAULTDIFFERENT 
PDERR_DNDMMISMATCH 
PDERR_ GETDEVMODEFAIL 
PDERR_INITFAILURE 
PDERR_LOADDRVFAILURE 
PDERR_NODEFAULTPRN 
PDERR_NODEVICES 
PDERR_PARSEFAILURE 
PDERR_PRINTERNOTFOUND 
PDERR_RETDEFFAILURE 
PDERR_SETUPFAILURE 

Example The following example initializes the PRINTDLG structure, calls the 
PrintDlg function to display the Print dialog box, and prints a sample 
page of text if the return value is nonzero: 

PRINTDLG pd; 

/* Set all structure fields to zero. * / 

rnemset(&pd, 0, sizeof(PRINTDLG)); 

/*InitializethenecessaryPRINTDLGstructurefields. */ 

pd.1StructSize = sizeof(PRINTDLG); 
pd.hwndOwner = hwnd; 
pd.Flags = PD_RETURNDC; 

/* Print a test page if successful * / 

if (PrintDlg(&pd) != 0) { 
Escape (pd.hDC, STARTDOC, 8, "Test-Doc", NULL); 

/* Print text and rectangle */ 

TextOut(pd.hDC, 50, 50, "Common Dialog Test Page", 23); 
Rectangle (pd.hDC, 50, 90, 625, 105); 
Escape (pd.hDC, NEWFRAME, 0, NULL, NULL); 
Escape (pd.hDC, END DOC , 0, NULL, NULL); 
DeleteDC(pd.hDC); 
if (pd.hDevMode != NULL) 

GlobalFree(pd.hDevMode); 
if (pd.hDevNarnes != NULL) 

GlobalFree(pd.hDevNarnes); 

else 
ErrorHandler(); 

Windows API Guide 



QuerySendMessage 

QueryAbort 3.1 

Syntax BOOL Query Abort(hdc, reserved) 

function Query Abort(DC: HDC; Reserved: Integer): Bool; 

The Query Abort function calls the AbortProc callback function for a 
printing application and queries whether the printing should be 
terminated. 

Parameters hdc Identifies the device context. 

message Specifies a reserved value. It should be zero. 

Return Value The return value is TRUE if printing should continue or if there is no 
abort procedure. It is FALSE if the print job should be terminated. The 
return value is supplied by the AbortProc callback function. 

See Also AbortDoc, AbortProc, SetAbortProc 

QuerySendMessage 3.1 

Syntax BOOL QuerySendMessage(hreservedl, hreserved2, hreserved3,lpMessage) 

function QuerySendMessage(hl, h2, h3: THandle; lpmsg: PMsg): Bool; 

The QuerySendMessage function determines whether a message sent by 
SendMessage originated from within the current task. If the message is 
an intertask message, QuerySendMessage puts it into the specified MSG 
structure. 

Parameters hreservedl 

hreserved2 

hreserved3 

IpMessage 

Chapter 4, Functions 

Reserved; must be NULL. 

Reserved; must be NULL. 

Reserved; must be NULL. 

Specifies the MSG structure in which to place an intertask 
message. The MSG structure has the following form: 

typedef struct tagMSG 
HWND hwnd; 

UINT message; 
WPARAM wParam; 

LPARAM lParam; 

DWORD time; 

POINT pt; 
MSG; 

/* msg */ 

415 



RedrawWindow 

Return Value The return value is zero if the message originated within the current task. 
Otherwise, it is nonzero. 

Comments If the Windows debugger is entering soft mode, the application being 
debugged should reply to intertask messages by using the ReplyMessage 
function. 

The NULL parameters are reserved for future use. 

See Also Send Message, ReplyMessage 

RedrawWindow 3.1 

416 

Syntax BaaL RedrawWindow(hwnd,lprcUpdate, hrgnUpdate, fuRedraw) 

function RedrawWindow(Wnd: HWnd; UpdateRect: PRect; UpdateRgn: 
HRgn; Flags: Word): Bool; 

The RedrawWindow function updates the specified rectangle or region in 
the given window's client area. 

Parameters hwnd 

IprcUpdate 

hrgnUpdate 

fuRedraw 

Identifies the window to be redrawn. If this parameter is 
NULL, the desktop window is updated. 

Points to a RECT structure containing the coordinates of 
the update rectangle. This parameter is ignored if the 
hrgnUpdate parameter contains a valid region handle. The 
RECT structure has the following form: 

typedef struct tagRECT 
int left; 
int top; 
int right; 
int bottom; 

RECT; 

/* rc */ 

Identifies the update region. If both the hrgnUpdate and 
IprcUpdate parameters are NULL, the entire client area is 
added to the update region. 

Specifies one or more redraw flags. This parameter can be 
a combination of flags: 

Windows API Guide 



Chapter 4, Functions 

RedrawWindow 

The following flags are used to invalidate the window: 

Value 

RDW_ERASE 

RDW_FRAME 

RDW _INTERNALPAINT 

RDW _INVALIDATE 

Meaning 

Causes the window to receive a 
WM_ERASEBKGND message 
when the window is repainted. The 
RDW _INVALIDATE flag must also 
be specified; otherwise, 
RDW _ERASE has no effect. 
Causes any part of the non-client 
area of the window that intersects 
the update region to receive a 
WM_NCPAINT message. The 
RDW _INVALIDATE flag must also 
be specified; otherwise, 
RDW _FRAME has no effect. The 
WM_NCPAINT message is 
typically not sent during the 
execution of the RedrawWindow 
function unless either 
RDW_UPDATENOWor 
RDW _ERASENOW is specified. 
Causes a WM_PAINT message to 
be posted to the window regardless 
of whether the window contains an 
invalid region. 
Invalidate IprcUpdate or hrgnUpdate 
(only one may be non-NULL). If 
both are NULL, the entire window 
is invalidated. 

The following flags are used to validate the window: 

Value 

RDW _NOERASE 

RDW _NOFRAME 

Meaning 

Suppresses any pending 
WM_ERASEBKGND 
messages. 
Suppresses any pending 
WM_NCPAINT messages. 
This flag must be used with 
RDW _VALIDATE and is 
typically used with 
RDW _NOCHILDREN. This 
option should be used with 
care, as it could cause parts 
of a window from painting 
properly. 

417 



RedrawWindow 

418 

Value Meaning 

RDW _NOINTERNALPAINT Suppresses any pending 
internal WM_PAINT 
messages. This flag does not 
affect WM_PAINT messages 
resulting from invalid areas. 

RDW _VALIDATE Validates IprcUpdate or 
hrgnUpdate (only one may be 
non-NULL). If both are 
NULL, the entire window is 
validated. This flag does not 
affect internal WM_PAINT 
messages. 

The following flags control when repainting occurs. No 
painting is performed by the RedrawWindow function 
unless one of these bits is specified. 

Value 

RDW _ERASENOW 

RDW _UPDATENOW 

Meaning 

Causes the affected windows (as 
specified by the 
RDW _ALLCHILDREN and 
RDW _NOCHILDREN flags) to receive 
WM_NCPAINT and 
WM_ERASEBKGND messages, if 
necessary, before the function returns. 
WM_PAINT messages are deferred. 
Causes the affected windows (as 
specified by the 
RDW _ALLCHILDREN and 
RDW _NOCHILDREN flags) to receive 
WM_NCPAINT, WM_ERASEBKGND, 
and WM_PAINT messages, if 
necessary, before the function returns. 

By default, the windows affected by the RedrawWindow 
function depend on whether the specified window has the 
WS_CLIPCHILDREN style. The child windows of 
WS_CLIPCHILDREN windows are not affected; however, 
non-WS _ CLIPCHILDREN windows are recursively 
validated or invalidated until a WS_CLIPCHILDREN 
window is encountered. The following flags control which 
windows are affected by the RedrawWindow function: 

Windows API Guide 



RegCloseKey 

Value Meaning 

RDW _ALLCHILDREN Includes child windows, if any, in the 
repainting operation. 

RDW _NOCHILDREN Excludes child windows, if any, from 
the repainting operation. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments When the RedrawWindow function is used to invalidate part of the 
desktop window, the desktop window does not receive a WM_P AINT 
message. To repaint the desktop, an application should use the 
RDW _ERASE flag to generate a WM_ERASEBKGND message. 

See Also GetUpdateRect, GetUpdateRgn, InvalidateRect, InvalidateRgn, 
UpdateWindow 

RegCloseKey 3.1 

Syntax #include <shellapi.h> 
lONG RegCloseKey(hkey) 

function RegCloseKey(Key: HKey): Longint; 

The RegCloseKey function closes a key. Closing a key releases the key's 
handle. When all keys are closed, the registration database is updated. 

Parameters hkey Identifies the open key to close. 

Return Value The return value is ERROR_SUCCESS if the function is successful. 
Otherwise, it is an error value. 

Comments The RegCloseKey function should be called only if a key has been 
opened by either the RegOpenKey function or the RegCreateKey 
function. The handle for a given key should not be used after it has been 
closed, because it may no longer be valid. Key handles should not be left 
open any longer than necessary. 

Chapter 4, Functions 419 



RegCreateKey 

Example The following example uses the RegCreateKey function to create the 
handle of a protocol, uses the RegSetValue function to set up the subkeys 
of the protocol, and then calls RegCloseKey to save the information in the 
database: 

HKEY hkProtocol; 

if (RegCreateKey(HKEY_CLASSES_ROOT, /* root */ 
"NewAppDocurnent\\protocol\\StdFileEditing", /* protocol string */ 
&hkProtocol) != ERROR_SUCCESS) /* protocol key handle */ 

return FALSE; 

RegSetValue(hkProtocol, 
"server" , 
REG_SZ, 
"newapp.exe" , 
10) ; 

RegSetValue(hkProtocol, 
"verb\ \0", 
REG_SZ, 
"EDIT", 
4) ; 

RegCloseKey(hkProtocol); 

/* handle of protocol key 
/* name of subkey 
/* required 
/* command to activate server 
/* text string size 

/* handle of protocol key 
/* name of subkey 
/* required 
/* server should edit object 
/* text string size 

/* closes protocol key and subkeys 

See Also RegCreateKey, RegDeleteKey, RegOpenKey, RegSetValue 

*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 

*/ 

RegCreateKey 3.1 

420 

Syntax #include <shellapi.h> 
LONG RegCreateKey(hkey, IpszSubKey, IphkResult) 

function RegCreateKey(Key: HKey; SubKey: PChar; var Result: HKey): 
Longint; 

The RegCreateKey function creates the specified key. If the key already 
exists in the registration database, RegCreateKey opens it. 

Parameters hkey 

IpszSubKey 

IphkResult 

Identifies an open key (which can be 
HKEY_CLASSES_ROOT). The key opened or created by 
the RegCreateKey function is a subkey of the key 
identified by the hkey parameter. This value should not be 
NULL. 

Points to a null-terminated string specifying the subkey to 
open or create. 

Points to the handle of the key that is opened or created. 

Windows API Guide 



RegCreateKey 

Return Value The return value is ERROR_SUCCESS if the function is successful. 
Otherwise, it is an error value. 

Comments An application can create keys that are subordinate to the top level of the 
database by specifying HKEY_CLASSES_ROOT for the hKey parameter. 
An application can use the RegCreateKey function to create several keys 
at once. For example, an application could create a subkey four levels 
deep and the three preceding sub keys by specifying a string of the 
following form for the IpszSubKey parameter: 

subkeyl\subkey2\subkey3\subkey4 

Example The following example uses the RegCreateKey function to create the 
handle of a protocol, uses the RegSetValue function to set up the subkeys 
of the protocol, and then calls RegCloseKey to save the information in the 
database: 

HKEY hkProtocol; 

if (RegCreateKey(HKEY_CLASSES_ROOT, /* root */ 
"NewAppDocument\\protocol\\StdFileEditing", /* protocol string */ 
&hkProtocol) != ERROR_SUCCESS) /* protocol key handle */ 

return FALSE; 

RegSetValue(hkProtocol, 
"server" , 

"newapp. exe" , 
10) ; 

RegSetValue(hkProtocol, 
"verb\ \0", 
REG_SZ, 
"EDIT", 
4) ; 

RegCloseKey(hkProtocol); 

/* handle of protocol key 
/* name of subkey 
/* required 
/* command to activate server 
/* text string size 

/* handle of protocol key 
/* name of subkey 
/* required 
/* server should edit object 
/* text string size 

/* closes protocol key and subkeys 

See Also RegCloseKey, RegOpenKey, RegSetValue 

*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 

*/ 

Chapter 4, Functions 421 



RegDeleteKey 

RegDeleteKey 3.1 

Syntax #include <shellapLh> 
LONG RegDeleteKey(hkey, IpszSubKey) 

function RegDeleteKey(Key: HKey; SubKey: PChar): Longint; 

The RegDeleteKey function deletes the specified key. When a key is 
deleted, its value and all of its sub keys are deleted. 

Parameters hkey Identifies an open key (which can be 
HKEY_CLASSES_ROOT). The key deleted by the 
RegDeleteKey function is a subkey of this key. 

IpszSubKey Points to a null-terminated string specifying the subkey to 
delete. This value should not be NULL. 

Return Value The return value is ERROR_SUCCESS if the function is successful. 
Otherwise, it is an error value. 

If the error value is ERROR_ACCESS_DENIED, either the application 
does not have delete privileges for the specified key or another 
application has opened the specified key. 

Example The following example uses the RegQueryValue function to retrieve the 
name of an object handler and then calls the RegDeleteKey function to 
delete the key if its value is nwappobj.dll: 

char szBuff[80)i 
LONG Cbi 

HKEY hkStdFileEditingi 

if (RegOpenKey(HKEY CLASSES ROOT, 
"NewAppDoc~ent\\pr-;;tocol\\StdFileEditing", 
&hkStdFileEditing) == ERROR_SUCCESS) { 

cb = sizeof(szBuff)i 

if (RegQueryValue(hkStdFileEditing, 
"handler" , 
szBuff, 
&cb) == ERROR_SUCCESS 
&& lstrcmpi("nwappobj.dll", szBuff) == 0) 

RegDeleteKey (hkStdFileEditing, "handler") i 
RegCloseKey(hkStdFileEditing); 

See Also RegCloseKey 

422 Windows API Guide 



RegEnumKey 

RegEnumKey 3.1 

Syntax #include <shellapi.h> 
LONG RegEnumKey(hkey, iSubkey, IpszBuffer, cbBuffer) 

. function RegEnumKey(Key: HKey; index: Longint; buffer: PChar; cb: 
Longint): Longint; 

The RegEnumKey function enumerates the subkeys of a specified key. 

Parameters hkey Identifies an open key (which can be 
HKEY_CLASSES_ROOT) for which subkey information is 
retrieved. 

iSubkey 

IpszBuffer 

Specifies the index of the subkey to retrieve. This value 
should be zero for the first call to the RegEnumKey 
function. 

Points to a buffer that contains the name of the sub key 
when the function returns. This function copies only the 
name of the subkey, not the full key hierarchy, to the 
buffer. 

cbBuffer Specifies the size, in bytes, of the buffer pointed to by the 
IpszBuffer parameter. 

Return Value The return value is ERROR_SUCCESS if the function is successful. 
Otherwise, it is an error value. 

Comments The first parameter of the RegEnumKey function must specify an open 
key. Applications typically precede the call to the RegEnumKey function 
with a call to the RegOpenKey function and follow it with a call to the 
RegCloseKey function. Calling RegOpenKey and RegCloseKey is not 
necessary when the first parameter is HKEY_CLASSES_ROOT, because 
this key is always open and available; however, calling RegOpenKey and 
RegCloseKey in this case is a time optimization. While an application is 
using the RegEnumKey function, it should not make calls to any 
registration functions that might change the key being queried. 

To enumerate subkeys, an application should initially set the iSubkey 
parameter to zero and then increment it on successive calls. 

Chapter 4, Functions 423 



RegOpenKey 

Example The following example uses the RegEnumKey function to put the values 
associated with top-level keys into a list box: 

HKEY hkRooti 
char szBuff(80), szValue(80)i 
static DWORD dwlndexi 
LONG Cbi 

if (RegOpenKey(HKEY_CLASSES_ROOT, NULL, &hkRoot) == ERROR_SUCCESS) 
for (dwlndex = OJ RegEnumKey(hkRoot, dwlndex, szBuff, 

sizeof(szBuff)) == ERROR_SUCCESSi ++dwlndex) { 
if (*szBuff == ' .') 

continuei 
cb = sizeof(szValue)j 
if (RegQueryValue(hkRoot, (LPSTR) szBuff, szValue, 

&cb) == ERROR_SUCCESS) 
SendDlgltemMessage(hDlg, ID_ENUMLIST, LB_ADDSTRING, 0, 

(LONG) (LPSTR) szValue)i 

RegCloseKey(hkRoot)i 

See Also RegQueryValue 

RegOpenKey 3.1 

Syntax #include <shellapi.h> 
LONG RegOpenKey(hkey, IpszSubKey, IphkResult) 

function RegOpenKey(Key: HKey; SubKey: PChar; var Result: HKey): 
Longint; 

The RegOpenKey function opens the specified key. 

Parameters hkey 

lpszSubKey 

lphkResult 

Identifies an open key (which can be 
HKEY_CLASSES_ROOT). The key opened by the 
RegOpenKey function is a sub key of the key identified by 
this parameter. This value should not be NULL. 

Points to a null-terminated string specifying the name of 
the subkey to open. 

Points to the handle of the key that is opened. 

Return Value The return value is ERROR_SUCCESS if the function is successful. 
Otherwise, it is an error value. 

Comments Unlike the RegCreateKey function, the RegOpenKey function does not 
create the specified key if the key does not exist in the database. 

424 Windows API Guide 



RegQueryValue 

Example The following example uses the RegOpenKey function to retrieve the 
handle of the StdFileEditing sub key, calls the RegQueryValue function to 
retrieve the name of an object handler, and then calls the RegDeleteKey 
function to delete the key if its value is nwappobj.dll: 

char szBuff[80]i 
LONG Cbi 

HKEY hkStdFileEditingi 

if (RegOpenKey(HKEY CLASSES ROOT, 
"NewAppDoc~ent\\pr;-tocol\\StdFileEditing", 
&hkStdFileEditing) == ERROR_SUCCESS) { 

cb = sizeof(szBuff)i 
if (RegQueryValue(hkStdFileEditing, 

"handler", 
szBuff, 
&cb) == ERROR_SUCCESS 
&& lstrc:rrpi("nwappobj.dll", szBuff) == 0) 

RegDeleteKey (hkStdFileEditing, "handler") i 
RegCloseKey(hkStdFileEditing)i 

See Also RegCreateKey 

RegQueryValue 3.1 

Syntax #include <shellapi.h> 
LONG RegQueryValue(hkey, IpszSubKey, IpszValue, lpcb) 

function RegQueryValue(Key: HKey; SubKey: PChar; Value: PChar; var 
cb: Longint): Longint; 

The RegQueryValue function retrieves the text string associated with a 
specified key. 

Parameters hkey 

IpszSubKey 

IpszValue 

Chapter 4, Functions 

Identifies a currently open key (which can be 
HKEY_CLASSES_ROOT). This value should not be NULL. 

Points to a null-terminated string specifying the name of 
the subkey of the hkey parameter for which a text string is 
retrieved. If this parameter is NULL or points to an empty 
string, the function retrieves the value of the hkey 
parameter. 

Points to a buffer that contains the text string when the 
function returns. 

425 



RegSetValue 

lpcb Points to a variable specifying the size, in bytes, of the 
buffer pointed to by the lpszValueparameter. When the 
function returns, this variable contains the size of the 
string copied to lpszValue, including the null-terminating 
character. 

Return Value The return value is ERROR_SUCCESS if the function is successful. 
Otherwise, it is an error value. 

Example The following example uses the RegOpenKey function to retrieve the 
handle of the StdFileEditing sub key, calls the RegQueryValue function to 
retrieve the name of an object handler and then calls the RegDeleteKey 
function to delete the key if its value is nwappobj.dll: 

char szBuff[80]; 
LONG cb; 
HKEY hkStdFileEditing; 

if (RegOpenKey(HKEY CLASSES ROOT, 
"NewAppDoc~ent\\pr~tocol\\StdFileEditing", 
&hkStdFileEditing) == ERROR_SUCCESS) { 

cb = sizeof(szBuff); 

if (RegQueryValue(hkStdFileEditing, 
"handler" , 
szBuff, 
&cb) == ERRO~SUCCESS 

&& lstrcrnpi ("nwappobj .dll", szBuff) == 0) 
RegDeleteKey(hkStdFileEditing, "handler"); 

RegCloseKey(hkStdFileEditing); 

See Also RegEnumKey 

RegSetValue 3.1 

426 

Syntax #include <shellapi.h> 
LONG RegSetValue{hkey, IpszSubKey, fdwType, IpszValue, cb) 

function RegSetValue{Key: HKey; SubKey: PChar; ValType: Longint; 
Value: PChar; cb: Longint): Longint; 

The RegSetValue function associates a text string with a specified key. 

Parameters hkey Identifies a currently open key (which can be 
HKEY_CLASSES_ROOT). This value should not be NULL. 

Windows API Guide 



IpszSubKey 

ReplaceText 

Points to a null-terminated string specifying the subkey of 
the hkey parameter with which a text string is associated. If 
this parameter is NULL or points to an empty string, the 
function sets the value of the hkey parameter. 

fdwType Specifies the string type. For Windows version 3.1, this 
value must be REG_SZ. 

IpszValue 

cb 

Points to a null-terminated string specifying the text string 
to set for the given key. 

Specifies the size, in bytes, of the string pointed to by the 
IpszValue parameter. For Windows version 3.1, this value is 
ignored. 

Return Value The return value is ERROR_SUCCESS if the function is successful. 
Otherwise, it is an error value. 

Comments If the key specified by the IpszSubKey parameter does not exist, the 
RegSetValue function creates it. 

Example The following example uses the RegSetValue function to register a 
filename extension and its associated class name: 

RegSetValue(HKEY_CLASSES_ROOT, /* root */ 
".XXX", /* string for filename extension */ 
REG_SZ, /* required */ 
"NewAppDocurnent", /* class name for extension * / 
14); /* size of text string */ 

RegSetValue(HKEY_CLASSES_ROOT, /* root */ 
"NewAppDocurnent", /* string for class-definition key */ 
REG_SZ, /* required */ 
"New Application", /* text description of class * / 
15); /* size of text string */ 

See Also RegCreateKey, RegQueryValue 

ReploceText 3.1 

Syntax #include <commdlg.h> 
HWND ReplaceTextOpfr) 

Chapter 4, Functions 

function ReplaceText(var FindReplace: TFindReplace): HWnd; 

The ReplaceText function creates a system-defined modeless dialog box 
that makes it possible for the user to find and replace text within a 
document. The application must perform the actual find and replace 
operations. 

427 



ReplaceText 

428 

Parameters lplr Points to a FINDREPLACE structure that contains 
information used to initialize the dialog box. When the 
user makes a selection in the dialog box, the system fills 
this structure with information about the user's selection 
and then sends a message to the application. This message 
contains a pointer to the FINDREPLACE structure. 

The FINDREPLACE structure has the following form: 

#include <commdlg.h> 

typede£ struct tagFINDREPLACE 
DWORD lStructSizei 
HWND hwndOwneri 
HINSTANCE hInstancei 
DWORD Flagsi 
LPSTR lpstrFindWhati 
LPSTR 
UINT 
UINT 
LPARAM 

lpstrReplaceWith; 
wFindWhatLen; 
wReplaceWithLen; 
lCustData; 

/* fr */ 

UINT (CALLBACK* IpfnHook) (HWND, UINT, WPARAM, LPARAM); 

LPCSTR lpTernplateNarne; 
FINDREPLACEi 

Return Value The return value is the window handle of the dialog box, or it is NULL if 
an error occurs. An application can use this handle to communicate with 
or to close the dialog box. 

Errors Use the CommDlgExtendedError function to retrieve the error value, 
which may be one of the following: 

CDERR_FINDRESFAILURE 
CDERR_INITIALIZATION 
CDERR_LOADRESFAILURE 
CDERR_LOADSTRFAILURE 
CDERR_LOCKRESFAILURE 
CDERR_MEMALLOCFAILURE 
CDERR_MEMLOCKFAILURE 
CDERR_NOHINSTANCE 
CDERR_NOHOOK 
CDERR_NOTEMPLATE 
CDERR_STRUCTSIZE 
FRERR_BUFFERLENGTHZERO 

Windows API Guide 



ReplaceText 

Comments The dialog box procedure for the ReplaceText function passes user 
requests to the application through special messages. The IParam 
parameter of each of these messages contains a pointer to a 
FINDREPLACE structure. The procedure sends the messages to the 
window identified by the hwndOwner member of the FINDREPLACE 
structure. An application can register the identifier for these messages by 
specifying the commdlg_FindReplace string in a call to the 
RegisterWindowMessage function. 

For the TAB key to function correctly, any application that calls the 
ReplaceText function must also call the IsDialogMessage function in its 
main message loop. (The IsDialogMessage function returns a value that 
indicates whether messages are intended for the Replace dialog box.) 

Example This example initializes a FINDREPLACE structure and calls the 
ReplaceText function to display the Replace dialog box: 

FINDREPLACE fr; 
char szFindWhat[256] = ""; /* string to find */ 
char szReplaceWith[256] = ""; /* string to replace */ 

/* Set all structure fields to zero. * / 

memset(&fr, 0, sizeof(FINDREPLACE)); 

fr.1StructSize = sizeof(FINDREPLACE); 
fr.hwndOwner = hwnd; 
fr.lpstrFindWhat = szFindWhat; 
fr.wFindWhatLen = sizeof(szFindWhat); 
fr.lpstrReplaceWith = szReplaceWith; 
fr.wReplaceWithLen = sizeof(szReplaceWith); 

hDlg = ReplaceText(&fr); 

In addition to initializing the members of the FINDREPLACE structure 
and calling the ReplaceText function, an application must register the 
special FINDMSGSTRING message and process messages from the dialog 
box. Refer to the description of the FindText function for an example that 
shows how an application registers and processes a message. 

See Also FindText, IsDialogMessage, RegisterWindowMessage 

Chapter 4, Functions 429 



ResetDC 

ResetDC 3.1 

430 

Syntax #inc1 ude <print.h> 
HDC ResetDC(hdc, lpdm) 

function ResetDC(aHdc: HDC; DevMode: PDevMode): HDC; 

The ResetDC function updates the given device context, based on the 
information in the specified DEVMODE structure. 

Parameters hdc 

Ipdm 

Identifies the device context to be updated. 

Points to a DEVMODE structure containing information 
about the new device context. The DEVMODE structure has 
the following form: 

#include <print.h> 

typedef struct tagDEVMODE /* dm */ 
char dmDeviceName[CCHDEVICENAME); 
UINT dmSpecVersion; 
UINT dmDriverVersion; 
UINT dmSize; 
UINT dmDriverExtra; 
DWORD drnFields; 
int dmOrientation; 
int dmPaperSize; 
int dmPaperLength; 
int dmPaperWidth; 
int dmScale; 
int dmCopies; 
int dmDefaultSource; 
int dmPrintQuality; 
int dmColor; 
int dmDuplex; 
int dmYResolution; 
int dmTTOption; 

DEVMODE; 

Return Value The return value is the handle of the original device context if the function 
is successful. Otherwise, it is NULL. 

Comments An application will typically use the ResetDC function when a window 
receives a WM_DEVMODECHANGE message. ResetDC can also be used 
to change the paper orientation or paper bins while printing a document. 

The ResetDC function cannot be used to change the driver name, device 
name or the output port. When the user changes the port connection or 

Windows API Guide 



ScaleViewportExtEx 

device name, the application must delete the original device context and 
create a new device context with the new information. 

Before calling ResetDC, the application must ensure that all objects (other 
than stock objects) that had been selected into the device context have 
been selected out. 

See Also DeviceCapabilities, Escape, ExtDeviceMode 

ScaleViewportExtEx 3.1 

Syntax BooL ScaleViewportExtEx(hdc, nXnum, nXdenom, nYnum, nYdenom, 
lpSize) 

function ScaleViewportExtEx(DC: HDC; Xnum, Xdenom, Ynum, 
Y denorn: Integer; Size: PSize): Bool; 

The ScaleViewportExtEx function modifies the viewport extents relative 
to the current values. The formulas are written as follows: 

xNewVE = (xOldVE * Xnurn) / Xdenorn 
yNewVE = (yOldVE * Ynurn) / Ydenorn 

The new extent is calculated by multiplying the current extents by the 
given numerator and then dividing by the given denominator. 

Parameters hdc Identifies the device context. 

nXnum 

nXdenom 

nYnum 

nYdenom 

IpSize 

Specifies the amount by which to multiply the current 
x-extent. 

Specifies the amount by which to divide the current 
x-extent. 

Specifies the amount by which to multiply the current 
y-extent. 

Specifies the amount by which to divide the current 
y-extent. 

Points to a SIZE structure. The previous viewport extents, 
in device units, are placed in this structure. If IpSize is 
NULL, nothing is returned. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Chapter 4, Functions 431 



ScoleWindowExtEx 

ScaleWindowExtEx 3.1 

Syntax BaaL ScaleWindowExtEx(hdc, nXnum, nXdenom, nYnum, nYdenom, 
IpSize) 

function ScaleWindowExtEx(DC: HDC; Xnum, Xdenom, Ynum, Ydenom: 
Integer; Size: PSize): Bool; 

The ScaleWindowExtEx function modifies the window extents relative to 
the current values. The formulas are written as follows: 

xNewWE = (xOldWE * Xnum) I Xdenom 
yNewWE = (yOldWE * Ynum) I Ydenom 

The new extent is calculated by multiplying the current extents by the 
given numerator and then dividing by the given denominator. 

Parameters hdc 

nXnum 

nXdenom 

nYnum 

nYdenom 

IpSize 

Identifies the device context. 

Specifies the amount by which to multiply the current 
x-extent. 

Specifies the amount by which to divide the current 
x-extent. 

Specifies the amount by which to multiply the current 
y-extent. 

Specifies the amount by which to divide the current 
y-extent. 

Points to a SIZE structure. The previous window extents, 
in logical units, are placed in this structure. If IpSize is 
NULL, nothing is returned. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero. 

ScrollWindowEx 3.1 

432 

Syntax int ScrollWindowEx(hwnd, dx, dy, IprcScroll, IprcClip, hrgnUpdate, 
IprcUpdate, fuScroll) 

function ScrollWindowEx(Wnd: HWnd; dx, dy: Integer; Scroll, Clip: 
PRect; UpdateRgn: HRgn; UpdateRect: PRect; Flags: Word): Integer; 

The ScroliWindowEx function scrolls the contents of a window's client 
area. This function is similar to the ScroliWindow function, with some 
additional features. 

Windows API Guide 



Parameters hwnd 

dx 

dy 

IprcScroll 

IprcClip 

hrgnUpdate 

IprcUpdate 

fuScroll 

Chapter 4, Functions 

ScroliWindowEx 

Identifies the window to be scrolled. 

Specifies the amount, in device units, of horizontal 
scrolling. This parameter must be a negative value to scroll 
to the left. 

Specifies the amount, in device units, of vertical scrolling. 
This parameter must be a negative value to scroll up. 

Points to a RECT structure that specifies the portion of the 
client area to be scrolled. If this parameter is NULL, the 
entire client area is scrolled. The RECT structure has the 
following form: 

typedef struct tagRECT 
int left; 
int top; 
int right; 
int bottom; 

RECT; 

/* rc */ 

Points to a RECT structure that specifies the clipping 
rectangle to scroll. This structure takes precedence over the 
rectangle pointed to by the IprcScroll parameter. Only bits 
inside this rectangle are scrolled. Bits outside this rectangle 
are not affected even if they are in the IprcScroll rectangle. 
If this parameter is NULL, the entire client area is scrolled. 

Identifies the region that is modified to hold the region 
invalidated by scrolling. This parameter may be NULL. 

Points to a RECT structure that will receive the boundaries 
of the rectangle invalidated by scrolling. This parameter 
may be NULL. 

Specifies flags that control scrolling. This parameter can be 
one of the following values: 

Value Meaning 

When specified with 
S\y_INVALIDATE, erases the newly 
invalidated region by sending a 
WM_ERASEBKGND message to the 
window. 
Invalidates the region identified by 
the hrgnUpdate parameter after 
scrolling. 

433 



ScroliWindowEx 

Value Meaning 

SW _SCROLLCHILDREN Scrolls all child windows that 
intersect the rectangle pointed to by 
IprcScroll by the number of pixels 
specified in the dx and dy 
parameters. Windows sends a 
WM_MOVE message to all child 
windows that intersect IprcScroll, 
even if they do not move. The caret 
is repositioned when a child window 
is scrolled and the cursor rectangle 
intersects the scroll rectangle. 

Return Value The return value is SIMPLEREGION (rectangular invalidated region), 
COMPLEXREGION (nonrectangular invalidated region; overlapping 
rectangles), or NULLREGION (no invalidated region), if the function is 
successful. Otherwise, the return value is ERROR. 

Comments If SW _INV ALIOATE and SW _ERASE are not specified, scrollWindowEx 
does not invalidate the area that is scrolled away from. If either of these 
flags is set, scroliWindowEx invalidates this area. The area is not updated 
until the application calls the UpdateWindow function, calls the 
RedrawWindow function (specifying ROW _ UPOATENOW or 
ROW _ERASENOW), or retrieves the WM_PAINT message from the 
application queue. 

If the window has the WS_CLIPCHILOREN style, the returned areas 
specified by hrgnUpdate and IprcUpdate represent the total area of the 
scrolled window that must be updated, including any areas in child 
windows that need qupdating. 

If the SW _SCROLLCHILOREN flag is specified, Windows will not 
properly update the screen if part of a child window is scrolled. The part 
of the scrolled child window that lies outside the source rectangle will not 
be erased and will not be redrawn properly in its new destination. Use the 
DeferWindowPos function to move child windows that do not lie 
completely within the IprcScroll rectangle. 

All input and output coordinates (for IprcScroll, IprcClip,lprcUpdate, and 
hrgnUpdate) are assumed to be in client coordinates, regardless of whether 
the window has the CS_OWNOC or CS_CLASSOC class style. Use the 
LPtoDP and DPtoLP functions to convert to and from logical coordinates, 
if necessary. 

See Also RedrawWindow, Scroll DC, scrollWindow, UpdateWindow 

434 Windows API Guide 



SetAbortProc 

SendDriverMessage 3.1 

Syntax LRESULT SendDriverMessage(hdrvr, msg, IParaml,IParam2) 

function SendDriverMessage(Driver: THandle; message: Word; IParaml, 
IParam2: Longint): Longint; 

The Send DriverMessage function sends the specified message to the 
given installable driver. 

Parameters hdrvr Identifies the installable driver. 

msg Specifies the message that the driver must process. The 
following messages should never be sent by an application 
directly to the driver; they are sent only by the system: 

IParaml 

IParam2 

DRV_CLOSE 
DRV _DISABLE 
DRV_ENABLE 
DRV _EXIT APPLICATION 
DRV _EXITSESSION 
DRV_FREE 
DRV_LOAD 
DRV_OPEN 

Specifies 32 bits of additional message-dependent 
information. 

Specifies 32 bits of additional message-dependent 
information. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

See Also DefDriverProc 

SetAbortProc 3.1 

Syntax int SetAbortProc(hdc, abrtprc) 

function SetAbortProc(DC: HDC; AbortProc: TAbortProc): Integer; 

The SetAbortProc function sets the application-defined procedure that 
allows a print job to be canceled during spooling. This function replaces 
the SET ABORTPROC printer escape for Windows version 3.1. 

Chapter 4, Functions 435 



SetBitmapDimensionEx 

Parameters hdc 

abrtprc 

Identifies the device context for the print job. 

Specifies the procedure-instance address of the callback 
function. The address must have been created by using the 
MakeProclnstance function. For more information about 
the callback function, see the description of the AbortProc 
callback function. 

Return Value The return value is greater than zero if the function is successful. 
Otherwise, it is less than zero. 

See Also AbortDoc, AbortProc, Escape 

SetBitmapDimensionEx 3.' 

436 

Syntax BOOL SetBitmapOimensionEx(hbm, nX, nY, IpSize) 

function SetBitmapOimensionEx(BM: HBitmap; nX, n Y: Integer; Size: 
PSize): Bool; 

The SetBitmapDimensionEx function assigns the preferred size to a 
bitmap, in O.l-millimeter units. The graphics device interface (GOI) does 
not use these values, except to return them when an application calls the 
GetBitmapDimensionEx function. 

Parameters hbm 

nX 

nY 

IpSize 

Identifies the bitmap. 

Specifies the width of the bitmap, in O.l-millimeter units. 

Specifies the height of the bitmap, in O.l-millimeter units. 

Points to a SIZE structure. The previous bitmap 
dimensions are placed in this structure. If IpSize is NULL, 
nothing is returned. The SIZE structure has the following 
form: 

typedef struet tagSIZE 
int ex; 
int ey; 

SIZE; 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Windows API Guide 



SetBoundsRect 

SetBoundsRect 3.1 

Syntax UINT SetBoundsRect(hdc,lprcBounds, flags) 

function SetBoundsRect(DC: HDC; var Bounds: TRect; Flags: Word): 
Word; 

The SetBoundsRect function controls the accumulation of 
bounding-rectangle information for the specified device context. 

Parameters hdc 

IprcBounds 

flags 

Identifies the device context to accumulate bounding 
rectangles for. 

Points to a RECT structure that is used to set the bounding 
rectangle. Rectangle dimensions are given in logical 
coordinates. This parameter can be NULL. The RECT 
structure has the following form: 

typedef struct tagRECT 

int left; 
/* rc */ 

int top; 
int right; 
int bottom; 

RECT; 

Specifies how the new rectangle will be combined with the 
accumulated rectangle. This parameter may be a 
combination of the following values: 

Value 

DCB_ACCUMULATE 

DCB_DISABLE 
DCB_ENABLE 

DCB_RESET 
DCB_SET 

Meaning 

Add the rectangle specified by the 
IprcBounds parameter to the bounding 
rectangle (using a rectangle union 
operation). 
Turn off bounds accumulation. 
Turn on bounds accumulation. (The 
default setting for bounds 
accumulation is disabled.) 
Set the bounding rectangle empty. 
Set the bounding rectangle to the 
coordinates specified by the 
IprcBounds parameter. 

Return Value The return value is the current state of the bounding rectangle, if the 
function is successful. Like the flags parameter, the return value can be a 
combination of DCB _ values. 

Chapter 4, Functions 437 



SetMetoFileBitsBeHer 

Comments Windows can maintain a bounding rectangle for all drawing operations. 
This rectangle can be queried and reset by the application. The drawing 
bounds are useful for invalidating bitmap caches. 

To ensure that a rectangle is empty, an application should check the 
DCB_ACCUMULATE and DCB_RESET flags in the return value. If the 
DCB _RESET flag is set and the DCB _ACCUMULATE flag is not set, the 
bounding rectangle is empty. 

See Also GetBoundsRect 

SetMetaFileBitsBetter 3.' 
Syntax HGLOBAL SetMetaFileBitsBetter(hmf) 

function SetMetaFileBitsBetter(mf: THandle): THandle; 

The SetMetaFileBitsBetter function creates a memory metafile from the 
data in the specified global-memory object. 

Parameters hmf Identifies the global-memory object that contains the 
metafile data. The object must have been created by a 
previous call to the GetMetaFileBits function. 

Return Value The return value is the handle of a memory metafile, if the function is 
successful. Otherwise, the return value is NULL. 

Comments The global-memory handle returned by SetMetaFileBitsBetter is owned 
by GDI, not by the application. This enables applications that use 
metafiles to support object linking and embedding (OLE) to use metafiles 
that persist beyond the termination of the application. An OLE 
application should always use SetMetaFileBitsBetter instead of the 
SetMetaFileBits function. 

After the SetMetaFileBitsBetter function returns, the metafile handle 
returned by the function should be used to refer to the metafile, instead of 
the handle identified by the hmf parameter. 

See Also GetMetaFileBits, SetMetaFileBits 

438 Windows API Guide 



SetViewportExtEx 

SetSelectorBase 

Syntax UINT SetSelectorBase(selector, dwBase) 

function SetSelectorBase(Selector: Word; Base: Longint): Word; 

The SetSelectorBase function sets the base and limit of a selector. 

Parameters selector 

dwBase 

Specifies the new selector value. 

Specifies the new base value. 

Return Value The return value is the new selector value, if the function is successful. 

See Also GetSelectorBase, GetSelectorLimit, SetSelectorLimit 

SetSelectorLimit 

Syntax UINT SetSelectorLimit(selector, dwBase) 

function SetSelectorLimit(Selector: Word; Base: Longint): Word; 

The SetSelectorLimit function sets the limit of a selector. 

Parameters selector Specifies the new selector value. 

dwBase Specifies the current base value for selector. 

Return Value The return value is always zero. 

See Also GetSelectorBase, GetSelectorLimit, SetSelectorBase 

SetViewportExtEx 

Syntax BOOL SetViewportExtEx(hdc, nX, nY,lpSize) 

3.1 

3.1 

3.1 

function SetViewportExtEx(DC: HDC; nX, n Y: Integer; Size: PSize): Bool; 

The SetViewportExtEx function sets the x- and y-extents of the viewport 
of the specified device context. The viewport, along with the window, 
defines how points are mapped from logical coordinates to device 
coordinates. 

Parameters hdc Identifies the device context. 

Chapter 4, Functions 439 



SefViewportOrgEx 

nX 

nY 

IpSize 

Specifies the x-extent of the viewport, in device units. 

Specifies the y-extent of the viewport, in device units. 

Points to a SIZE structure. The previous extents of the 
viewport, in device units, are placed in this structure. If 
IpSize is NULL, nothing is returned. The SIZE structure has 
the following form: 

typedef struet tagSIZE 
int ex; 
int ey; 

SIZE; 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments When the following mapping modes are set, calls to the SetWindowExtEx 
and SetViewportExtEx functions are ignored: 

MM_HIENGLISH 
MM_HIMETRIC 
MM_LOENGLISH 
MM_LOMETRIC 
MM_TEXT 
MM_TWIPS 

When MM_ISOTROPIC mode is set, an application must call the 
SetWindowExtEx function before it calls SetViewportExtEx. 

See Also SetWindowExtEx 

SetViewportOrgEx 3.1 

440 

Syntax BOOL SetViewportOrgEx(hdc, nX, nY,lpPoint) 

function SetViewportOrgEx(DC: HDC; nX, n Y: Integer; Point: PPoint): 
Bool; 

The SetViewportOrgEx function sets the viewport origin of the specified 
device context. The viewport, along with the window, defines how points 
are mapped from logical coordinates to device coordinates. 

Parameters hdc 

nX 

Identifies the device context. 

Specifies the x-coordinate, in device units, of the origin of 
the viewport. 

Windows API Guide 



nY 

IpPoint 

SetViewporfOrgEx 

Specifies the y-coordinate, in device units, of the origin of 
the viewport. 

Points to a POINT structure. The previous origin of the 
viewport, in device coordinates, is placed in this structure. 
If IpPoint is NULL, nothing is returned. The POINT 
structure has the following form: 

typedef struct tagPOINT 
int x; 
int y; 

POINT; 

/* pt */ 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

See Also SetWindowOrgEx 

Chapter 4, Functions 441 



SefWinDebuglnfo 

SetWinDebuglnfo 

Syntax BOOL SetWinDebugInfoOpwd) 

function SetWinDebugInfo(DebugInfo: PWinDebugInfo): Bool; 

The SetWinDebuglnfo function sets current system-debugging 
information for the debugging version of the Windows 3.1 operating 
system. 

Parameters Ipwdi Points to a WINDEBUGINFO structure that specifies the 
type of debugging information to be set. The 
WINDEBUGINFO structure has the following form: 

typedef struct tagWINDEBUGINFO 
UINT flags; 
DWORD dwOptions; 
DWORD dwFilter; 
char achAllocModule[8]; 
DWORD dwAllocBreak; 
DWORD dwAllocCount; 

WINDEBUG INFO; 

3.1 

Return Value The return value is nonzero if the function is successful. It is zero if the 
pointer specified in the Ipwdi parameter is invalid, the flags member of 
the WINDEBUGINFO structure is invalid, or the function is not called in 
the debugging version of Windows 3.1. 

Comments The flags member of the WINDEBUGINFO structure specifies which 
debugging information should be set. Applications need initialize only 
those members of the WINDEBUGINFO structure that correspond to the 
flags set in the flags member. 

Changes to debugging information made by calling SetWinDebuglnfo 
apply only until you exit the system or restart your computer. 

See Also GetWinDebuglnfo 

442 Windows API Guide 



SetWindowExtEx 

SetWindowExtEx 3.1 

Syntax BOOL SetWindowExtEx(hdc, nX, nY, lpSize) 

function SetWindowExtEx(DC: HDC; nX, n Y: Integer; Size: PSize): Bool; 

The SetWindowExtEx function sets the x- and y-extents of the window 
associated with the specified device context. The window, along with the 
viewport, defines how points are mapped from logical coordinates to 
device coordinates. 

Parameters hdc Identifies the device context. 

nX Specifies the x-extent, in logical units, of the window. 

nY Specifies the y-extent, in logical units, of the window. 

IpSize Points to a SIZE structure. The previous extents of the 
window (in logical units) are placed in this structure. If 
IpSize is NULL nothing is returned. The SIZE structure has 
the following form: 

typedef struet tagSIZE 
int eXi 

int eYi 

} SIZEi 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments When the following mapping modes are set, calls to the SetWindowExtEx 
and SetViewportExt functions are ignored: 

MM_HIENGLISH 
MM_HIMETRIC 
MM_LOENGLISH 

MM_LOMETRIC 
MM_TEXT 
MM_TWIPS 

When MM_ISOTROPIC mode is set, an application must call the 
SetWindowExtEx function before calling SetViewportExt. 

See Also SetViewportExtEx 

Chapter 4, Functions 443 



SefWindowOrgEx 

SetWindowOrgEx 3.1 

Syntax BOOL SetWindowOrgEx(hdc, nX, nY, IpPoint) 

function SetWindowOrgEx(OC: HOC; nX, n Y: Integer; Point: PPoint): 
Bool; 

The SetWindowOrgEx function sets the window origin of the specified 
device context. The window, along with the viewport, defines how points 
are mapped from logical coordinates to device coordinates. 

Parameters hdc 

nX 

nY 

lpPoint 

Identifies the device context. 

Specifies the logical x-coordinate of the new origin of the 
window. 

Specifies the logical y-coordinate of the new origin of the 
window. 

Points to a POINT structure. The previous origin of the 
window is placed in this structure. If lpPoint is NULL 
nothing is returned. The POINT structure has the following 
form: 

typedef struct tagPOINT { /* pt */ 
int x; 
int y; 

} POINT; 

Return Value The return value is nonzero,if the function is successful. Otherwise, it is 
zero. 

See Also SetViewportOrgEx 

SetWindowPlacement 3.1 

444 

Syntax BOOL SetWindowPlacement(hwnd, IpwndpD 

function SetWindowPlacement(Wnd: HWnd; Placement: 
PWindowPlacement): Bool; 

The SetWindowPlacement function sets the show state and the normal 
(restored), minimized, and maximized positions for a window. 

Parameters hwnd Identifies the window. 

Windows API Guide 



lpwndpl 

SetWindowsHookEx 

Points to a WINDOWPLACEMENT structure that specifies 
the new show state and positions. The 
WINDOWPLACEMENT structure has the following form: 

typedef struct tagWINDOWPLACEMENT 
UINT length; 
UINT flags; 
UINT showCmd; 
POINT ptMinPosition; 
POINT ptMaxPosition; 
RECT rcNormalPosition; 

WINDOWPLACEMENT; 

/* wndpl */ 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

See Also GetWindowPlacement 

SetWindowsHookEx 3.1 

Syntax HHOOK SetWindowsHookEx(idHook, hkprc, hinst, htask) 

function SetWindowsHookEx(HookId: Integer; Hook: THookProc; 
Module, Task: THandle): HHook; 

The SetWindowsHookEx function installs an application-defined hook 
function into a hook chain. This function is an extended version of the 
SetWindowsHook function. 

Parameters idHook 

Chapter 4, Functions 

Specifies the type of hook to be installed. This parameter 
can be one of the following values: 

Value 

WH_ CALLWNDPROC 

Meaning 

Installs a window-procedure 
filter. For more information, see 
the description of the 
CallWndProc callback function. 
Installs a computer-based training 
(CBT) filter. For more 
information, see the description 
of the CBTProc callback function. 
Installs a debugging filter. For 
more information, see the 
description of the DebugProc 
callback function. 

445 



SetWindowsHookEx 

hkprc 

hinst 

htask 

446 

Value Meaning 

WH_ GETMESSAGE Installs a message filter. For more 
information, see the description 
of the GetMsgProc callback 
function. 

WH_HARDWARE Installs a nonstandard 
hardware-message filter. For 
more information, see the 
description of the HardwareProc 
callback function. 

WH-10URNALPLAYBACK Installs a joumaling playback 
filter. For more information, see 
the description of the 
JournalPlaybackProc callback 
function. 

WH-10URNALRECORD Installs a joumaling record filter. 
For more information, see the 
description of the 
JournalRecordProc callback 
function. 

WH_KEYBOARD Installs a keyboard filter. For 
more information, see the 
description of the KeyboardProc 
callback function. 

WH_MOUSE Installs a mouse-message filter. 
For more information, see the 
description of the MouseProc 
callback function. 

WH_MSGFILTER Installs a message filter. For more 
information, see the description 
of the MessageProc callback 
function. 

WH_SYSMSGFILTER Installs a system-wide message 
filter. For more information, see 
the description of the 
SysMsgProc callback function. 

Specifies the procedure-instance address of the 
application-defined hook procedure to be installed. 

Identifies the instance of the module containing the hook 
function. 

Identifies the task for which the hook is to be installed. If 
this parameter is NULL, the installed hook function has 
system scope and may be called in the context of any 
process or task in the system. 

Windows API Guide 



SetWindowsHookEx 

Return Value The return value is a handle of the installed hook, if the function is 
successful. The application or library must use this handle to identify the 
hook when it calls the CallNextHookEx and UnhookWindowsHookEx 
functions. The return value is NULL if an error occurs. 

Comments An application or library can use the GetCurrentTask or GetWindowTask 
function to obtain task handles for use in hooking a particular task. 

Hook procedures used with SetWindowsHookEx must be declared as 
follows: 

DWORD HookProc(code, wPararn, lPararn) 
int codej 
WORD wPararnj 
LONG lPararni 
{ 

if ( ... ) 
return CallNextHookEx(hhook, code, wPararn, lPararn)i 

THookProc=function(Code: IntegeriwParam:Wordi lParam:Longint) : Longinti 

Chaining to the next hook procedure (that is, calling the 
CallNextHookProc function) is optional. An applicaiton or library can call 
the next hook procedure either before or after any processing in its own 
hook procedure. 

Before terminating, an application must call the UnhookWindowsHookEx 
function to free system resources associated with the hook. 

Some hooks may be set with system scope only, and others may be set 
only for a specific task, as shown in the following list: 

Hook 

WH_CALLWNDPROC 
WH_CBT 

WH_DEBUG 
WH_ GETMESSAGE 

WH_HARDWARE 
WH--10URNALRECORD 

WH--10URNALPLAYBACK 
WH_KEYBOARD 
WH_MOUSE 

WH_MSGFILTER 
WH_SYSMSGFILTER 

Scope 

Task or system 
Task or system 
Task or system 
Task or system 
Task or system 
System only 
System only 
Task or system 
Task or system 
Task or system 
System only 

For a given hook type, task hooks are called first, then system hooks. 

Chapter 4, Functions 447 



Shell Execute 

The WH_CALLWNDPROC hook affects system performance. It is 
supplied for debugging purposes only. 

The system hooks are a shared resource. Installing one affects all 
applications. All system hook functions must be in libraries. System hooks 
should be restricted to special-purpose applications or to use as a 
development aid during debugging of an application. Libraries that no 
longer need the hook should remove the filter function. 

It is a good idea for several reasons to use task hooks rather than system 
hooks: They do not incur a system-wide overhead in applications that are 
not affected by the call (or that ignore the call); they do not require 
packaging the hook-procedure implementation in a separate 
dynamic-link library; they will continue to work even when future 
versions of Windows prevent applications from installing system-wide 
hooks for security reasons. 

To install a filter function, the setWindowsHookEx function must receive 
a procedure-instance address of the function and the function must be 
exported in the library's module-definition file. Libraries can pass the 
procedure address directly. Tasks must use the MakeProclnstance 
function to get a procedure-instance address. Dynamic-link libraries must 
use the GetProcAddress function to get a procedure-instance address. 

For a given hook type, task hooks are called first, then system hooks. 

The WH_SYSMSGFILTER hooks are called before the WH_MSGFILTER 
hooks. If any of the WH_SYSMSGFILTER hook functions return TRUE, 
the WH_MSGFILTER hooks are not called. 

See Also CaliNextHookEx, GetProcAddress, MakeProclnstance, MessageBox, 
PeekMessage, PostMessage, Send Message, UnhookWindowsHookEx 

ShellExecute 3.1 

448 

Syntax #include <shellapi.h> 
HINSTANCE ShellExecute(hwnd, IpszOp, IpszFile, IpszParams, IpszDir, 
fsShowCmd) 

function ShellExecute(h Wnd: HWnd; Operation, FileName, Parameters, 
Directory: PChar; ShowCmd: Integer): THandle; 

The Shell Execute function opens or prints the specified file. 

Windows API Guide 



Parameters hwnd 

IpszOp 

IpszFile 

IpszParams 

IpszDir 

fsShowCmd 

Chapter 4, Functions 

Shell Execute 

Identifies the parent window. This window receives any 
message boxes an application produces (for example, for 
error reporting). 

Points to a null-terminated string specifying the operation 
to perform. This string can be "open" or "print". If this 
parameter is NULL, "open" is the default value. 

Points to a null-terminated string specifying the file to 
open. 

Points to a null-terminated string specifying parameters 
passed to the application when the IpszFile parameter 
specifies an executable file. If IpszFile points to a string 
specifying a document file, this parameter is NULL. 

Points to a null-terminated string specifying the default 
directory. 

Specifies whether the application window is to be shown 
when the application is opened. This parameter can be one 
of the following values: 

Value 

SW_HIDE 

SW_SHOW 

SW _SHOWMINIMIZED 

SW_SHOWMINNOACTIVE 

Meaning 

Hides the window and passes 
activation to another window. 
Minimizes the specified 
window and activates the 
top-level window in the 
system's list. 
Activates and displays a 
window. If the window is 
minimized or maximized, 
Windows restores it to its 
original size and position (same 
as SW _SHOWNORMAL). 
Activates a window and 
displays it in its current size and 
position. 
Activates a window and 
displays it as a maximized 
window. 
Activates a window and 
displays it as an icon. 
Displays a window as an icon. 
The window that is currently 
active remains active. 

449 



Shell Execute 

450 

Value 

SW _SHOWNOACTIVATE 

Meaning 

Displays a window in its 
current state. The window that 
is currently active remains 
active. 
Displays a window in its most 
recent size and position. The 
window that is currently active 
remains active. 
Activates and displays a 
window. If the window is 
minimized or maximized, 
Windows restores it to its 
original size and position (same 
as SW _RESTORE). 

Return Value The return value is the instance handle of the application that was opened 
or printed, if the function is successful. (This handle could also be the 
handle of a DDE server application.) A return value less than or equal to 
32 specifies an error. The possible error values are listed in the following 
Comments section. 

Errors The Shell Execute function returns the value 31 if there is no association 
for the specified file type or if there is no association for the specified 
action within the file type. The other possible error values are as follows: 

Value 

o 

2 
3 

5 

6 
8 

10 
11 

12 
13 
14 
15 

Meaning 

System was out of memory, executable file was corrupt, or relocations 
were invalid. 
File was not found. 
Path was not found. 
Attempt was made to dynamically link to a task, or there was a 
sharing or network-protection error. 
Library required separate data segments for each task. 
There was insufficient memory to start the application. 
Windows version was incorrect. 
Executable file was invalid. Either it was not a Windows application 
or there was an error in the .EXE image. 
Application was designed for a different operating system. 
Application was designed for MS-DOS 4.0. 
Type of executable file was unknown. 
Attempt was made to load a real-mode application (developed for an 
earlier version of Windows). 

Windows API Guide 



ShellProc 

Value Meaning 

16 Attempt was made to load a second instance of an executable file 
containing multiple data segments that were not marked read-only. 

19 Attempt was made to load a compressed executable file. The file must 
be decompressed before it can be loaded. 

20 Dynamic-link library (DLL) file was invalid. One of the DLLs required 
to run this application was corrupt. 

21 Application requires Microsoft Windows 32-bit extensions. 

Comments The file specified by the IpszFile parameter can be a document file or an 
executable file. If it is a document file, this function opens or prints it, 
depending on the value of the IpszOp parameter. If it is an executable file, 
this function opens it, even if the string "print" is pointed to by IpszOp. 

See Also FindExecutable 

ShellProc 3.1 

Syntax LRESULT CALLBACK ShellProc(code, wParam, IParam) 

The ShellProc function is a library-defined callback function that a shell 
application can use to receive useful notifications from the system. 

Parameters code 

Value 

Specifies a shell-notification code. This parameter can be 
one of the following values: 

Meaning 

HSHELL_ACTIVATESHELLWINDOW The shell application should activate 
its main window. 

HSHELL_ WINDOWCREATED A top-level, unowned window was 
created. The window exists when 
the system calls a SheliProc function. 

HSHELL_ WINDOWDESTROYED A top-level, unowned window is 
about to be destroyed. The window 
still exists when the system calls a 
SheliProc function. 

wParam 

Chapter 4, Functions 

Specifies additional information the shell application may 
need. The interpretation of this parameter depends on the 
value of the code parameter, as follows: 

451 



Spool File 

code 

HSHELL_ACTIVATESHELLWINDOW 
HSHELL_ WINDOWCREATED 

HSHELL_ WINDOWDESTROYED 

IParam Reserved; not used. 

Return Value The return value should be zero. 

wParam 

Not used. 
Specifies the handle of the window 
being created. 
Specifies the handle of the window 
being destroyed. 

Comments An application must install this callback function by specifying the 
WH_SHELL filter type and the procedure-instance address of the callback 
function in a call to the SetWindowsHook function. 

SheliProc is a placeholder for the library-defined function name. The 
actual name must be exported by including it in an EXPORTS statement 
in the library's module-definition file. 

See Also DefHookProc, Send Message, SetWindowsHook 

SpoolFile 3.1 

452 

Syntax HANDLE SpoolFileOpszPrinter,lpszPort,lpszJob,lpszFile) 

function SpoolFile(Printer, Port, Job, F: PChar): THandle; 

The Spool File function puts a file into the spooler queue. This function is 
typically used by device drivers. 

Parameters IpszPrinter 

IpszPort 

IpszJob 

IpszFile 

Points to a null-terminated string specifying the printer 
name-for example, "HP LasterJet lIP". 

Points to a null-terminated string specifying the local 
name-for example, "LPT1:". This must be a local port. 

Points to a null-terminated string specifying the name of 
the print job for the spooler. This string cannot be longer 
than 32 characters, including the null-
terminating character. 

Points to a null-terminated string specifying the path and 
filename of the file to put in the spooler queue. This file 
contains raw printer data. 

Windows API Guide 



StackTraceCSI PFirst 

Return Value The return value is the global handle that is passed to the spooler, if the 
function is successful. Otherwise, it is an error value, which can be one of 
the following: 

SP _APP ABORT 
SP_ERROR 
SP _NOTREPORTED 
SP _ OUTOFDISK 
SP _OUTOFMEMORY 
SP _ USERABORT 

Comments Applications should ensure that the spooler is enabled before calling the 
Spool File function. 

Stack T raceCSI PFirst 3.1 

Syntax #include <toolhelp.h> 
BOOL StackTraceCSIPFirst(lpste, wSS, wCS, wIP, wBP) 

function StackTraceCSIPFirst(lpStackTrace: PStackTraceEntry; wSS, wCS, 
wIP, wBP: Word): Bool; 

The StackTraceCSIPFirst function fills the specified structure with 
information that describes the specified stack frame. 

Parameters lpste 

wSS 

Chapter 4, Functions 

Points to a ST ACKTRACEENTRY structure to receive 
information about the stack. The ST ACKTRACEENTRY 
structure has the following form: 

#include <toolhelp.h> 

typedef struct tagSTACKTRACEENTRY { 1* ste *1 
DWORD dwSizei 
HTASK hTaski 
WORD WSSi 
WORD WBPi 
WORD WCSi 
WORD wIPi 
HMODULE hModulei 
WORD wSegmenti 
WORD wFlagsi 

STACKTRACEENTRYi 

Contains the value in the 55 register. This value is used 
with the wBP value to determine the next entry in the stack 
trace. 

453 



StackTraceFirst 

wes 

wlP 
wBP 

Contains the value in the CS register of the first stack 
frame. 

Contains the value in the IP register of the first stack frame. 

Contains the value in the BP register. This value is used 
with the wSS value to determine the next entry in the stack 
trace. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The StackTraceFirst function can be used to begin a stack trace of any 
task except the current task. When a task is inactive, the kernel maintains 
its state, including its current stack, stack pointer, CS and IP values, and 
BP value. The kernel does not maintain these values for the current task. 
Therefore, when a stack trace is done on the current task, the application 
must use StackTraceCSIPFirst to begin a stack trace. An application can 
continue to trace through the stack by using the StackTraceNext function. 

Before calling StackTraceCSIPFirst, an application must initialize the 
STACKTRACEENTRY structure and specify its size, in bytes, in the 
dwSize member. 

See Also StackTraceNext, StackTraceFirst 

StackTraceFirst 3.1 

454 

Syntax #include <toolhelp.h> 
BOOL StackTraceFirst{lpste, htask) 

function StackTraceFirst{lpStrackTrace: PStackTraceEntry; hTask: 
THandle): Bool; 

The StackTraceFirst function fills the specified structure with information 
that describes the first stack frame for the given task. 

Parameters lpste Points to a STACKTRACEENTRY structure to receive 
information about the task's first stack frame. The 
STACKTRACEENTRY structure has the following form: 

#include <toolhelp.h> 

typedef struct tagSTACKTRACEENTRY { /* ste */ 

DWORD dwSizei 
HTASK hTaski 
WORD WSSi 

Windows API Guide 



StackTraceNext 

htask 

WORD wBPi 

WORD WCSi 

WORD wIPi 
HMODULE hModulei 
WORD wSegmentj 
WORD wFlagsj 

STACKTRACEENTRYj 

Identifies the task whose stack information is to be 
described. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero. 

Comments The StackTraceFirst function can be used to begin a stack trace of any 
task except the current task. When a task is inactive, the kernel maintains 
its state, including its current stack, stack pointer, CS and IP values, and 
BP value. The kernel does not maintain these values for the current task. 
Therefore, when a stack trace is done on the current task, the application 
must use the StackTraceCSIPFirst function to begin a stack trace. An 
application can continue to trace through the stack by using the 
StackTraceNext function. 

Before calling StackTraceFirst, an application must initialize the 
STACKTRACEENTRY structure and specify its size, in bytes, in the 
dwSize member. 

See Also StackTraceCSIPFirst, StackTraceNext 

StackTraceNext 3.1 

Syntax #include <toolhelp.h> 
BOOL StackTraceNext(lpste) 

function StackTraceNext(lpStackTrace: PStackTraceEntry): Bool; 

The StackTraceNext function fills the specified structure with information 
that describes the next stack frame in a stack trace. 

Parameters Ipste 

Chapter 4, Functions 

Points to a STACKTRACEENTRY structure to receive 
information about the next stack frame. The 
STACKTRACEENTRY structure has the following form: 

#include <toolhelp.h> 

typedef struct tagSTACKTRACEENTRY { /* ste */ 
DWORD dwSizej 

HTASK hTaski 

455 



StartDoc 

WORD wSSj 
WORD wBPj 
WORD wCSj 
WORD wIPj 
HMODULE hModulej 
WORD wSegmenti 
WORD wFlagsj 

STACKTRACEENTRYi 

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero. 

Comments The StackTraceNext function can be used to continue a stack trace started 
by using the StackTraceFirst or StackTraceCSIPFirst function. 

See Also StackTraceCSIPFirst, StackTraceFirst, STACKTRACEENTRY 

StartDoc 3.1 

Syntax int StartDoc(hdc, lpdi) 

function StartDoc(DC: HDC; var di: TDocInfo): Integer; 

The StartDoc function starts a print job. For Windows version 3.1, this 
function replaces the STARTDOC printer escape. 

Parameters hdc 

Ipdi 

Identifies the device context for the print job. 

Points to a DOCINFO structure containing the name of the 
document file and the name of the output file. The 
DOCINFO structure has the following form: 

typedef struct { /* di */ 
int cbSizei 
LPCSTR IpszDocNamej 
LPCSTR IpszOUtputj 

DOCINFOj 

Return Value The return value is positive if the function is successful. Otherwise, it is 
SP_ERROR. 

Comments Applications should call the StartDoc function immediately before 
beginning a print job. Using this function ensures that documents 
containing more than one page are not interspersed with other print jobs. 

The Start Doc function should not be used inside metafiles. 

See Also End Doc, Escape 

456 Windows API Guide 



SubtractRect 

StartPage 3.1 

Syntax int StartPage(hdc) 

function StartPage(DC: HDC): Integer; 

The StartPage function prepares the printer driver to accept data. 

Parameters hdc Identifies the device context for the print job. 

Return Value The return value is greater than zero if the function is successful. It is less 
than or equal to zero if an error occurs. 

Comments The system disables the ResetDC function between calls to the StartPage 
and EndPage functions. This means that applications cannot change the 
device mode except at page boundaries. 

See Also EndPage, Escape, ResetDC 

SubtractRect 3. 1 

Syntax BOOL SubtractRect(lprcDest, IprcSourcel, IprcSource2) 

function SubtractRect(var IprcDest, IprcSourcel, IprcSource2: TRect): Bool; 

The SubtractRect function retrieves the coordinates of a rectangle by 
subtracting one rectangle from another. 

Parameters IprcDest 

IprcSourcel 

IprcSource2 

Points to the RECl structure to receive the dimensions of 
the new rectangle. The RECl structure has the following 
form: 

typedef struct tagRECT 
int left; 
int top; 
int right; 
int bottom; 

RECT; 

/* rc */ 

Points to the RECl structure from which a rectangle is to 
be subtracted. 

Points to the RECl structure that is to be subtracted from 
the rectangle pointed to by the IprcSourcel parameter. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero. 

Chapter 4, Functions 457 



SysMsgProc 

Comments The rectangle specified by the lprcSource2 parameter is subtracted from 
the rectangle specified by lprcSourcel only when the rectangles intersect 
completely in either the x- or y-direction. For example, if lprcSourcel were 
(10,10, 100,100) and lprcSource2 were (50,50, 150,150), the rectangle pointed 
to by lprcDest would contain the same coordinates as lprcSourcel when the 
function returned. If lprcSourcel were (10,10, 100,100) and lprcSource2 were 
(50,10, 150,150), however, the rectangle pointed to by lprcDest would 
contain the coordinates (10,10,50,100) when the function returned. 

See Also IntersectRect, UnionRect 

SysMsgProc 3.1 

458 

Syntax LRESULT CALLBACK SysMsgProc(code, wParam, IParam) 

The SysMsgProc function is a library-defined callback function that the 
system calls after a dialog box, message box, or menu has retrieved a 
message, but before the message is processed. The callback function can 
process or modify messages for any application in the system. 

Parameters code 

wParam 

lParam 

Specifies the type of message being processed. This 
parameter can be one of the following values: 

Value 

MSGF _DIALOGBOX 

MSGF_MENU 

Meaning 

Messages inside a dialog box or 
message box procedure are being 
processed. 
Keyboard and mouse messages in a 
menu are being processed. 

If the code parameter is less than zero, the callback function 
must pass the message to the CallNextHookEx function 
without further processing and return the value returned 
by CaliNextHookEx. 

Must be NULL. 

Points to the MSG structure to contain the message. The 
MSG structure has the following form: 

typedef struct tagMSG 
HWND hwnd; 
UINT message; 
WPARAM wParam; 
LPARAM IParam; 
DWORD time; 

/* msg */ 

Windows API Guide 



SystemHeaplnfo 

POINT ptj 

MSGj 

Return Value The return value should be nonzero if the function processes the message. 
Otherwise, it should be zero. 

Comments This callback function must be in a dynamic-link library (DLL). 

An application must install this callback function by specifying the 
WH_SYSMSGFILTER filter type and the procedure-instance address of 
the callback function in a call to the SetWindowsHookEx function. 

SysMsgProc is a placeholder for the library-defined function name. The 
actual name must be exported by including it in an EXPORTS statement 
in the library's module-definition file. 

See Also CallNextHookEx, MessageBox, SetWindowsHookEx 

SystemHeaplnfo 

Syntax #include <toolhelp.h> 
BOOL SystemHeapInfoOpshi) 

function SystemHeapInfoOpSysHeap: PSysHeapInfo): Bool; 

The SystemHeaplnfo function fills the specified structure with 
information that describes the USER.EXE and GDI.EXE heaps. 

3.1 

Parameters lpshi Points to a SYSHEAPINFO structure to receive information 
about the USER and GOI heaps. The SYSHEAPINFO 
structure has the following form: 

#include <toolhelp.h> 

typedef struct tagSYSHEAPINFO 
DWORD dwSizej 

WORD wUserFreePercentj 

WORD wGDIFreePercentj 
HGLOBAL hUserSegmentj 

HGLOBAL hGDISegmentj 
SYSHEAPINFOj 

/* shi */ 

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero. 

Comments This function is included for advisory purposes. Before calling 
SystemHeaplnfo, an application must initialize the SYSHEAPINFO 
structure and specify its size, in bytes, in the dwSize member. 

Chapter 4, Functions 459 



SystemParameterslnfo 

System Para metersl nfo 3.1 

460 

Syntax BOOL SystemParametersInfo(uAction, uParam, IpvParam, fu WinIni) 

function SystemParametersInfo(uAction, uParam: Word; IpvParam: 
Pointer; fuWinIni: Word): Bool; 

The SystemParameterslnfo function queries or sets system-wide 
parameters. This function can also update the WIN.lNI file while setting a 
parameter. 

Parameters uAction Specifies the system-wide parameter to query or set. This 
parameter can be one of the following values: 

Value 

SPCGETBEEP 

SPCGETBORDER 

SPC GETFASTTASKSWITCH 

SPC GETGRIDGRANULARITY 

SPC GETICONTITLELOGFONT 

SPCGETICONTITLEWRAP 

SPC GETKEYBOARDDELAY 

SPC GETKEYBOARDSPEED 

SPC GETMENUDROPALIGNMENT 

SPC GETMOUSE 

SPC GETSCREENSAVEACTIVE 

SPC GETSCREENSAVETIMEOUT 

SPCICONHORIZONTALSPACING 
SPCICONVERTICALSPACING 

Meaning 

Retrieves a Baal value that indicates 
whether the warning beep is on or off. 
Retrieves the border multiplying factor 
that determines the width of a 
window's sizing border. 
Determines whether fast task switching 
is on or off. 
Retrieves the current granularity value 
of the desktop sizing grid. 
Retrieves the logical-font information 
for the current icon-title font. 
Determines whether icon-title 
wrapping is on or off. 
Retrieves the keyboard repeat-delay 
setting. 
Retrieves the keyboard repeat-speed 
setting. 
Determines whether pop-up menus are 
left-aligned or right-aligned relative to 
the corresponding menu-bar item. 
Retrieves the mouse speed and the 
mouse threshold values, which 
Windows uses to calculate mouse 
acceleration. 
Retrieves a Baal value that indicates 
whether screen saving is on or off. 
Retrieves the screen-saver time-out 
value. 
Sets the width, in pixels, of an icon cell. 
Sets the height, in pixels, of an icon cell. 

Windows API Guide 



Value 

SPCLANGDRIVER 

SPCSETBEEP 
SPCSETBORDER 

SPI_SETDESKPATTERN 

SPI_SETDESKWALLPAPER 

SPI_SETDOUBLECLKHEIGHT 

SPI_SETDOUBLECLICKTIME 

Chapter 4, Functions 

SPI_SETDOUBLECLKWIDTH 

SPI_SETFASTTASKSWITCH 
SPI_SETGRIDGRANULARITY 

SPI_SETICONTITLELOGFONT 
SPI_SETICONTITLEWRAP 
SPCSETKEYBOARDDELAY 
SPCSETKEYBOARDSPEED 
SPCSETMENUDROPALIGNMENT 

SPCSETMOUSE 

SPCSETMOUSEBUTTONSWAP 

SPI_SETSCREENSAVEACTNE 
SPCSETSCREENSAVETIMEOUT 

SystemParameterslnfo 

Meaning 

Forces the user to load a new language 
driver. 
Turns the warning beep on or off. 
Sets the border multiplying factor that 
determines the width of a window's 
sizing border. 
Sets the current desktop pattern to the 
value specified in the Pattern entry in 
the WIN .IN I file or to the pattern 
specified by the IpvParam parameter. 
Specifies the filename that contains the 
bitmap to be used as the desktop 
wallpaper. 
Sets the height of the rectangle within 
which the second click of a double-click 
must fall for it to be registered as a 
double-click. 
Sets the double-click time for the 
mouse. The double-click time is the 
maximum number of milliseconds that 
may occur between the first and second 
clicks of a double-click. 
Sets the width of the rectangle within 
which the second click of a double-click 
must fall for it to be registered as a 
double-click. 
Turns fast task switching on or off. 
Sets the granularity of the desktop 
sizing grid. 
Sets the font that is used for icon titles. 
Turns icon-title wrapping on or off. 
Sets the keyboard repeat-delay setting. 
Sets the keyboard repeat-speed setting. 
Sets the alignment value of pop-up 
menus. 
Sets the mouse speed and the x and y 
mouse-threshold values. 
Swaps or restores the meaning of the 
left and right mouse buttons. 
Sets the state of the screen saver. 
Sets the screen-saver time-out value. 

461 



SystemParameterslnfo 

uParam 

IpvParam 

fuWinlni 

Value 

Depends on the uAction parameter. For more information, 
see the following Comments section. 

Depends on the uAction parameter. For more information, 
see the following Comments section. 

If a system parameter is being set, specifies whether the 
WIN.INI file is updated, and if so, whether the 
WM_ WININICHANGE message is broadcast to all 
top-level windows to notify them of the change. This 
parameter can be one of the following values: 

Meaning 

SPIF _ UPDATEINIFILE Writes the new system-wide parameter 
setting to the WIN .INI file. 

SPIF _SENDWININICHANGE Broadcasts the WM_ WININICHANGE 
message after updating the WIN.INI 
file. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The SystemParameterlnfo function is intended for applications, such as 
Control Panel, that allow the user to customize the Windows 
environment. 

The following table describes the uParam and IpvParam parameters for 
each SPC constant: 

Constant uParam IpvParam 

SPCGETBEEP 

SPC GETBORDER 

SPC GETFASTTASKSWITCH 

SPC GETGRIDGRANULARITY 

SPC GETICONTITLELOGFONT 

SPCGETICONTITLEWRAP 

462 

0 

0 

0 

0 

Size of lOG FONT 
structure 
0 

Points to a BOOl variable that 
receives TRUE if the beep is on, 
FALSE if it is off. 
Points to an integer variable that 
receives the border multiplying factor. 
Points to a BeOl variable that 
receives TRUE if fast task switching is 
on, FALSE if it is off. 
Points to an integer variable that 
receives the grid-granularity value. 
Points to a lOGFONT structure that 
receives the logical-font information. 
Points to a BeOl variable that 
receives TRUE if wrapping is on, 
FALSE if wrapping is off. 

Windows API Guide 



Constant uParam 

SPC GETKEYBOARDDELAY 0 

SPC GETKEYBOARDSPEED 0 

SPCGETMENUDROPALIGNMENT 0 

SPC GETMOUSE o 

SPC GETSCREENSAVEACTIVE o 

SPC GETSCREENSAVETIMEOUT 0 

SPCICONHORIZONTALSPACING New width, in pixels, 
for horizontal spacing 
of icons 

SPCICONVERTICALSPACING New height, in pixels, 
for vertical spacing of 
icons 

SPCLANGDRIVER 0 

SPCSETBEEP TRUE = tum the beep 
on; FALSE = tum the 
beep off 

SPCSETBORDER Border multiplying 
factor 

Chapter 4, Functions 

SystemParameterslnfo 

IpvParam 

Points to an integer variable that 
receives the keyboard repeat-delay 
setting. 
Points to a WORD variable that 
receives the current keyboard 
repeat-speed setting. 
Points to a BOOl variable that 
receives TRUE if pop-up menus are 
right-aligned, FALSE if they are 
left-aligned. 
Points to an integer array name 
IpiMouse, where IpiMouse[O] receives 
the WIN.INI entry MouseThreshold1, 
IpiMouse[l] receives the entry 
MouseThreshold2, and IpiMouse[2] 
receives the entry MouseSpeed. 

Points to a BOOl variable that 
receives TRUE if the screen saver is 
active, FALSE if it is not. 
Points to an integer variable that 
receives the screen-saver time-out 
value, in milliseconds. 
Is NULL if the icon cell width, in 
pixels, is returned in uParam. If this 
value is a pointer to an integer, the 
current horizontal spacing is returned 
in that variable and uParam is ignored. 
Is NULL if the icon cell height, in 
pixels, is returned in uParam. If this 
value is a pointer to an integer, the 
current vertical spacing is returned in 
that variable and uParam is ignored. 
Points to a string containing the new 
language driver filename. The 
application should make sure that all 
other international settings remain 
consistent when changing the 
language driver. 
Is NULL. 

Is NULL. 

463 



SystemParameterslnfo 

Constant 

SPCSETDESKPATTERN 

SPCSETDESKWALLPAPER 

SPCSETDOUBLECLKHEIGHT 

SPCSETDOUBLECLICKTIME 

SPCSETDOUBLECLKWIDTH 

SPCSETFASTTASKSWITCH 

SPI_SETGRIDGRANULARITY 
SPCSETICONTITLELOGFONT 

SPCSETICONTITLEWRAP 

SPI_SETKEYBOARDDELAY 

SPCSETKEYBOARDSPEED 
SPCSETMENUDROPALIGNMENT 

SPCSETMOUSE 

464 

uParam 

Oor-l 

o 

Double-click height, 
in pixels 
Double-click time, 
in milliseconds 
Double-click width, 
in pixels 
TRUE = turn on fast task 
switching; FALSE = turn 
it off 
Grid granularity, 
Size of the LOG FONT 
structure 

TRUE = turn wrap­
ping on; FALSE = 
turn wrapping off 
Keyboard-delay 
setting 
Repeat-speed setting 
TRUE = right­
alignment; FALSE = 
left-alignment 
o 

IpvParam 

Specifies the desktop pattern. If this 
value is NULL and the uParam 
parameter is -I, the value is reread 
from the WIN.lNI file. This value can 
also be a null-terminated string 
(LPSTR) containing a sequence of 8 
numbers that represent the new 
desktop pattern; for example, "170 85 
170851708517085" represents a 50% 
gray pattern. 
Points to a string that specifies the 
name of the bitmap file. 
Is NULL. 

Is NULL. 

Is NULL. 

Is NULL. 

Points to a LOGFONT structure that 
defines the font to use for icon titles. If 
uParam is set to zero and IParam is set 
to NULL, Windows uses the icon-title 
font and spacings that were in effect 
when Windows was started. 
Is NULL. 

Is NULL. 

Is NULL. 
Is NULL. 

Points to an integer array named 
IpiMouse, where IpiMouse[O] receives 
the WIN.INI entry xMouseThreshold, 
IpiMouse[1] receives the entry 
yMouseThreshold, and IpiMouse[2] 
receives the entry MouseSpeed. 

Windows API Guide 



SystemParameterslnfo 

Constant uParam IpvParam 

SPI_SETMOUSEBUTTONSWAP TRUE = reverse the 
meaning of the left and 
right mouse buttons; 

Is NULL. 

FALSE = restore the 
buttons to their original 
meanings 

SPCSETSCREENSAVEACTIVE TRUE = activate screen Is NULL. 
saving; FALSE = 
deactivate screen saving 

SPCSETSCREENSAVETIMEOUT Idle time-out duration, Is NULL. 
in seconds, before screen 
is saved 

Example The following example retrieves the value for the DoubleClickSpeed 
entry from the WIN.lNI file and uses the value to initialize an edit control. 
In this example, while the WM_ COMMAND message is being processed, 
the user-specified value is retrieved from the edit control and used to set 
the double-click time. 

Chapter 4, Functions 

char szBuf[32]; 
int iResult; 

case WM INITDIALOG: 

/* Initialize edit control to the current double-click time. */ 

iResult = GetProfilelnt ("windows", 
"DoubleClickSpeed", 550); 

itoa(iResult, szBuf, 10); 
SendDlgltemMessage(hdlg, I 00_0 CLKTlME, WM_SETTEXT, 0, 

(DWORD) (LPSTR) szBuf); 

/* Initialize any other controls. */ 

return FALSE; 

casEWM COMMAND: 
switch (wParam) 

case lOOK: 

/* Set double-click time to a user-specified value. */ 

SendDlgltemMessage(hdlg, IDD~CLKTlME, WM_GETTEXT, 
sizeof(szBuf), (DWORD) (LPSTR) szBuf); 

SystemParameterslnfo(SPI_SETDOUBLECLICKTlME, atoi(szBuf), 
(LPVOID) NULL, SPIF_UPDATEINIFlLE I 
SPIF_SENDWININICHANGE); 

465 



TaskFindHandle 

. /* Set any other system-wide parameters. */ 

EndDialog(hdlg, TRUE); 
return TRUE; 

TaskFindHandle 

Syntax #inc1ude <toolhelp.h> 
BaaL TaskFindHandleOpte, htask) 

function TaskFindHandleOpTask: PTaskEntry; hTask: THandle): Bool; 

The TaskFindHandle function fills the specified structure with 
information that describes the given task. 

3.1 

Parameters [pte Points to a TASK ENTRY structure to receive information 
about the task. The T ASKENTRY structure has the 
following form: 

htask 

#include <toolhelp.h> 

typedef struct tagTASKENTRY { /* te */ 
DWORD dwSize; 
HTASK hTask; 
HTASK hTaskParent; 
HINSTANCE hlnst; 
HMODULE hModule; 
WORD wSSj 
WORD wSPj 
WORD wStackTop; 
WORD wStackMinimum; 
WORD wStackBottom; 
WORD wcEvents; 
HGLOBAL hQueue; 
char szModule[MAX_MODULE_NAME + 1]; 
WORD wPSPOffset; 
HANDLE hNext; 

TASKENTRY; 

Identifies the task to be described. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The TaskFindHandle function can be used to begin a walk through the 
task queue. An application can examine subsequent entries in the task 
queue by using the TaskNext function. 

466 Windows API Guide 



Before calling TaskFindHandle, an application must initialize the 
TASKENTRV structure and specify its size, in bytes, in the dwSize 
member. 

ToskFirst 

See Also TaskFirst, TaskNext 

TaskFirst 3 I 1 

Syntax #include <toolhelp.h> 
BaaL TaskFirstOpte) 

function TaskFirstOpTask: PTaskEntry): Bool; 

The TaskFirst function fills the specified structure with information about 
the first task on the task queue. 

Parameters [pte Points to a TASKENTRV structure to receive information 
about the first task. The T ASKENTRV structure has the 
following form: 

#include <toolhelp.h> 

typedef struct tagTASKENTRY { /* te */ 
DWORD dwSizei 
HTASK hTaski 
HTASK hTaskParenti 
HINSTANCE hlnst i 
HMODULE hModulei 
WORD WSSi 
WORD WSPi 
WORD wStackTopi 
WORD wStackMinimumi 
WORD wStackBottomi 
WORD wcEventsi 
HGLOBAL hQueuei 
char szModule[MAX_MODULE_NAME + l]i 
WORD wPSPOffseti 
HANDLE hNexti 

TASKENTRYi 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The TaskFirst function can be used to begin a walk through the task 
queue. An application can examine subsequent entries in the task queue 
by using the TaskNext function. 

Chapter 4, Functions 467 



TaskGetCSIP 

Before calling TaskFirst, an application must initialize the TASKENTRY 
structure and specify its size, in bytes, in the dwSize member. 

See Also TaskFindHandle, TaskNext 

TaskGetCSIP 3.1 

Syntax #include <toolhelp.h> 
DWORD TaskGetCSIP(htask) 

function TaskGetCSIP(hTask: THandle): Longint; 

The TaskGetCSIP function returns the next CS:IP value of a sleeping task. 
This function is useful for applications that must "know" where a 
sleeping task will begin execution upon awakening. 

Parameters htask Identifies the task whose CS:IP value is being examined. 
This task must be sleeping when the application calls 
TaskGetCSIP. 

Return Value The return value is the next CS:IP value, if the function is successful. If the 
htask parameter is invalid, the return value is NULL. 

Comments TaskGetCSIP should not be called if htask identifies the current task. 

See Also DirectedYield, TaskSetCSIP, TaskSwitch 

TaskNext 3.1 

468 

Syntax #include <toolhelp.h> 
BaaL TaskNext(lpte) 

function TaskNext(lpTask: PTaskEntry): Bool; 

The TaskNext function fills the specified structure with information about 
the next task on the task queue. 

Parameters lpte Points to a TASKENTRY structure to receive information 
about the next task. The TASKENTRY structure has the 
following form: 

Windows API Guide 



#include <toolhelp.h> 

typedef struct tagTASKENTRY { /* te */ 
DWORD dwSize; 
HTASK hTask; 

HTASK hTaskParent; 
HINSTANCE hlnst; 

HMODULE hModule; 

WORD wSS; 
WORD wSP; 
WORD wStackTop; 
WORD wStackMinimum; 
WORD wStackBottom; 

WORD wcEvents; 
HGLOBAL hQueue; 
char szModule[MAX_MODULE_NAME + 
WORD wPSPOffset; 

HANDLE hNext; 

TASKENTRY; 

TaskSetCSIP 

1] ; 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The TaskNext function can be used to continue a walk through the task 
queue. The walk must have been started by the TaskFirst or 
TaskFindHandle function. 

See Also TaskFindHandle, TaskFirst 

TaskSetCSIP 3.1 

Syntax #include <toolhelp.h> 
DWORD TaskSetCSIP(htask, wCS, wIP) 

function TaskSetCSIP(hTask: THandle; wCS, wIP: Word): Longint; 

The TaskSetCSIP function sets the CS:IP value of a sleeping task. When 
the task is yielded to, it will begin execution at the specified address. 

Parameters htask 

wCS 

wIP 

Identifies the task to be assigned the new CS:IP value. 

Contains the new value of the CS register. 

Contains the new value of the IP register. 

Return Value The return value is the previous CS:IP value for the task. The TaskSwitch 
function uses this value. The return value is NULL if the htask parameter 
is invalid. 

Chapter 4, Functions 469 



TaskSwitch 

Comments TaskSetCSIP should not be called if htask identifies the current task. 

See Also DirectedVield, TaskGetCSIP, TaskSwitch 

TaskSwitch 3.1 

Syntax #inc1ude <toolhelp.h> 
BaaL TaskSwitch(htask, dwNewCSIP) 

function TaskSwitch(hTask: THandle; dwNewCSIP: Longint): Bool; 

The TaskSwitch function switches to the given task. The task begins 
executing at the specified address. 

Parameters htask 

dwNewCSIP 

Identifies the new task. 

Identifies the address within the given task at which to 
begin execution. Be very careful that this address is not in a 
code segment owned by the given task. 

Return Value The return value is nonzero if the task switch is successful. Otherwise, it 
is zero. 

Comments When the task identified by the htask parameter yields, TaskSwitch 
returns to the calling application. 

TaskSwitch changes the CS:IP value of the task's stack frame to the value 
specified by the dwNewCSIP parameter and then calls the DirectedVield 
function. 

See Also DirectedVield, TaskSetCSIP, TaskGetCSIP 

TerminateApp 3.1 

470 

Syntax #inc1ude <toolhelp.h> 
void TerminateApp(htask, wFlags) 

procedure TerminateApp(hTask: THandle; wFlags: Word); 

The TerminateApp function ends the given application instance (task). 

Parameters htask Identifies the task to be ended. If this parameter is NULL, 
it identifies the current task. 

Windows API Guide 



wFlags 

TimerCount 

Indicates how to end the task. This parameter can be one 
of the following values: 

Value Meaning 

Calls the Windows kernel to display the 
Application Error message box and then 
ends the task. 
Calls the Windows kernel to end the task 
but does not display the Application Error 
message box. The application's interrupt or 
notification callback function should have 
displayed an error message, a warning, or 
both. 

Return Value This function returns only if htask is not NULL and does not identify the 
current task. 

Comments The TerminateApp function unregisters all callback functions registered 
with the Tool Help functions and then ends the application as if the given 
task had produced a general-protection (GP) fault or other error. 

TerminateApp should be used only by debugging applications, because 
the function may not free not all objects owned by the ended application. 

See Also InterruptRegister, InterruptUnRegister, NotifyRegister, NotifyUnRegister 

TimerCount 3.1 

Syntax #include <toolhelp.h> 
BOOL TimerCount(lpti) 

function TimerCount(lpTimer: PTimerInfo): Bool; 

The TimerCount function fills the specified structure with the execution 
times of the current task and VM (virtual machine). 

Parameters Ipti 

Chapter 4, Functions 

Points to the TIMERINFO structure that will receive the 
execution times. The TIMERINFO structure has the 
following form: 

#include <toolhelp.h> 

typedef struct tagTlMERINFO { /* ti */ 

DWORD dwSize; 
DWORD dwmsSinceStart; 

471 



TimerProc 

DWORD dwmsThisVM; 
TIMERINFO; 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Comments The TimerCount function provides a consistent source of timing 
information, accurate to the millisecond. In enhanced mode, TimerCount 
uses the VTD (virtual timer device) to obtain accurate execution times. 

In standard mode, TimerCount calls the GetTickCount function, which 
returns information accurate to one clock tick (approximately 55 ms). 
TimerCount then reads the hardware timer to estimate how many 
milliseconds remain until the next clock tick. The resulting time is 
accurate to 1 ms. 

Before calling TimerCount, an application must initialize the TIMERINFO 
structure and specify its size, in bytes, in the dwSize member. 

See Also GetTickCount 

TimerProc 2.x 

Syntax void CALLBACK TimerProdhwnd, msg, idTimer, dwTime) 

The TimerProc function is an application-defined callback function that 
processes WM_ TIMER messages. 

Parameters hwnd 

msg 

idTimer 

dwTime 

Identifies the window associated with the timer. 

Specifies the WM_ TIMER message. 

Specifies the timer's identifier. 

Specifies the current system time. 

Return Value This function does not return a value. 

Comments TimerProc is a placeholder for the application-defined function name. 
The actual name must be exported by including it in an EXPORTS 
statement in the application's module-definition file. 

See Also KillTimer, SetTimer 

472 Windows API Guide 



UnAllocFileHandles 

UnAllocDiskSpace 3.1 

Syntax #inc1ude <stress.h> 
void U nAllocDiskSpace(drive) 

procedure UnAllocDiskSpace(wDrive: Word); 

The UnAllocDiskSpace function deletes the STRESS.EAT file from the 
root directory of the specified drive. This frees the disk space previously 
consumed by the AllocDiskSpace function. 

Parameters drive Specifies the disk partition on which to delete the 
STRESS.EAT file. This can be one of the following values: 

Value Meaning 

EDS_WlN 
EDS_CUR 
EDS_TEMP 

Deletes the file on the Windows partition. 
Deletes the file on the current partition. 
Deletes the file on the partition that contains 
the TEMP directory. 

Return Value This function does not return a value. 

See Also AllocDiskSpace 

UnAllocFileHandles 

Syntax #inc1ude <stress.h> 
void U nAllocFileHandles( void) 

procedure UnAllocFileHandles; 

The UnAllocFileHandles function frees all file handles allocated by the 
AllocFileHandles function. 

Parameters This function has no parameters. 

Return Value This function does not return a value. 

See Also AllocFileHandles 

3.1 

Chapter 4, Functions 473 



UndelefeFile 

UndeleteFile 

Syntax #inc1ude <wfext.h> 
int FAR PASCAL UndeleteFile(hwndParent, IpszDir) 

TFM_UnDelete_Proc = function(Handle: HWnd; P: PChar): Longint; 

The UndeleteFile function is an application-defined callback function that 
File Manager calls when the user chooses the Undelete command from 
the File Manager File menu. 

Parameters hwndParent Identifies the File Manager window. An "undelete" 
dynamic-link library (DLL) should use this handle to 
specify the parent window for any dialog box or message 
box the DLL may display. 

IpszDir Points to a null-terminated string that contains the name of 
the initial directory. 

Return Value The return value is one of the following, if the function is successful: 

Value Meaning 

-I An error occurred. 
IDOK A file was undeleted. File Manager will repaint its windows. 
IDCANCEL No file was undeleted. 

UnhookWindowsHookEx 3.1 

474 

Syntax BOOL UnhookWindowsHookEx(hhook) 

function UnhookWindowsHookEx(Hook: HHook): Bool; 

The UnhookWindowsHookEx function removes an application-defined 
hook function from a chain of hook functions. A hook function processes 
events before they are sent to an application's message loop in the 
WinMain function. 

Parameters hhook Identifies the hook function to be removed. This is the 
value returned by the SetWindowsHookEx function when 
the hook was installed. 

Return Value The return value is nonzero if the function is successful. Otherwise, it is 
zero. 

Windows API Guide 



VerFindFile 

Comments The UnhookWindowsHookEx function must be used in combination with 
the SetWindowsHookEx function. 

Example The following example uses the UnhookWindowsHookEx function to 
remove a message filter that was used to provide context-sensitive help 
for a dialog box: 

DLGPROC lpfnAboutProCi 
HOOKPROC lpfnFilterPrOCi 
HHOOK hhooki 

caseIDM ABOUT: 
lpfnAboutProc = (DLGPROC) MakeProclnstance(About, hinst)i 
lpfnFilterProc = (HOOKPROC) MakeProclnstance(FilterFunc, hinst)i 
hhook = SetWindowsHookEx(WH MSGFILTER, lpfnFilterProc, 

hinst, (HTASK) NULL); -

DialogBox(hinst, "AboutBox", hwnd, lpfnAboutProc)i 

UnhookWindowsHookEx(hhook)i 
FreeProclnstance((FARPROC) lpfnFilterProc)i 
FreeProclnstance((FARPROC) lpfnAboutProc)i 

breaki 

See Also CallNextHookEx, SetWindowsHookEx 

VerFindFile 3.1 

Syntax #include <ver.h> 
DINT VerFindFile(flags, IpszFilename, IpszWinDir, IpszAppDir, 
IpszCurDir, IpuCurDirLen, IpszDestDir, IpuDestDirLen) 

function VerFindFile(Flags: Word; FileName, WinDir, AppDir, CurDir: 
PChar; var CurDirLen: Word; DestDir: PChar; var DestDirLen: Word): 
Word; 

The VerFindFile function determines where to install a file based on 
whether it locates another version of the file in the system. The values 
VerFindFile returns are used in a subsequent call to the VerlnstallFile 
function. 

Parameters flags Contains a bitmask of flags. This parameter can be 
VFFF _ISSHAREDFILE, which indicates that the source file 
may be shared by multiple applications. VerFindFile uses 
this information to determine where the file should be 
copied. All other values are reserved for future use. 

Chapter 4, Functions 475 



VerFindFile 

476 

lpszFilename Points to a null-terminated string specifying the name of 
the file to be installed. This name should include only the 
filename and extension, not a path. 

lpsz WinDir Points to a null-terminated string specifying the Windows 
directory. This string is returned by the GetWindowsDir 
function. The dynamic-link library (DLL) version of 
VerFindFile ignores this parameter. 

lpszAppDir Points to a null-terminated string specifying the drive 
letter and directory where the installation program is 
installing a set of related files. If the installation program is 
installing an application, this is the directory where the 
application will reside. This directory will also be the 
application's working directory unless you specify 
otherwise. 

lpszCurDir Points to a buffer that receives the path to a current version 
of the file being installed. The path is a null-terminated 
string. If a current version is not installed, the buffer will 
contain the source directory of the file being installed. The 
buffer must be at least _MAX_PATH bytes long. 

lpuCurDirLen Points to a null-terminated string specifying the length, in 
bytes, of the buffer pointed to by lpszCurDir. On return, 
lpuCurDirLen contains the size, in bytes, of the data 
returned in lpszCurDir, including the terminating null 
character. If the buffer is too small to contain all the data, 
lpuCurDirLen will be greater than the actual size of the 
buffer. 

lpszDestDir Points to a buffer that receives the path to the installation 
directory recommended by VerFindFile. The path is a 
null-terminated string. The buffer must be at least 
_MAX_PATH bytes long. 

lpuDestDirLen Points to the length, in bytes, of the buffer pointed to by 
lpszDestDir. On return, IpuDestDirLen contains the size, in 
bytes, of the data returned in lpszDestDir, including the 
terminating null character. If the buffer is too small to 
contain all the data, lpuDestDirLen will be greater than the 
actual size of the buffer. 

Windows API Guide 



VerFindFile 

Return Value The return value is a bitmask that indicates the status of the file, if the 
function is successful. This value may be one or more of the following: 

Error 

VFF _CURNEDEST 

VFF _BUFFfOOSMALL 

Meaning 

Indicates that the currently installed version of the 
file is not in the recommended destination. 
Indicates that Windows is using the currently 
installed version of the file; therefore, the file cannot 
be overwritten or deleted. 
Indicates that at least one of the buffers was too 
small to contain the corresponding string. An 
application should check the IpuCurDirLen and 
IpuDestDirLen parameters to determine which 
buffer was too small. 

All other values are reserved for future use. 

Comments The dynamic-link library (DLL) version of VerFindFile searches for a copy 
of the specified file by using the Open File function. In the LIB version, the 
function searches for the file in the Windows directory, the system 
directory, and then the directories specified by the PATH environment 
variable. 

VerFindFile determines the system directory from the specified Windows 
directory, or it searches the path. 

If the flags parameter indicates that the file is private to this application 
(not VFFF _ISSHAREDFILE), VerFindFile recommends installing the file 
in the application'S directory. Otherwise, if the system is running a shared 
copy of Windows, the function recommends installing the file in the 
Windows directory. If the system is running a private copy of Windows, 
the function recommends installing the file in the system directory. 

See Also VerlnstallFile 

Chapter 4, Functions 477 



VerlnstallFile 

VerlnstallFile 3.1 

478 

Syntax #include <ver.h> 
DWORD VerlnstallFile(flags,lpszSrcFilename, IpszDestFilename, 
IpszSrcDir, IpszDestDir, IpszCurDir, IpszTmpFile, IpwTmpFileLen) 

function Ver InstallFile(Flags: Word; SrcFileN arne, DestFileN arne, SrcDir, 
DestDir, CurDir, TmpFile: PChar; var TmpFileLen: Word): Longint; 

The VerlnstallFile function attempts to install a file based on information 
returned from the VerFindFile function. VerlnstallFile decompresses the 
file with the LZCopy function and checks for errors, such as outdated files. 

Parameters flags Contains a bitmask of flags. This parameter can be a 
combination of the following values: 

Value 

VIFF _FORCEINSTALL 

VIFF _DONTDELETEOLD 

Meaning 

Installs the file regardless of 
mismatched version numbers. 
The function will check only for 
physical errors during installation. 
If flags includes 
VIFF _FORCEINSTALL and 
lpszTmpFileLen is not a pointer to 
zero, VerlnstallFile will skip all 
version checks of the temporary 
file and the destination file and 
rename the temporary file to the 
name specified by lpszSrcFilename, 
as long as the temporary file 
exists in the destination directory, 
the destination file is not in use, 
and the user has privileges to 
delete the destination file and 
rename the temporary file. The 
return value from VerlnstallFile 
should be checked for any errors. 
Installs the file without deleting 
the previously installed file, if the 
previously installed file is not in 
the destination directory. If the 
previously installed file is in the 
destination directory, 
VerlnstallFile replaces it with the 
new file upon successful 
installation. 

Windows API Guide 



IpszSrcFilename 

IpszDestFilename 

IpszSrcDir 

IpszDestDir 

IpszCurDir 

IpszTmpFile 

IpwTmpFileLen 

Chapter 4, Functions 

VerlnstallFile 

All other values are reserved for future use. 

Points to the name of the file to be installed. This is 
the filename in the directory pointed to by 
IpszSrcDir; the filename should include only the 
filename and extension, not a path. VerlnstaliFile 
opens the source file by using the LZOpenFile 
function. This means it can handle both files as 
specified and files that have been compressed and 
renamed by using the / r option with 
COMPRESS.EXE. 

Points to the name VerlnstaliFile will give the new 
file upon installation. This filename may be 
different than the filename in the directory pointed 
to by IpszSrcFilename. The new name should 
include only the filename and extension, not a 
path. 

Points to a buffer that contains the directory name 
where the new file is found. 

Points to a buffer that contains the directory name 
where the new file should be installed. The 
VerFindFile function returns this value in the 
IpszDestDir parameter. 

Points to a buffer that contains the directory name 
where the preexisting version of this file is found. 
VerFindFile returns this value in the IpszCurDir 
parameter. If the filename specified in 
IpszDestFilename already exists in the IpszCurDir 
directory and flags does not include 
VIFF _DONTDELETEOLD, the existing file will be 
deleted. If IpszCurDir is a pointer to NULL, a 
previous version of the file does not exist on the 
system. 

Points to a buffer that should be empty upon the 
initial call to VerlnstaliFile. The function fills the 
buffer with the name of a temporary copy of the 
source file. The buffer must be at least 
_MAX_PATH bytes long. 

Points to the length of the buffer pointed to by 
IpszTmpFile. On return, IpwTmpFileLen contains the 
size, in bytes, of the data returned in IpszTmpFile, 
including the terminating null character. If the 
buffer is too small to contain all the data, 
IpwTmpFileLen will be greater than the actual size 
of the buffer. 

479 



VerlnstallFile 

480 

If flags includes VIFF _FORCE INSTALL and 
lpwTmpFileLen is not a pointer to zero, 
VerlnstaliFile will rename the temporary file to the 
name specified by lpszSrcFilename. 

Return Value The return value is a bitmask that indicates exceptions, if the function is 
successful. This value may be one or more of the following: 

Value 

VIF _DIFFCODEPG 

VIF _ACCESSVIOLATION 

Meaning 

Indicates that the temporary copy of the new file 
is in the destination directory. The cause of 
failure is reflected in other flags. Applications 
should always check whether this bit is set and 
delete the temporary file, if required. 
Indicates that the new and preexisting files differ 
in one or more attributes. This error can be 
overridden by calling VerlnstaliFile again with 
the VIFF _FORCEINSTALL flag. 
Indicates that the file to install is older than the 
preexisting file. This error can be overridden by 
calling VerlnstaliFile again with the 
VIFF _FORCEINSTALL flag. 
Indicates that the new and preexisting files have 
different language or code-page values. This 
error can be overridden by calling VerlnstaliFile 
again with the VIFF _FORCEINSTALL flag. 
Indicates that the new file requires a code page 
that cannot be displayed by the currently 
running version of Windows. This error can be 
overridden by calling VerlnstaliFile with the 
VIFF _FORCEINSTALL flag. 
Indicates that the new file has a different type, 
subtype, or operating system than the 
preexisting file. This error can be overridden by 
calling VerlnstaliFile again with the 
VIFF _FORCEINSTALL flag. 
Indicates that the preexisting file is 
write-protected. The installation program should 
reset the read-only bit in the destination file 
before proceeding with the installation. 
Indicates that the preexisting file is in use by 
Windows and cannot be deleted. 
Indicates that the function cannot create the 
temporary file due to insufficient disk space on 
the destination drive. 
Indicates that a create, delete, or rename 
operation failed due to an access violation. 

Windows API Guide 



Value 

VIF _SHARINGVIOLATION 

VIF _CANNOTCREATE 

VIF _CANNOTDELETE 

VIF _CANNOTRENAME 

VIF _OUTOFMEMORY 

VIF _CANNOTREADSRC 

VIF _CANNOTREADDST 

VIF _BUFFfOOSMALL 

VerlnstallFile 

Meaning 

Indicates that a create, delete, or rename 
operation failed due to a sharing violation. 
Indicates that the function cannot create the 
temporary file. The specific error may be 
described by another flag. 
Indicates that the function cannot delete the 
destination file or cannot delete the existing 
version of the file located in another directory. If 
the VIF _TEMP FILE bit is set, the installation 
failed and the destination file probably cannot be 
deleted. 
Indicates that the function cannot rename the 
temporary file but already deleted the 
destination file. 
Indicates that the function cannot complete the 
requested operation due to insufficient memory. 
Generally, this means the application ran out of 
memory attempting to expand a compressed file. 
Indicates that the function cannot read the 
source file. This could mean that the path was 
not specified properly, that the file does not exist, 
or that the file is a compressed file that has been 
corrupted. To distinguish these conditions, use 
LZOpenFile to determine whether the file exists. 
(Do not use the OpenFile function, because it 
does not correctly translate filenames of 
compressed files.) Note that 
VIF _ CANNOTREADSRC does not cause either 
the VIF _ACCESSVIOLATION or 
VIF _SHARINGVIOLATION bit to be set. 
Indicates that the function cannot read the 
destination (existing) files. This prevents the 
function from examining the file's attributes. 
Indicates that the IpszTmpFile buffer was too 
small to contain the name of the temporary 
source file. On return, IpwTmpFileLen contains 
the size of the buffer required to hold the 
filename. 

All other values are reserved for future use. 

Comments VerlnstallFile is designed for use in an installation program. This function 
copies a file (specified by IpszSrcFilename) from the installation disk to a 
temporary file in the destination directory. If necessary, VerlnstallFile 
expands the file by using the functions in LZEXP AND.DLL. 

Chapter 4, Functions 481 



VerLanguageName 

If a preexisting copy of the file exists in the destination directory, 
VerlnstaliFile compares the version information of the temporary file to 
that of the preexisting file. If the preexisting file is more recent than the 
new version, or if the files' attributes are significantly different, 
VerlnstaliFile returns one or more error values. For example, files with 
different languages would cause VerlnstaliFile to return VIF _DIFFLANG. 

VerlnstaliFile leaves the temporary file in the destination directory. If all 
of the errors are recoverable, the installation program can override them 
by calling VerlnstaliFile again with the VIFF _FORCEINSTALL flag. In 
this case, IpszSrcFilename should point to the name of the temporary file. 
Then, VerlnstaliFile deletes the preexisting file and renames the 
temporary file to the name specified by IpszSrcFilename. If the 
VIF _TEMPFILE bit indicates that a temporary file exists and the 
application does not force the installation by using the 
VIFF _FORCE INSTALL flag, the application must delete the temporary 
file. 

If an installation program attempts to force installation after a 
nonrecoverable error, such as VIF _ CANNOTREADSRC, VerlnstaliFile 
will not install the file. 

See Also VerFindFile 

VerLanguageName 3.1 

482 

Syntax #include <ver.h> 
UINT VerLanguageName(uLang, IpszLang, cbLang) 

function VerLanguageName(Lang:Word; Lang: PChar; Size: Word): Word; 

The VerLanguageName function converts the specified binary Microsoft 
language identifier into a text representation of the language. 

Parameters uLang 

IpszLang 

Specifies the binary Microsoft language identifier. For 
example, VerLanguageName translates Ox040A into 
Castilian Spanish. If VerLanguageName does not 
recognize the identifier, the IpszLang parameter will point 
to a default string, such as "Unknown language". For a 
complete list of the language identifiers supported by 
Windows, see the following Comments section. 

Points to the buffer to receive the null-terminated string 
representing the language specified by the uLang 
parameter. 

Windows API Guide 



VerLanguageName 

cbLang Indicates the size of the buffer, in bytes, pointed to by 
IpszLang. 

Return Value The return value is the length of the string that represents the language 
identifier, if the function is successful. This value does not include the null 
character at the end of the string. If this value is greater than cbLang, the 
string was truncated to cbLang. The return value is zero if an error occurs. 
Unknown uLang values do not produce errors. 

Comments Typically, an installation application uses this function to translate a 
language identifier returned by the VerQueryValue function. The text 
string may be used in a dialog box that asks the user how to proceed in 
the event of a language conflict. 

Windows supports the following lan'guage identifiers: 

Value Language 

Ox0401 Arabic 

Ox0402 Bulgarian 
Ox0403 Catalan 

Ox0404 Traditional Chinese 

Ox0405 Czech 
Ox0406 Danish 

Ox0407 German 

Ox0408 Greek 
Ox0409 U.S. English, 
Ox040A Castilian Spanish 
Ox040B Finnish 

Ox04OC French 
Ox040D Hebrew 

Ox040E Hungarian 

Ox040F Icelandic 
Ox0410 Italian 

Ox0411 Japanese 
Ox0412 Korean 
Ox0413 Dutch 

Ox0414 Norwegian - Bokmal 
Ox0415 Polish 

Ox0416 Brazilian Portuguese 
Ox0417 Rhaeto-Romanic 

Ox0418 Romanian 
Ox0419 Russian 
Ox041A Croato-Serbian (Latin) 

Chapter 4, Functions 483 



VerQueryValue 

Value Language 

Ox041B Slovak 

Ox041C Albanian 
Ox041D Swedish 

Ox041E Thai 

Ox041F Turkish 

Ox0420 Urdu 

Ox0421 Bahasa 
Ox0804 Simplified Chinese 

Ox0807 Swiss German 

Ox0809 U.K. English 

Ox080A Mexican Spanish 

Ox08OC Belgian French 

Ox081O Swiss Italian 

Ox0813 Belgian Dutch 

Ox0814 Norwegian - Nynorsk 

Ox0816 Portuguese 

Ox081A Serbo-Croatian (Cyrillic) 

OxOCOC Canadian French 

Oxl0OC Swiss French 

VerQueryValue 3.1 

Syntax #include <ver.h> 
BOOL VerQueryValueOpvBlock, IpszSubBlock, IplpBuffer, lpcb) 

function VerQueryValue(Block: Pointer; SubBlock: PChar; var Buffer: 
Pointer; var Len: Word): Bool; 

The VerQueryValue function returns selected version information from 
the specified version-information resource. To obtain the appropriate 
resource, the GetFileVersionlnfo function must be called before 
VerQueryValue. 

Parameters IpvBlock Points to the buffer containing the version-information 
resource returned by the GetFileVersionlnfo function. 

IpszSubBlock Points to a zero-terminated string specifying which 
version-information value to retrieve. The string consists 
of names separated by backslashes (\ ) and can have one of 
the following forms: 

484 Windows API Guide 



Form 

VerQueryValue 

Description 

Specifies the root block. The function 
retrieves a pointer to the 
VS_FIXEDFILEINFO structure for the 
version-information resource. 

\ VarFilelnfo\ Translation Specifies the translation table in the 
variable information block. The 
function retrieves a pointer to an 
array of language and character-set 
identifiers. An application uses these 
identifiers to create the name of an 
language-specific block in the 
version-information resource. 
Specifies a value in a 
language-specific block. The 
lang-charset name is a concatenation 
of a language and character-set 
identifier pair found in the 
translation table for the resource. 
The lang-charset name must be 
specified as a hexadecimal string. 
The string-name name is one of the 
predefined strings described in the 
following Comments section. 

\StringFilelnfo\lang-charset \string-name 

lplpBuffer 

lpcb 

Points to a buffer that receives a pointer to the 
version-information value. 

Points to a buffer that receives the length, in bytes, of the 
version-information value. 

Return Value The return value is nonzero if the specified block exists and version 
information is available. If lpcb is zero, no value is available for the 
specified version-information name. The return value is zero if the 
specified name does not exist or the resource pointed to by lpvBlock is not 
valid. 

Comments The string-name in the lpszSubBlock parameter can be one of the following 
predefined names: 

Name 

Comments 

CompanyName 

Chapter 4, Functions 

Value 

Specifies additional information that should be displayed 
for diagnostic purposes. 
Specifies the company that produced the file-for 
example, "Microsoft Corporation" or "Standard 
Microsystems Corporation, Inc." . This string is required. 

485 



VerQueryValue 

Name 

File Description 

FileVersion 

Internal Name 

LegalCopyright 

LegalTrademarks 

OriginalFilenarne 

PrivateBuild 

ProductName 

ProductVersion 

Special Build 

486 

Value 

Specifies a file description to be presented to users. This 
string may be displayed in a list box when the user is 
choosing files 
to install-for example, "Keyboard Driver for AT-Style 
Keyboards" or ''Microsoft Word for Windows". This 
string is required. 
Specifies the version number of the file-for example, 
"3.10" or "S.00.RC2". This string is required. 
Specifies the internal name of the file, if one exists-for 
example, a module name if the file is a dynamic-link 
library. If the file has no internal name, this string should 
be the original filename, without extension. This string is 
required. 
Specifies all copyright notices that apply to the file. This 
should include the full text of all notices, legal symbols, 
copyright dates, and so on-for example, "Copyright 
Microsoft Corporation 1990-1991". This string is optional. 
Specifies all trademarks and registered trademarks that 
apply to the file. This should include the full text of all 
notices, legal symbols, trademark numbers, and so 
on-for example, "Windows(TM) is a trademark of 
Microsoft Corporation". This string is optional. 
Specifies the original name of the file, not including a 
path. This information enables an application to 
determine whether a file has been renamed by a user. The 
format of the name depends on the file system for which 
the file was created. This string is required. 
Specifies information about a private version of the 
file-for example, "Built by TESTER1 on \ TESTBED". 
This string should be present only if the 
VS_FF _PRIVATEBUILD flag is set in the dwFileFlags 
member of the VS_FIXEDFILEINFO structure of the root 
block. 
Specifies the name of the product with which the file is 
distributed-for example, ''Microsoft Windows". This 
string is required. 
Specifies the version of the product with which the file is 
distributed-for example, "3.10" or "S.00.RC2". This 
string is required. 
Specifies how this version of the file differs from the 
standard version-for example, "Private build for 
TESTER1 solving mouse problems on M2S0 and M2S0E 
computers". This string should be present only if the 
VS_FF _SPECIALBUILD flag is set in the dwFileFlags 
member of the VS_FIXEDFILEINFO structure in the root 
block. 

Windows API Guide 



WindowProc 

Example The following example loads the version information for a dynamic-link 
library and retrieves the company name: 

BYTE abData[512]i 
DWORD handle i 
DWORD dwSizei 
LPBYTE lpBuffer i 
char szName[512]i 

dwSize = GetFileVersionlnfoSize (lie: \ \dll \ \sample.dll", &handle)) i 

GetFileVersionlnfo("e:\\dll\\sample.dll", handle, dwSize, abData))i 

VerQueryValue(abData, "\\VarFilelnfo\\Translation", &lpBuffer, 
&dwSize))i 

if (dwSize! =0) { 
wsprintf(szName, "\\StringFilelnfo\\%8lx\\CompanyName", &lpBuffer)i 
VerQueryValue(abData, szName, &lpBuffer, &dwSize); 

See Also GetFileVersionlnfo 

WindowProc 2.x 

Syntax LRESULT CALLBACK WindowProc(hwnd, msg, wParam,lParam) 

The WindowProc function is an application-defined callback function that 
processes messages sent to a window. 

Parameters hwnd 

msg 

wParam 

IParam 

Identifies the window. 

Specifies the message. 

Specifies 16 bits of additional message-dependent 
information. 

Specifies 32 bits of additional message-dependent 
information. 

Return Value The return value is the result of the message processing. The value 
depends on the message being processed. 

Comments The WindowProc name is a placeholder for the application-defined 
function name. The actual name must be exported by including it in an 
EXPORTS statement in the application's module-definition file. 

See Also DefWindowProc, RegisterClass 

Chapter 4, Functions 487 



WNetAddConnection 

WNetAddConnection 3.1 

Syntax UINT WNetAddConnectionOpszNetPath, IpszPassword, IpszLocalName) 

function WN etAdd Connection OpszN etPath, I pszPassword, 
IpszLocalName: PChar): Word; 

The WNetAddConnection function redirects the specified local device 
(either a disk drive or a printer port) to the given shared device or remote 
server. 

Parameters IpszNetPath Points to a null-terminated string specifying the shared 
device or remote server. 

IpszPassword Points to a null-terminated string specifying the network 
password for the given device or server. 

IpszLocalName Points to a null-terminated string specifying the local drive 
or device to be redirected. AlllpszLocalName strings (such 
as LPTl) are case-independent. Only the drive names A 
through Z and the device names LPTI through LPT3 are 
used. 

Return Value The return value is one of the following: 

Value 

WN_SUCCESS 
WN_NOT_SUPPORTED 
WN_OUT_OF_MEMORY 
WN_NET_ERROR 

WN_BAD _POINTER 
WN_BAD _NETNAME 
WN_BAD_LOCALNAME 
WN_BAD_PASSWORD 
WN_ACCESS_DENIED 

WN_ALREADY_CONNECTED 

Meaning 

The function was successful. 
The function was not supported. 
The system was out of memory. 
An error occurred on the network. 
The pointer was invalid. 
The network resource name was invalid. 
The local device name was invalid. 
The password was invalid. 
A security violation occurred. 
The local device was already connected to a 
remote resource. 

See Also WNetCancelConnection, WNetGetConnection 

488 Windows API Guide 



WNetGetConnection 

WNetCancelConnection 3.1 

Syntax UINT WNetCancelConnection(lpszName, fForce) 

function WNetCancelConnection(lpszName: PChar; tForce: Bool): Word; 

The WNetCancelConnection function cancels a network connection. 

Parameters IpszName Points to either the name of the redirected local device 
(such as LPTl) or a fully qualified network path. If a 
network path is specified, the driver cancels all the 
connections to that resource. 

fForce Specifies whether any open files or open print jobs on the 
device should be closed before the connection is canceled. 
If this parameter is FALSE and there are open files or jobs, 
the connection should not be canceled and the function 
should return the WN_ OPEN_FILES error value. 

Return Value The return value is one of the following: 

Value 

WN_SUCCESS 
WN_NOT_SUPPORTED 
WN_OUT_OF_MEMORY 
WN_NET_ERROR 
WN_BAD _POINTER 
WN_BAD_VALUE 

Meaning 

The function was successful. 
The function was not supported. 
The system was out of memory. 
An error occurred on the network. 
The pointer was invalid. 
The IpszName parameter was not a valid local 
device or network name. 

WN_NOT_CONNECTED The IpszName parameter was not a redirected local 
device or currently accessed network resource. 
Files were open and the fForce parameter was 
FALSE. The connection was not canceled. 

See Also WNetAddConnection, WNetGetConnection 

WNetGetConnection 

Syntax UINT WNetGetConnection(lpszLocalName,lpszRemoteName, 
cbRemoteName) 

3.1 

function WNetGetConnection(lpszLocalName, IpszRemoteName: PChar; 
cbBufferSize: PWord): Word; 

Chapter 4, Functions 489 



WordBreakProc 

The WNetGetConnection function returns the name of the network 
resource associated with the specified redirected local device. 

Parameters IpszLocalName 

IpszRemoteName 

cbRemoteName 

Points to a null-terminated string specifying the 
name of the redirected local device. 

Points to the buffer to receive the null-terminated 
name of the remote network resource. 

Points to a variable specifying the maximum 
number of bytes the buffer pointed to by 
IpszRemoteName can hold. The function sets this 
variable to the number of bytes copied to the 
buffer. 

Return Value The return value is one of the following: 

Value 

WN_SUCCESS 
WN_NOT_SUPPORTED 

WN_OUT_OF_MEMORY 
WN_NET _ERROR 

WN_BAD_POINTER 
WN_BAD_VALUE 

Meaning 

The function was successful. 
The function was not supported. 
The system was out of memory. 
An error occurred on the network. 
The pointer was invalid. 
The szLocalName parameter was not a valid local 
device. 
The szLocalName parameter was not a redirected 
local device. 
The buffer was too small. 

See Also WNetAddConnection, WNetCancelConnection 

Word BreakProc 3.1 

490 

Syntax int CALLBACK WordBreakProc{lpszEditText, ichCurrentWord, 
cbEditText, action) 

TEditWordBreakProc = function{lpch: PChar; ichCurrent: Integer; cch: 
Integer; Code: Integer): Integer; 

The WordBreakProc function is an application-defined callback function 
that the system calls whenever a line of text in a multiline edit control 
must be broken. 

Parameters IpszEditText Points to the text of the edit control. 

Windows API Guide 



ichCurrent Word 

cbEditText 

action 

WordBreakProc 

Specifies an index to a word in the buffer of text 
that identifies the point at which the function 
should begin checking for a word break. 

Specifies the number of bytes in the text. 

Specifies the action to be taken by the callback 
function. This parameter can be one of the 
following values: 

Value 

WB _ISDELIMITER 

Action 

Look for the beginning of a 
word to the left of the current 
position. 
Look for the beginning of a 
word to the right of the current 
position. 
Check whether the character at 
the current position is a 
delimiter. 

Return Value If the action parameter specifies WB _ISDELIMITER, the return value is 
non-zero (TRUE) if the character at the current position is a delimiter, or 
zero if it is not. Otherwise, the return value is an index to the begining of a 
word in the buffer of text. 

Comments A carriage return (CR) followed by a linefeed (LF) must be treated as a 
single word by the callback function. Two carriage returns followed by a 
linefeed also must be treated as a single word. 

An application must install the callback function by specifying the 
procedure-instance address of the callback function in a 
EM_SETWORDBREAKPROC message. 

WordBreakProc is a placeholder for the library-defined function name. 
The actual name must be exported by including it in an EXPORTS 
statement in the library's module-definition file. 

See Also Send Message 

Chapter 4, Functions 491 



492 Windows API Guide 



c H 

Chapter 5, Data types 

A p T E R 

5 

Data types 
The data types in this chapter are keywords that define the size 
and meaning of parameters and return values associated with 
functions for the Microsoft Windows operating system, version 
3.1. The following table contains character, integer, and Boolean 
types; pointer types; and handles. The character, integer, and 
Boolean types are common to most C compilers. Most of the 
pointer-type names begin with a prefix of P, N (for near pointers), 
or LP (for long pointers). A near pointer accesses data within the 
current data segment, and a long pointer contains a 32-bit 
segment:offset value. A Windows application uses a handle to 
refer to a resource that has been loaded into memory. Windows 
provides access to these resources through internally maintained 
tables that contain individual entries for each handle. Each entry 
in the handle table contains the address of the resource and a 
means of identifying the resource type. 

The Windows data types are defined in the following table: 

Type 

ABORTPROC 

ATOM 
BOOl 
BYTE 

Definition 

32-bit pointer to an AbortProc callback 
function. 
16-bit value used as an atom handle. 
16-bit Boolean value. 
8-bit unsigned integer. Use lPBYTE to 
create 32-bit pointers. Use PBVTE to 
create pointers that match the compiler 
memory model. 

493 



494 

Type 

CATCHBUF[9] 

COLORREF 

DLGPROC 

DWORD 

FARPROC 

FNCALLBACK 

FONTENUMPROC 

GLOBALHANDLE 

GNOTIFYPROC 

GOBJENUMPROC 

GRAYSTRINGPROC 

HANDLE 

HCURSOR 
HFILE 

HGDIOBJ 

HGLOBAL 

HHOOK 

HKEY 

HLOCAL 

HMODULE 

HOBJECT 

Definition 

I8-byte buffer used by the Catch function. 
32-bit value used as a color value. 
32-bit pointer to a dialog box procedure. 
32-bit unsigned integer or a 
segment:offset address. Use LPDWORD 
to create 32-bit pointers. Use PDWORD to 
create pointers that match the compiler 
memory model. 
32-bit pointer to a function. 
32-bit value identifying the DdeCaliback 
function. Use PFNCALLBACK to create 
pointers that match the compiler 
memory model. 
32-bit pointer to an EnumFontsProc 
callback function. 
I6-bit value used as a handle to a global 
memory object. 
32-bit pointer to a NotifyProc callback 
function. 
32-bit pointer to a EnumObjectsProc 
callback function. 
32-bit pointer to a GrayStringProc 
callback function. 
I6-bit value used as a general handle. 
Use LPHANDLE to create 32-bit pointers. 
Use SPHANDLE to create 16-bit pointers. 
Use PHANDLE to create pointers that 
match the compiler memory model. 
I6-bit value used as a cursor handle. 
I6-bit value used as a file handle. 
I6-bit value used as a graphics device 
interface (GD!) object handle. 
I6-bit value used as a handle to a global 
memory object. 
32-bit value used as a hook handle. 
32-bit value used as a handle to a key in 
the registration database. Use PH KEY to 
create 32-bit pointers. 
I6-bit value used as a handle to a local 
memory object. 
I6-bit value used as a module handle. 
16-bit value used as a handle to an OLE 
object. 

Windows API Guide 



Chapter 5, Data types 

Type 

HWND 

HOOKPROC 

HRSRC 

LHCLIENTDOC 

LHSERVER 

LHSERVERDOC 

LlNEDDAPROC 

LOCALHANDLE 

LONG 

LPABC 

LPARAM 

LPBI 

LPBITMAP 

LPBITMAPCOREHEADER 

LPBITMAPCOREINFO 

LPBITMAPFILEHEADER 

LPBITMAPINFO 

Definition 

16-bit value used as a handle to a 
window. 
32-bit pointer to a hook procedure. 
16-bit value used as a resource handle. 
32-bit value used as a handle to an OLE 
client document. 
32-bit value used as a handle to an OLE 
server. 
32-bit value used as a handle to an OLE 
server document. 
32-bit pointer to a LineDDAProc callback 
function. 
16-bit value used as a handle to a local 
memory object. 
32-bit signed integer. 
32-bit pointer to an ABC structure. 
32-bit signed value passed as a 
parameter to a window procedure or 
callback function. 
32-bit pointer to a BANDINFOSTRUCT 
structure. 
32-bit pointer to a BITMAP structure. Use 
NPBITMAP to create 16-bit pointers. Use 
PBITMAP to create pointers that match 
the compiler memory model. 
32-bit pointer to a 
BITMAPCOREHEADER structure. Use 
PBITMAPCOREHEADER to create 
pointers that match the compiler 
memory model. 
32-bit pointer to a BITMAPCOREINFO 
structure. Use PBITMAPCOREINFO to 
create pointers that match the compiler 
memory model. 
32-bit pointer to a BITMAPFILEHEADER 
structure. Use PBITMAPFILEHEADER to 
create pointers that match the compiler 
memory model. 
32-bit pointer to a BITMAPINFO 
structure. Use PBITMAPINFO to create 
pointers that match the compiler 
memory model. 

495 



496 

Type 

LPBITMAPINFOHEADER 

LPCATCHBUF 

LPCBT _ CREATEWND 

LPCHOOSECOLOR 

LPCHOOSEFONT 

LPCLlENTCREATESTRUCT 

LPCOMPAREITEMSTRUCT 

LPCPLINFO 

LPCREATESTRUCT 

LPCSTR 

LPCTLINFO 

LPCTLSTVLE 

LPDCB 

LPDEBUGHOOKINFO 

LPDELETEITEMSTRUCT 

LPDEVMODE 

LPDEVNAMES 

LPDOCINFO 

Definition 

32-bit pointer to a BITMAPINFOHEADER 
structure. Use PBITMAPINFOHEADER to 
create pointers that match the compiler 
memory model. 
32-bit pointer to a CATCHBUF array. 
32-bit pointer to a CBT_CREATEWND 
structure. 
32-bit pointer to a CHOOSECOLOR 
structure. 
32-bit pointer to a CHOOSEFONT 
structure. 
32-bit pointer to a 
CLiENTCREATESTRUCT structure. 
32-bit pointer to a 
COMPAREITEMSTRUCT structure. Use 
PCOMPAREITEMSTRUCT to create 
pointers that match the compiler 
memory model. 
32-bit pointer to a CPLINFO structure. 
Use PCPLINFO to create pointers that 
match the compiler memory model. 
32-bit pointer to a CREATESTRUCT 
structure. 
32-bit pointer to a nonmodifiable 
character string. 
32-bit pointer to a CTLINFO structure. 
Use PCTLINFO to create pointers that 
match the compiler memory model. 
32-bit pointer to a CTLSTYLE structure. 
Use PCTLSTYLE to create pointers that 
match the compiler memory model. 
32-bit pointer to a DCB structure. 
32-bit pointer to a DEBUGHOOKINFO 
structure. 
32-bit pointer to a DELETEITEMSTRUCT 
structure. Use PDELETEITEMSTRUCT to 
create pointers that match the compiler 
memory model. 
32-bit pointer to a DEVMODE structure. 
Use NPDEVMODE to create 16-bit 
pointers. Use PDEVMODE to create 
pointers that match the compiler 
memory model. 
32-bit pointer to a DEVNAMES structure. 
32-bit pointer to a DOCINFO structure. 

Windows API Guide 



Chapter 5, Data types 

Type 

LPDRAWITEMSTRUCT 

LPDRIVERINFOSTRUCT 

LPDRVCONFIGINFO 

LPEVENTMSG 

LPDRIVERINFOSTRUCT 

LPFINDREPLACE 

LPFMS_ GETDRIVEINFO 

LPFMS_GETFILESEL 

LPFMS_LOAD 

LPHANDLETABLE 

LPHELPWININFO 

LPINT 

LPKERNINGPAIR 

LPLOGBRUSH 

Definition 

32-bit pointer to a DRAWITEMSTRUCT 
structure. Use PDRAWITEMSTRUCT to 
create pointers that match the compiler 
memory model. 
32-bit pointer to a DRIVERINFOSTRUCT 
structure. 
32-bit pointer to a DRVCONFIGINFO 
structure. Use PDRVCONFIGINFO to 
create pointers that match the compiler 
memory model. 
32-bit pointer to a EVENTMSG structure. 
Use NPEVENTMSG to create 16-bit 
pointers. Use PEVENTMSG to create 
pointers that match the compiler 
memory model. 
32-bit pointer to a DRIVERINFOSTRUCT 
structure. 
32-bit pointer to a FINDREPLACE 
structure. 
32-bit pointer to a FMS_GETDRIVEINFO 
structure. 
32-bit pointer to a FMS_GETFILESEL 
structure. 
32-bit pointer to a FMS_LOAD structure. 
32-bit pointer to a HANDLETABLE 
structure. Use PHANDLETABLE to create 
pointers that match the compiler 
memory model. 
32-bit pointer to a HELPWININFO 
structure. Use PHELPWININFO to create 
pointers that match the compiler 
memory model. 
32-bit pointer to a 16-bit signed value. 
Use PINT to create pointers that match 
the compiler memory model. 
32-bit pointer to a KERNING PAIR 
structure. 
32-bit pointer to a LOG BRUSH structure. 
Use NPLOGBRUSH to create 16-bit 
pointers. Use PLOGBRUSH to create 
pointers that match the compiler 
memory model. 

497 



498 

Type 

LPLOGFONT 

LPLOGPALETTE 

LPLOGPEN 

LPLONG 

LPMAT2 
LPMDICREATESTRUCT 

LPMEASUREITEMSTRUCT 

LPMETAFILEPICT 

LPMETARECORD 

LPMOUSEHOOKSTRUCT 

LPMSG 

LPNCCALCSIZE_PARAMS 

LPNEWCPLINFO 

Definition 

32-bit pointer to a LOG FONT structure. 
Use NPLOGFONT to create 16-bit 
pointers. Use PLOGFONT to create 
pointers that match the compiler 
memory model. 
32-bit pointer to a LOG PALETTE 
structure. Use NPLOGPALETTE to create 
16-bit pointers. Use PLOGPALETTE to 
create pointers that match the compiler 
memory model. 
32-bit pointer to a LOG PEN structure. 
Use NPLOGPEN to create 16-bit pointers. 
Use PLOGPEN to create pointers that 
match the compiler memory model. 
32-bit pointer to a 32-bit signed integer. 
Use PLONG to create pointers that match 
the compiler memory model. 
32-bit pointer to a MAT2 structure. 
32-bit pointer to an MDICREATESTRUCT 
structure. 
32-bit pointer to a 
MEASUREITEMSTRUCT structure. Use 
PMEASUREITEMSTRUCT to create 
pointers that match the compiler 
memory model. 
32-bit pointer to a METAFILEPICT 
structure. 
32-bit pointer to a METARECORD 
structure. Use PMETARECORD to create 
pointers that match the compiler 
memory model. 
32-bit pointer to a MOUSEHOOKSTRUCT 
structure. 
32-bit pointer to an MSG structure. Use 
NPMSG to create 16-bit pointers. Use 
PMSG to create pointers that match the 
compiler memory model. 
32-bit pointer to an 
NCCALCSIZE_PARAMS structure. 
32-bit pointer to an NEWCPLINFO 
structure. Use PNEWCPLINFO to create 
pointers that match the compiler 
memory model. 

Windows API Guide 



Chapter 5, Data types 

Type 

LPNEWTEXTMETRIC 

LPOFSTRUCT 

LPOLECLIENT 

LPOLECLlENTVTBL 

LPOLEOBJECT 

LPOLEOBJECTVTBL 

LPOLESERVER 

LPOLESERVERDOC 

LPOLESERVERDOCVTBL 

LPOLESERVERVTBL 

LPOLESTREAM 

LPOLESTREAMVTBL 

LPOLETARGETDEVICE 

LPOPENFILENAME 

LPOUTLINETEXTMETRIC 

LPPAINTSTRUCT 

LPPALETTEENTRY 

LPPOINT 

LPPOINTFX 

LPPRINTDLG 

Definition 

32-bit pointer to a NEWTEXTMETRIC 
structure. Use NPNEWTEXTMETRIC to 
create 16-bit pointers. Use 
PNEWTEXTMETRIC to create pointers 
that match the compiler memory model. 
32-bit pointer to an OFSTRUCT structure. 
Use NPOFSTRUCT to create 16-bit 
pointers. Use POFSTRUCT to create 
pointers that match the compiler 
memory model. 
32-bit pointer to OLECLIENT structure. 
32-bit pointer to OLECLlENTVTBL 
structure. 
32-bit pointer to OLEOBJECT structure. 
32-bit pointer to OLEOBJECTVTBL 
structure. 
32-bit pointer to OLESERVER structure. 
32-bit pointer to OLESERVERDOC 
structure. 
32-bit pointer to OLESERVERDOCVTBL 
structure. 
32-bit pointer to OLESERVERVTBL 
structure. 
32-bit pointer to OLESTREAM structure. 
32-bit pointer to OLESTREAMVTBL 
structure. 
32-bit pointer to OLETARGETDEVICE 
structure. 
32-bit pointer to OPENFILENAME 
structure. 
32-bit pointer to an 
OUTLINETEXTMETRIC structure. 
32-bit pointer to a PAINTSTRUCT 
structure. Use NPPAINTSTRUCT to create 
16-bit pointers. Use PPAINTSTRUCT to 
create pointers that match the compiler 
memory model. 
32-bit pointer to a PALETTEENTRY 
structure. 
32-bit pointer to a POINT structure. Use 
NPPOINT to create 16-bit pointers. Use 
PPOINT to create pointers that match the 
com piler memory model. 
32-bit pointer to a POINTFX structure. 
32-bit pointer to a PRINTDLG structure. 

499 



500 

Type 

LPRASTERIZER_STATUS 

LPRECT 

LPRGBQUAD 
LPRGBTRIPLE 
LPSEGINFO 
LPSIZE 

LPSTR 

LPTEXTMETRIC 

LPTTPOLYCURVE 

LPTTPOLYGONHEADER 

LPVOID 
LPWINDOWPLACEMENT 

LPWINDOWPOS 

LPWNDCLASS 

LPWORD 

LRESULT 

MFENUMPROC 

Definition 

32-bit pointer to a RASTERIZER_STATUS 
structure. 
32-bit pointer to a RECT structure. Use 
NPRECT to create 16-bit pointers. Use 
PRECT to create pointers that match the 
compiler memory model. 
32-bit pointer to a RGBQUAD structure. 
32-bit pointer to a RGBTRIPLE structure. 
32-bit pointer to a SEGINFO structure. 
32-bit pointer to a SIZE structure. Use 
NPSIZE to create 16-bit pointers. Use 
PSIZE to create pointers that match the 
compiler memory model. 
32-bit pointer to a character string. Use 
NPSTR to create 16-bit pointers. Use 
PSTR to create pointers that match the 
compiler memory model. 
32-bit pointer to a TEXTMETRIC 
structure. Use NPTEXTMETRIC to create 
16-bit pointers. Use PTEXTMETRIC to 
create pointers that match the compiler 
memory model. 
32-bit pointer to a TTPOLYCURVE 
structure. 
32-bit pointer to a TTPOLYGONHEADER 
structure. 
32-bit pointer to an unspecified type. 
32-bit pointer to a WINDOWPLACEMENT 
structure. Use PWINDOWPLACEMENT to 
create pointers that match the compiler 
memory model. 
32-bit pointer to a WINDOWPOS 
structure. 
32-bit pointer to a WNDCLASS structure. 
Use NPWNDCLASS to create 16-bit 
pointers. Use PWNDCLASS to create 
pointers that match the compiler 
memory model. 
32-bit pointer to a 16-bit unsigned value. 
Use PWORD to create pointers that 
match the compiler memory model. 
32-bit signed value returned from a 
window procedure or callback function. 
32-bit pointer to an EnumMetaFileProc 
callback function. 

Windows API Guide 



Chapter 5, Data types 

Type 

NEARPROC 

OLECLIPFORMAT 

PATTERN 

PCONVCONTEXT 

PCONVINFO 

PHSZPAIR 

PROPENUMPROC 

RSRCHDLRPROC 

TIMERPROC 

UINT 

WNDENUMPROC 

WNDPROC 

WORD 

WPARAM 

Definition 

16-bit pointer to a function. 
16-bit value used as a standard clipboard 
format. 
Equivalent to the LOGBRUSH structure. 
Use LPPATTERN to create 32-bit pointers. 
Use NPPATTERN to create 16-bit 
pointers. Use PPATTERN to create 
pointers that match the compiler 
memory model. 
32-bit pointer to a CONVCONTEXT 
structure. 
32-bit pointer to a CONVINFO structure. 
32-bit pointer to a HSZPAIR structure. 
32-bit pointer to an EnumPropFixedProc 
or EnumPropMovableProc callback 
function. 
32-bit pointer to a LoadProc callback 
function. 
32-bit pointer to a TimerProc callback 
function. 
16-bit unsigned value. 
32-bit pointer to an EnumWindowsProc 
callback function. 
32-bit pointer to a window procedure. 
16-bit unsigned value. 
16-bit signed value passed as a 
parameter to a window procedure or 
callback function. 

501 



502 Windows API Guide 



c H A p T E R 

6 

CB ADDSTRING 
wParam = 0; 
IParam = (LPARAM) (LPCSTR) Ipsz; 

Messages 

/* not used, must be zero */ 
/* address of string to add */ 

3.0 

An application sends a CB_ADDSTRING message to add a string to the 
list box of a combo box. If the list box does not have the CBS_SORT style, 
the string is added to the end of the list. Otherwise, the string is inserted 
into the list and the list is sorted. 

Parameters Ipsz Value of IParam. Points to the null-terminated string to be 
added. If the combo box was created with an owner-drawn 
style but without the CBS_HASSTRINGS style, the value 
of the Ipsz parameter is stored rather than the string it 
would otherwise point to. 

Return Value The return value is the zero-based index to the string in the list box. The 
return value is CB_ERR if an error occurs; the return value is 
CB _ERRSP ACE if insufficient space is available to store the new string. 

Comments If an owner-drawn combo box was created with the CBS_SORT style but 
not the CBS_HASSTRINGS style, the WM_COMPAREITEM message is 
sent one or more times to the owner of the combo box so that the new 
item can be properly placed in the list box. 

Chapter 6, Messages 503 



CB_DELETESTRING 

To insert a string into a specific location within the list, use the 
CB_INSERTSTRING message. 

Example This example adds the string "my string" to a list box: 

DWORDcl.wlndex; 

dwlndex = SendDlgltemMessage(hdlg, ID MYCOMBOBOX, 
CB_ADDSTRING, 0, (LPARAM) ((LPCSTR) "my string"»; 

See Also CB_INSERTSTRING, WM_COMPAREITEM 

CB_DELETESTRING 

CB DELETESTRING 
wParam = (WPARAM) index; /* item to delete */ 
lParam = OL; /* not used, must be zero */ 

3.0 

An application sends a CB_DELETESTRING message to delete a string in 
the list box of a combo box. 

Parameters index Value of wParam. Specifies the zero-based index of the 
string to delete. 

Return Value The return value is a count of the strings remaining in the list. The return 
value is CB_ERR if the index parameter specifies an index greater than the 
number of items in the list. 

Comments If the combo box was created with an owner-drawn style but without the 
CBS_HASSTRINGS style, a WM_DELETEITEM message is sent to the 
owner of the combo box so that the application can free any additional 
data associated with the item. 

Example This example deletes the first string in a combo box: 

DWORD dwRemaining; 

dwRemaining = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX, 
CB_DELETESTRING, 0, OL); 

See Also WM_DELETEITEM 

504 Windows API Guide 



CB_GETDROPPEDCONTROLRECT 

CB_FINDSTRINGEXACT 3.1 

CB FINDSTRINGEXACT 
wParam = (WPARAM) indexStart; /* item before start of search */ 
lParam = (LPARAM) (LPCSTR) lpszFind; /* address of prefix string */ 

An application sends a CB_FINDSTRINGEXACT message to find the first 
list box string (in a combo box) that matches the string specified in the 
IpszFind parameter. 

Parameters indexStart Value of wParam. Specifies the zero-based index of the item 
before the first item to be searched. When the search 
reaches the bottom of the list box, it continues from the top 
of the list box back to the item specified by the indexStart 
parameter. If indexStart is -I, the entire list box is searched 
from the beginning. 

IpszFind Value of IParam. Points to the null-terminated string to 
search for. This string can contain a complete filename, 
including the extension. The search is not case-sensitive, so 
this string can contain any combination of uppercase and 
lowercase letters. 

Return Value The return value is the zero-based index of the matching item, or it is 
CB _ERR if the search was unsuccessful. 

Comments If the combo box was created with an owner-drawn style but without the 
CBS_HASSTRINGEXS style, this message returns the index of the item 
whose doubleword value matches the value of the IpszFind parameter. 

See Also CB _FINDSTRING, CB _SETCURSEL 

CB_ GETDROPPEDCONTROLRECT 

CB GETDROPPEDCONTROLRECT 
wParam = 0; 
lParam = (LPARAM) (RECT FAR*) lprc; 

3.1 

/* not used, must be zero */ 
/* address of RECT structure */ 

An application sends a CB_GETDROPPEDCONTROLRECT message to 
retrieve the screen coordinates of the visible (dropped-down) list box of a 
combo box. 

Chapter 6, Messages 505 



CB_GETDROPPEDSTATE 

Parameters [pre Value of [Paramo Points to the RECT structure that is to 
receive the coordinates. The RECT structure has the 
following form: 

typedef struct tagRECT 
int left; 
int top; 
int right; 
int bottom; 

} RECT; 

/* rc */ 

Return Value The return value is always CB_OKA Y. 

Example This example retrieves the bounding rectangle of the list box of a combo 
box: 

RECT rcl; 

SendDlgltemMessage{hdlg, ID_MYCOMBOBOX, 
CB_GETDROPPEDCONTROLRECT, 0, (DWORD) ({LPRECT) &rcl)); 

CB_ GETDROPPEDSTATE 

CB GETDROPPEDSTATE 
wParam = 0; 
lParam = OL; 

/* not used, must be zero */ 
/* not used, must be zero */ 

3.1 

An application sends a CB_GETDROPPEDSTATE message to determine 
whether the list box of a combo box is visible (dropped down). 

Parameters This message has no parameters. 

Return Value The return value is nonzero if the list box is visible; otherwise, it is zero. 

Example This example determines whether the list box of a combo box is visible: 

BOOLfDropped; 

fDropped = (BOOL) SendDlgltemMessage{hdlg, ID_MYCOMBOBOX, 
CB_GETDROPPEDSTATE, 0, OL); 

See Also CB_SHOWDROPDOWN 

506 Windows API Guide 



CB_GETITEMHEIGHT 

CB_ GETEXTENDEDUI 

CB GETEXTENDEDUI 
wParam = 0; 
lParam = aLi 

1* not used, must be zero *1 
1* not used, must be zero *1 

3.1 

An application sends a CB_GETEXTENDEDUI message to determine 
whether a combo box has the default user interface or the extended user 
interface. 

Parameters This message has no parameters. 

Return Value The return value is nonzero if the combo box has the extended user 
interface; otherwise, it is zero. 

Comments The extended user interface differs from the default user interface in the 
following ways: 

C Clicking the static control displays the list box (CBS_DROPDOWNLIST 
style only). 

C Pressing the DOWN ARROW key displays the list box (F4 is disabled). 

a Scrolling in the static control is disabled when the item list is not visible 
(arrow keys are disabled). 

Example This example determines whether a combo box has the extended user 
interface: 

BOOLfExt ended i 

fExtended=(BOOL)SendDlgltemMessage(hdlg,ID_MYCOMBOBOX, 
CB_GETEXTENDEDUI, 0, OL); 

See Also CB _SETEXTENDEDUI 

CB_ GETITEMHEIGHT 

CB GETITEMHEIGHT 
wParam = (WPARAM) indeXi 1* item index */ 
lParam = aLi 1* not used, must be zero *1 

An application sends a CB_GETITEMHEIGHT message to retrieve the 
height of list items in a combo box. 

Chapter 6, Messages 

3.1 

507 



CB_SETEXTENDEDUI 

Parameters index Value of wParam. Specifies the component of the combo 
box whose height is to be retrieved. If the index parameter 
is -1, the height of the edit-control (or static-text) portion of 
the combo box is retrieved. If the combo box has the 
CBS_OWNERDRAWVARIABLE style, index specifies the 
zero-based index of the list item whose height is to be 
retrieved. Otherwise, index should be set to zero. 

Return Value The return value is the height, in pixels, of the list items in a combo box. 
The return value is the height of the item specified by the index parameter 
if the combo box has the CBS_OWNERDRAWVARIABLE style. The 
return value is the height of the edit-control (or static-text) portion of the 
combo box if index is -1. The return value is CB _ERR if an error occurred. 

Example This example sends a CB _ GETITEMHEIGHT message to retrieve the 
height of the list items in a combo box: 

LRESULT lrHeight; 

lrHeight = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX, 
CB_GETITEMHEIGHT, 0, OL); 

See Also CB_SETITEMHEIGHT 

CB_SETEXTENDEDUI 

CB SETEXTENDEDUI 
wParam = (WPARAM) (BOOL) fExtended; 
lParam = OL; 

/* extended UI flag */ 
/* not used, must be zero */ 

3.1 

An application sends a CB_SETEXTENDEDUI message to select either the 
default user interface or the extended user interface for a combo box that 
has the CBS_DROPDOWN or CBS_DROPDOWNLIST style. 

Parameters fExtended Value of wParam. Specifies whether the combo box should 
use the extended user interface or the default user 
interface. A value of TRUE selects the extended user 
interface; a value of FALSE selects the standard user 
interface. 

Return Value The return value is CB_OKA Y if the operation is successful, or it is 
CB_ERR if an error occurred. 

Comments The extended user interface differs from the default user interface in the 
following ways: 

508 Windows API Guide 



CB_SETITEMHEIGHT 

• Clicking the static control displays the list box (CBS_DROPDOWNLIST 
style only). 

II Pressing the DOWN ARROW key displays the list box (F4 is disabled). 

II Scrolling in the static control is disabled when the item list is not visible 
(the arrow keys are disabled). 

Example This example selects the extended user interface for a combo box: 

SendDlgltemMessage(hdl~D_MYCOMBOBO)GB_SETEXTENDEDUI, 

TRUE, OL); 

See Also CB _ GETEXTENDEDUI 

CB_SETITEMHEIGHT 3.1 

CB SETITEMHEIGHT 
wParam = (WPARAM) index; /* item index */ 
lParam= (LPARAM) (int) height; /*itemheight*/ 

An application sends a CB_SETITEMHEIGHT message to set the height 
of list items in a combo box or the height of the edit-control (or static-text) 
portion of a combo box. 

Parameters index 

height 

Value of wParam. Specifies whether the height of list items 
or the height of the edit-control (or static-text) portion of 
the combo box is set. 

If the combo box has the CBS_OWNERDRA WVARIABLE 
style, the index parameter specifies the zero-based index of 
the list item whose height is to be set; otherwise, index 
must be zero and the height of all list items will be set. 

H index is -1, the height of the edit-control or static-text 
portion of the combo box is to be set. 

Value of the low-order word of IParam. Specifies the 
height, in pixels, of the combo box component identified 
by index. 

Return Value The return value is CB _ERR if the index or height is invalid. 

Comments The height of the edit-control (or static-text) portion of the combo box is 
set independently of the height of the list items. An application must 
ensure that the height of the edit-control (or static-text) portion isn't 
smaller than the height of a particular list box item. 

Chapter 6, Messages 509 



EM_GETPASSWORDCHAR 

Example This example sends a CB_SETITEMHEIGHT message to set the height of 
list items in a combo box: 

LPARAMLrHeight; 

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, CB_SETITEMHEIGHT, 
0, lrHeight); 

See Also CB_GETITEMHEIGHT 

EM_ GETFIRSNISIBLELINE 

EM GETFIRSTVISIBLELINE 
wParam = 0; 
lParam = OL; 

/* not used, must be zero */ 
/* not used, must be zero */ 

An application sends an EM_ GETFIRSTVISIBLELINE message to 
determine the topmost visible line in an edit control. 

Parameters' This message has no parameters. 

3.1 

Return Value The return value is the zero-based index of the topmost visible line. For 
single-line edit controls, the return value is zero. 

Example This example gets the index of the topmost visible line in an edit control: 

int FirstVis; 

FirstVis = (int) SendDlgItemMessage(hdlg, IDD_EDIT, 
EM_GETFIRSTVISIBLELINE, 0, OL); 

EM_GETPASSWORDCHAR 

EM GETPASSWORDCHAR 
wParam = 0; 
lParam = OL; 

/* not used, must be zero */ 
/* not used, must be zero */ 

3.1 

An application sends an EM_ GETP ASSWORDCHAR message to retrieve 
the password character displayed in an edit control when the user enters 
text. 

Parameters This message has no parameters. 

510 Windows API Guide 



EM_SETREADONLY 

Return Value The return value specifies the character to be displayed in place of the 
character typed by the user. The return value is NULL if no password 
character exists. 

Comments If the edit control is created with the ES_PASSWORD style, the default 
password character is set to an asterisk (*). 

See Also EM_SETPASSWORDCHAR 

EM_ GETWORDBREAKPROC 

EM GETWORDBREAKPROC 
wParam = OJ 
lParam = OL; 

/* not used, must be zero */ 
/* not used, must be zero */ 

An application sends the EM_ GETWORDBREAKPROC message to an 
edit control to retrieve the current word wrap function. 

Parameters This message has no parameters. 

3.1 

Return Value The return value specifies the procedure-instance address of the 
application-defined wordwrap function. The return value is NULL if no 
wordwrap function exists. 

Comments A wordwrap function scans a text buffer (which contains text to be sent to 
the display), looking for the first word that does not fit on the current 
display line. The wordwrap function places this word at the beginning of 
the next line on the display. A wordwrap function defines at what point 
Windows should break a line of text for multiline edit controls, usually at 
a space character that separates two words. 

See Also EM_SETWORDBREAKPROC, MakeProclnstance, WordBreakProc 

EM SETREADONLY 
wParam = (WPARAM) (BOOL) fReadOnly; 
lParam = OL; 

/* read-only flag */ 
/* not used, must be zero */ 

An application sends an EM_SETREADONL Y message to set the 
read-only state of an edit control. 

Chapter 6, Messages 

3.1 

511 



EM_SETWORDBREAKPROC 

Parameters fReadOnly Value of wParam. Specifies whether to set or remove the 
read-only state of the edit control. A value of TRUE sets 
the state to read-only; a value of FALSE sets the state to 
read/write. 

Return Value The return value is nonzero if the operation is successful, or it is zero if an 
error occurs. 

Comments When the state of an edit control is set to read-only, the user cannot 
change the text within the edit control. 

Example This example sets the state of an edit control to read-only: 

SendDlgltemMessage(hdlg, IDD_EDIT, EM_SETREADONLY, 
TRUE, OL); 

EM_SElWORDBREAKPROC 3.1 

512 

EM SETWORDBREAKPROC 
wParam = 0; /* not used, must be zero */ 
lParam= (LPARAM) (EDITWORDBREAKPROC) ewbprc; /* address of function * / 

An application sends the EM_SETWORDBREAKPROC message to an 
edit control to replace the default word wrap function with an 
application-defined word wrap function. 

Parameters ewbprc Value of lParam. Specifies the procedure-instance address 
of the application-defined word wrap function. The 
MakeProclnstance function must be used to create the 
address. For more information, see the description of the 
WordBreakProc callback function. 

Return Value This message does not return a value. 

Comments A word wrap function scans a text buffer (which contains text to be sent to 
the display), looking for the first word that does not fit on the current 
display line. The wordwrap function places this word at the beginning of 
the next line on the display. 

A word wrap function defines the point at which Windows should break a 
line of text for multiline edit controls, usually at a space character that 
separates two words. Either a multiline or a single-line edit control might 
call this function when the user presses arrow keys in combination with 
the CTRL key to move the cursor to the next word or previous word. The 
default wordwrap function breaks a line of text at a space character. The 

Windows API Guide 



LB_FINDSTRINGEXACT 

application-defined function may define word wrap to occur at a hyphen 
or a character other than the space character. 

See Also EM_GETWORDBREAKPROC, MakeProclnstance, WordBreakProc 

LB_FINDSTRINGEXACT 3.1 

LB FINDSTRINGEXACT 
wParam = (WPARAM) indexStart; /* item before start of search */ 
lParam = (LPARAM) (LPCSTR) lpszFind; /* address of search string */ 

An application sends an LB_FINDSTRINGEXACT message to find the 
first list box string that matches the string specified in the lpszFind 
parameter. 

Parameters indexStart 

lpszFind 

Value of wParam. Specifies the zero-based index of the item 
before the first item to be searched. When the search 
reaches the bottom of the list box, it continues from the top 
of the list box back to the item specified by the indexStart 
parameter. If indexStart is -1, the entire list box is searched 
from the beginning. 

Value of lParam. Points to the null-terminated string to 
search for. This string can contain a complete filename, 
including the extension. The search is not case-sensitive, so 
the string can contain any combination of uppercase and 
lowercase letters. 

Return Value The return value is the index of the matching item, or it is LB_ERR if the 
search was unsuccessful. 

Comments If the list box was created with an owner-drawn style but without the 
LBS_HASSTRINGS style, this message returns the index of the item 
whose doubleword value (supplied for the IParam parameter of the 
LB_ADDSTRING or LB_INSERTSTRING message) matches the value 
supplied for the IpszFind 
parameter. 

See Also LB_ADDSTRING, LB_FINDSTRING, LB_INSERTSTRING 

Chapter 6, Messages 513 



LB_SETCARETINDEX 

LB_GETCARETINDEX 3.1 

LB GETCARETINDEX 
wParam = 0; 
lParam = OL; 

/* not used, must be zero */ 
/* not used, must be zero */ 

An application sends an LB_GETCARETINDEX message to determine the 
index of the item that has the focus rectangle in a multiple-selection list 
box. The item mayor may not be selected. 

Parameters This message has no parameters. 

Return Value The return value is the zero-based index of the item that has the focus 
rectangle in a list box. If the list box is a single-selection list box, the return 
value is the index of the item that is selected, if any. 

Example This example sends an LB_GETCARETINDEX message to retrieve the 
index of the item that has the focus rectangle in the list box: 

LRESULT lrlndex; 

lrlndex = SendDlgltemMessage(hdlg, ID_MYLISTBOX, 
LB_GETCARETINDEX, 0, OL); 

See Also LB _SETCARETINDEX 

LB_SETCARETINDEX 

LB SETCARETINDEX 
wParam = (WPARAM) index; /* item index */ 
lParam=MAKELPARAM(fScroll, 0); /* flag for scrolling item */ 

3.1 

An application sends an LB_SETCARETINDEX message to set the focus 
rectangle to the item at the specified index in a multiple-selection list box. 
If the item is not visible, it is scrolled into view. 

Parameters index 

fScroll 

Value of wParam. Specifies the zero-based index of the item 
to receive the focus rectangle in the list box. 

Value of [Paramo If this value is zero, the item is scrolled 
until it is fully visible. If this value is nonzero, the item is 
scrolled until it is at least partially visible. 

Return Value The return value is LB_ERR if an error occurs. 

514 Windows API Guide 



Example This example sends an LB_SETCARETINDEX message to set the focus 
rectangle to an item in a list box: 

WPAR.AM.vlndexi 

wlndex = Oi /* set index to first item */ 

SendDlglternMessage(hdlg, ID_MYLISTBOX, LB_SETCARETINDEX, 
wlndex, OL) i 

See Also LB_GETCARETINDEX 

STM_ GETICON 3. 1 

STM GET ICON 
wParam = Oi 
lParam = aLi 

/* not used, must be zero */ 
/* not used, must be zero */ 

An application sends an STM_ GETICON message to retrieve the handle 
of the icon associated with an icon resource. 

Parameters This message has no parameters. 

Return Value The return value is the icon handle if the operation is successful, or it is 
zero if the icon has no associated icon resource or if an error occurred. 

Example This example gets the handle of the icon associated with an icon resource: 

HICONhlconi 

hlcon=(HICON)SendDlgltemMessage(hdlg,IDD_ICON, 
STM_GETICON, 0, OL)i 

See Also STM_SETICON 

STM SETICON 
wParam = (WPARAM) (HICON) hiconi /* handle of the icon */ 

/* not used, must be zero */ lParam = aLi 

An application sends an STM_SETICON message to associate an icon 
with an icon resource. 

Parameters hicon 

Chapter 6, Messages 

Value of wParam. Identifies the icon to associate with the 
icon resource. 

515 



WM_COMMNOTIFY 

Return Value The return value is the handle of the icon that was previously associated 
with the icon resource, or it is zero if an error occurred. 

Example This example associates the system-defined question-mark icon with an 
icon resource: 

H1CONh1con,hOld1coni 

h1con=Load1con((HANDLE)NULL,1D1_QUEST10N)i 
hOld1con=(H1CON)SendDlg1temMessage(hdlg,1DD_1CON, 

STM_SET1CON, h1con, OL); 

See Also STM_ GETICON 

WM_CHOOSEFONT_GETLOGFONT 3.1 

516 

WM CHOOSEFONT GETLOGFONT - -
wPararn = Oi 
Iplf = (LPLOGFONT) IPararni 

/* not used, must be zero */ 
/* address of a LOGFONT structure */ 

An application sends a WM_CHOOSEFONT_GETLOGFONT message to 
the Font dialog box created by the ChooseFont function to retrieve the 
current LOG FONT structure. 

Parameters IpIf Points to a LOGFONT structure that receives information 
about the current logical font. 

Return Value This message does not return a value. 

Comments An application uses this message to retrieve the LOG FONT structure 
while the Font dialog box is open. When the user closes the dialog box, 
the ChooseFont function receives information about the LOG FONT 
structure. 

See Also WM_GETFONT 

WM COMMNOT1FY 
idDevice = wPararni /* communication-device 1D */ 
nNotifyStatus=LOWORD(lParam)i/*notification-statusflag*/ 

3.1 

Windows API Guide 



The WM_COMMNOTIFY message is posted by a communication device 
driver whenever a COM port event occurs. The message indicates the 
status of a window's input or output queue. 

Parameters idDevice Value of wParam. Specifies the identifier of the 
communication device that is posting the notification 
message. 

nNotifyStatus Value of the low-order word of [Paramo Specifies the 
notification status in the low-order word. The notification 
status may be one or more of the following flags: 

Value Meaning 

Indicates that an event has occurred that was enabled in the 
event word of the communication device. This event was 
enabled by a call to the SetCommEventMask function. The 
application should call the GetCommEventMask function 
to determine which event occurred and to clear the event. 
Indicates that at least cb WriteNotify bytes are in the input 
queue. The cb WriteNotify parameter is a parameter of the 
EnableCommNotification function. 
Indicates that fewer than cbOutQueue bytes are in the 
output queue waiting to be transmitted. The cbOutQueue 
parameter is a parameter of the EnableCommNotification 
function. 

Return Value An application should return zero if it processes this message. 

Comments This message is sent only when the event word changes for the 
communication device. The application that sends WM_ COMMNOTIFY 
must clear each event to be sure of receiving future notifications. 

See Also EnableCommNotification 

2.x 

#includeCdde. h> 

WM DDE ACK 
wParam = (WPARAM) hwnd; /* handle of posting window */ 
lParam = MAKELPARAM(wLow, wHigh); /* depending on received message */ 

The WM_DDE_ACK message notifies an application of the receipt and 
processing of a WM_DDE_INITIATE, WM_DDE_EXECUTE, 
WM_DDE_DATA, WM_DDE_ADVISE, WM_DDE_UNADVISE, or 

Chapter 6, Messages 517 



518 

WM_DDE_POKE message, and in some cases, of a WM_DDE_REQUEST 
message. 

Parameters hwnd Value of wParam. Specifies the handle of the window 
posting the message. 

wLow Value of the low-order word of [Paramo Specifies data as 
follows, depending on the message to which the 
WM_DDE_ACK message is responding: 

Message Parameter 

WM_DDE_EXECUTE and wStatus 
all other messages 

Description 

An atom that contains the name 
of the replying application. 
A series of flags that indicate the 
status of the response. 

wHigh Value of high-order word of [Paramo Specifies data as 
follows, depending on the message to which the 
WM_DDE_ACK message is responding: 

Message Parameter 

aTopic 

hCommands 

All other messages altem 

Return Value This message does not return a value. 

Description 

An atom that contains the topic 
with which the replying server 
window is associated. 
A handle that identifies the data 
item containing the command 
string. 
An atom that specifies the data 
item for which the response is 
sent. 

Comments The wStatus word consists of a DDEACK data structure. The DDEACK 
structure has the following form: 

#include<dde. h> 

typedef struct tagDDEACK /* ddeack */ 
WORD bAppReturnCode:8, 

reserved: 6, 
fBusy:l, 
fAck:l; 

} DDEACK; 

For a full description of this structure, see Chapter 7, "Structures." 

Windows API Guide 



Posting 
Except in response to the WM_DDE_INITIATE message, the application 
posts the WM_DDE_ACK message by calling the PostMessage function, 
not the Send Message function. When responding to 
WM_DDE_INITIATE, the application sends the WM_DDE_ACK message 
by calling Send Message. 

When acknowledging any message with an accompanying altem atom, 
the application posting WM_DDE_ACK can either reuse the altem atom 
that accompanied the original message or delete it and create a new one. 

When acknowledging WM_DDE_EXECUTE, the application that posts 
WM_DDE_ACK should reuse the hCommands object that accompanied the 
original WM_DDE_EXECUTE message. 

If an application has initiated the termination of a conversation by posting 
WM_DDE_TERMINATE and is awaiting confirmation, the waiting 
application should not acknowledge (positively or negatively) any 
subsequent messages sent by the other application. The waiting 
application should delete any atoms or shared memory objects received 
in these intervening messages (but should not delete the atoms in 
response to the WM_DDE_ACK message). 

Receiving 
The application that receives WM_DDE_ACK should delete all atoms 
accompanying the message. 

If the application receives WM_DDE_ACK in response to a message with 
an accompanying hData object, the application should delete the hData 
object. 

If the application receives a negative WM_DDE_ACK message posted in 
reply to a WM_DDE_ADVISE message, the application should delete the 
hOptions object posted with the original WM_DDE_ADVISE message. 

If the application receives a negative WM_DDE_ACK message posted in 
reply to a WM_DDE_EXECUTE message, the application should delete 
the hCommands object posted with the original WM_DDE_EXECUTE 
message. 

See Also DDEACK, PostMessage, WM_DDE_ADVISE, WM_DDE_DAT A, 
WM_DDE_EXECUTE, WM_DDE_INITIATE, WM_DDE_POKE, 
WM_DDE_REQUEST, WM_DDE_TERMINATE, WM_DDE_UNADVISE 

Chapter 6, Messages 519 



520 

2.x 

# incl ude<dde . h> 

WM DDE ADVISE 
wParam = (WPARAM) hwnd; 1* handle of posting window *1 
lPararn = MAKELPARAM (hOptions, altern) ; 1* send options and data item * 1 

A dynamic data exchange (DDE) client application posts the 
WM_DDE_ADVISE message to a DDE server application to request the 
server to supply an update for a data item whenever it changes. 

Parameters hwnd Value of wParam. Identifies the sending window. 

hOptions Value of the low-order word of [Paramo Specifies a handle 
of a global memory object that specifies how the data is to 
be sent. 

altem Value of the high-order word of [Paramo Specifies the data 
item being requested. 

Return Value This message does not return a value. 

Comments The global memory object identified by the hOptions parameter consists of 
a DDEADVISE data structure. The DDEADVISE data structure has the 
following form: 

#include<dde. h> 

typedef struct tagDDEADVISE { 1* ddeadv *1 
WORD reserved: 14, 

fDeferUpd: 1, 
fAckReq:l; 

short cfFormat; 
}DDEADVISE; 

For a full description of this structure, see Chapter 7, "Structures." 

If an application supports more than one clipboard format for a single 
topic and item, it can post multiple WM_DDE_ADVISE messages for the 
topic and item, specifying a different clipboard format with each message. 

Posting 
The application posts the WM_DDE_ADVISE message by calling the 
PostMessage function, not the Send Message function. 

The application allocates hOptions by calling the GlobalAlloc function 
with the GMEM_DDESHARE option. 

Windows API Guide 



The application allocates altem by calling the GlobalAddAtom function. 

If the receiving (server) application responds with a negative 
WM_DDE_ACK message, the posting (client) application must delete the 
hOptions object. 

Receiving 
The application posts the WM_DDE_ACK message to respond positively 
or negatively. When posting WM_DDE_ACK, the application can reuse 
the altem atom or delete it and create a new one. If the WM_DDE_ACK 
message is positive, the application should delete the hOptions object; 
otherwise, the application should not delete the object. 

See Also DDEADVISE, GlobalAddAtom, GlobalAlloc, PostMessage, 
WM_DDE_DATA, WM_DDE_REQUEST 

2.x 

# incl ude::::dde . h> 

WM DOE DATA 
wParam = (WPARAM) hwnd; /* handle of posting window */ 
lParam = MAKELPARAM(hData, altern); /* memory object and data item */ 

A dynamic data exchange (DDE) server application posts a 
WM_DDE_DATA message to a DDE client application to pass a data item 
to the client or to notify the client of the availability of a data item. 

Parameters hwnd 

hData 

altem 

Value of wParam. Specifies the handle of the window 
posting the message. 

Value of the low-order word of [Paramo Identifies the 
global memory object containing the data and additional 
information. The handle should be set to NULL if the 
server is notifying the client that the data item value has 
changed during a warm link. A warm link is established 
when the client sends a WM_DDE_ADVISE message with 
the fDeferUpd bit set. 

Value of the high-order word of [Paramo Specifies the data 
item for which data or notification is sent. 

Return Value This message does not return a value. 

Comments The global memory object identified by the hData parameter consists of a 
DDEDATA structure. The DDEDATA structure has the following form: 

Chapter 6, Messages 521 



522 

#include<dde. h> 

typedef struct tagDDEDATA { /* ddedat */ 
WORD unused: 12, 

fResponse:1, 
fRelease:1, 
reserved: 1, 
fAckReq:1i 

short cfFormati 
BYTE Value[lli 

}DDEDATAi 

For a full description of this structure, see Chapter 7, "Structures." 

Posting 
The application posts the WM_DDE_DATA message by calling the 
PostMessage function, not the Send Message function. 

The application allocates hData by calling the GlobalAlioc function with 
the GMEM_DDESHARE option. 

The application allocates altern by calling the GlobalAddAtom function. 

If the receiving (client) application responds with a negative 
WM_DDE_ACK message, the posting (server) application must delete the 
hData object. 

If the posting (server) application sets the fRelease member of the 
DDEDATA structure to FALSE, the posting application is responsible for 
deleting hData upon receipt of either a positive or negative 
acknowledgment. 

The application should not set both the fAckReq and fRelease members 
of the DDEDATA structure to FALSE. If both members are set to FALSE, it 
is difficult for the posting (server) application to determine when to delete 
hData. 

Receiving 
If fAckReq is TRUE, the application posts the WM_DDE_ACK message to 
respond positively or negatively. When posting WM_DDE_ACK, the 
application can reuse the altern atom or delete it and create a new one. 

If fAckReq is FALSE, the application deletes the altern atom. 

If the posting (server) application specified hData as NULL, the receiving 
(client) application can request the server to send the actual data by 
posting a WM_DDE_REQUEST message. 

Windows API Guide 



After processing a WM_DDE_DATA message in which hData is not 
NULL, the application should delete hData unless either of the following 
conditions is true: 

rl The fRelease member is FALSE. 

a The fRelease member is TRUE, but the receiving (client) application 
responds with a negative WM_DDE_ACK message. 

See Also DDEDATA, GlobalAddAtom, GlobalAlloc, PostMessage, 
WM_DDE_ACK, WM_DDE_ADVISE, WM_DDE_POKE, 
WM_DDE_REQUEST 

2.x 

#include:::dde. h> 

WM DOE EXECUTE 
wParam = (WPARAM) hwndi /* handle of posting window */ 
lParam = MAKELPARAM(reserved, hCommands)i /* commands to execute */ 

A dynamic data exchange (DOE) client application posts a 
WM_DDE_EXECUTE message to a DOE server application to send a 
string to the server to be processed as a series of commands. The server 
application is expected to post a WM_DDE_ACK message in response. 

Parameters hwnd Value of wParam. Identifies the sending window. 

reserved Value of the low-order word of [Paramo Reserved; must be 
zero. 

hCommands Value of the high-order word of [Paramo Identifies a global 
memory object containing the command(s) to be executed. 

Return Value This message does not return a value. 

Comments The command string is a null-terminated string, consisting of one or more 
opcode strings enclosed in single brackets ([ ]) and separated by spaces. 

Each opcode string has the following syntax. The parameters list is optional. 

Chapter 6, Messages 523 



524 

opcode parameters 

The opcode is any application-defined single token. It cannot include 
spaces, commas, parentheses, or quotation marks. 

The parameters list can contain any application-defined value or values. 
Multiple parameters are separated by commas, and the entire parameter 
list is enclosed in parentheses. Parameters cannot include commas or 
parentheses except inside a quoted string. If a bracket or parenthesis 
character is to appear in a quoted string, it must be doubled-for 
example, "«". 
The following are valid command strings: 

[connect] [download(queryl,results.txt)] [disconnect] 
[query (" sales per employee for each district ") ] 
[open ("sample.xlm") ] [run("rlcl")] 

Posting 
The application posts the WM_DDE_EXECUTE message by calling the 
PostMessage function, not the SendMessage function. 

The application allocates hCommands by calling the GlobalAlioc function 
with the GMEM_DDESHARE option. 

When processing a WM_DDE_ACK message posted in reply to a 
WM_DDE_EXECUTE message, the application that posted the original 
WM_DDE_EXECUTE message must delete the hCommands object sent 
back in the WM_DDE_ACK message. 

Receiving 
The application posts the WM_DDE_ACK message to respond positively 
or negatively, reusing the hCommands object. 

See Also PostMessage, WM_DDE_ACK 

2.x 

#include<dde. h> 

WM DDE INITIATE 
wParam = (WPARAM) hwnd; /* sending window's handle */ 
lParam = MAKELPARAM(aApplication, aTopic); /* application and topic */ 

Windows API Guide 



A dynamic data exchange (DDE) client application sends a 
WM_DDE_INITIATE message to initiate a conversation with server 
applications responding to the specified application and topic names. 

Upon receiving this message, all server applications with names that 
match the aApplication application and that support the aTopic topic are 
expected to acknowledge it (see the WM_DDE_ACK message). 

Parameters hwnd Value of wParam. Identifies the sending window. 

aApplication Value of the low-order word of lParam. Specifies the name 
of the application with which a conversation is requested. 
The application name cannot contain slash marks U) or 
backslashes (\). These characters are reserved for future 
use in network implementations. If aApplication is NULL, a 
conversation with all applications is requested. 

aTopic Value of the high-order word of lParam. Specifies the topic 
for which a conversation is requested. If the topic is NULL, 
a conversation for all available topics is requested. 

Return Value This message does not return a value. 

Comments If aApplication is NULL, any application can respond. If aTopic is NULL, 
any topic is valid. Upon receiving a WM_DDE_INITIATE request with 
the aTopic parameter set to NULL, an application is expected to send a 
WM_DDE_ACK message for each of the topics it supports. 

Sending 
The application sends the WM_DDE_INITIATE message by calling the 
Send Message function, not the PostMessage function. The application 
broadcasts the message to all windows by setting the first parameter of 
Send Message to -I, as shown: 

SendMessage (-1 ,WM_DDE_INITIATE,hwndClient,MAKELONG (aApp,aTopic) ) ; 

If the application has already obtained the window handle of the desired 
server, it can send WM_DDE_INITIATE directly to the server window by 
passing the server's window handle as the first parameter of 
Send Message. 

The application allocates aApplication and aTopic by calling 
GlobalAddAtom. 

When Send Message returns, the application deletes the aApplication and 
aTopic atoms. 

Chapter 6, Messages 525 



526 

Receiving 
To complete the initiation of a conversation, the application responds 
with one or more WM_DDE_ACK messages, where each message is for a 
separate topic. When sending a WM_DDE_ACK message, the application 
creates new aApplication and aTopic atoms; it should not reuse the atoms 
sent with the WM_DDE_INITIA TE message. 

See Also GlobalAddAtom, Send Message, WM_DDE_ACK 

#include<dde. h> 

WM DDE POKE 
wParam = (WPARAM) hwnd; /* handle of posting window */ 
lParam = MAKELPARAM(hData, altern); /* data handle and item */ 

A dynamic data exchange (DDE) client application posts a 
WM_DDE_POKE message to a server application. A client uses this 
message to request the server to accept an unsolicited data item. The 
server is expected to reply with a WM_DDE_ACK message indicating 
whether it accepted the data item. 

Parameters hwnd Value of wParam. Specifies the handle of the window 
posting the message. 

2.x 

hData Value of the low-order word of IParam. Identifies the data 
being posted. The handle identifies a global memory object 
that contains a DDEPOKE data structure. The DDEPOKE 
structure has the following form: 

#include<dde. h> 

typedef struct tagDDEPOKE { /* ddepok */ 

WORD unused: 13, 
fRelease:1, 
fReserved: 2; 

short cfFormat; 
BYTE Value[l]; 

}DDEPOKE; 

For a full description of this structure, see Chapter 7, 
"Structures." 

altem Value of the high-order word of IParam. Specifies a global 
atom that identifies the data item being offered to the 
server. 

Windows API Guide 



Return Value This message does not return a value. 

Comments Posting 
The posting (client) application should do the following: 

1:1 Use the PostMessage function to post the WM_DDE_POKE message. 

m Use the GlobalAlioc function with the GMEM_DDESHARE option to 
allocate memory for the data. 

t:I Use the GlobalAddAtom function to create the atom for the data item. 

iii Delete the global memory object if the server application responds with 
a negative WM_DDE_ACK message. 

t1 Delete the global memory object if the client has set the fRelease 
member of the DDEPOKE structure to FALSE and the server responds 
with either a positive or negative WM_DDE_ACK. 

Receiving 
The receiving (server) application should do the following: 

C Post the WM_DDE_ACK message to respond positively or negatively. 
When posting WM_DDE_ACK, reuse the data-item atom or delete it 
and create a new one. 

EI Delete the global memory object after processing WM_DDE_POKE 
unless either the fRelease flag was set to FALSE or the fRelease flag 
was set to TRUE but the server has responded with a negative 
WM_DDE_ACK message. 

See Also DDEPOKE, GlobalAlloc, PostMessage, WM_DDE_ACK, 
WM_DDE_DATA 

2.x 

#include<:dde. h> 

WM DDE REQUEST 
wParam --;:" (WPARAM) hwnd; /* handle of posting window * / 
lPararn = MAKE LPARAM (cfForrnat I altern) ; / * clipboard format and i tern * / 

A dynamic data exchange (DDE) client application posts a 
WM_DDE_REQUEST message to a DDE server application to request the 
value of a data item. 

Parameters hwnd Value of wParam. Identifies the sending window. 

Chapter 6, Messages 527 



528 

cfFormat 

altern 

Value of the low-order word of [Paramo Specifies a 
standard or registered clipboard format number. 

Value of the high-order word of [Paramo Specifies which 
data item is being requested from the server. 

Return Value This message does not return a value. 

Comments Posting 
The application posts the WM_DDE_REQUEST message by calling the 
PostMessage function, not the Send Message function. 

The application allocates altern by calling the GlobalAddAtom function. 

Receiving 
If the receiving (server) application can satisfy the request, it responds 
with a WM_DDE_DA TA message containing the requested data. 
Otherwise, it responds with a negative WM_DDE_ACK message. 

When responding with either a WM_DDE_DATA or WM_DDE_ACK 
message, the application can reuse the altem atom or delete it and create a 
new one. 

See Also GlobalAddAtom, PostMessage, WM_DDE_ACK 

# incl ude<dde . h> 

WM DDE TERMINATE 
wP~ram -:: (WPARAM) hwndi /* handle of posting window * / 
lParam = OLi /* not used, must be zero */ 

A dynamic data exchange (DDE) application (client or server) posts a 
WM_DDE_TERMINATE message to terminate a conversation. 

Parameters hwnd Value of wParam. Identifies the sending window. 

Return Value This message does not return a value. 

Comments Posting 

2.x 

The application posts the WM_DDE_TERMINATE message by calling the 
PostMessage function, not the Send Message function. 

Windows API Guide 



While waiting for confirmation of the termination, the posting application 
should not acknowledge any other messages sent by the receiving 
application. If the posting application receives messages (other than 
WM_DDE_TERMINATE) from the receiving application, it should delete 
any atoms or shared memory objects accompanying the messages. 

Receiving 
The application responds by posting a WM_DDE_TERMINATE message. 

See Also PostMessage 

2.x 

# incl ude:::dde . h> 

WM DDE UNADVlSE 
wParam = (WPARAM) hwnd; /* handle of posting window */ 
lParam = MAKELPARAM(cfFormat, altern); /* clipboard format and item */ 

A dynamic data exchange (DOE) client application posts a 
WM_DDE_UNADVISE message to inform a server application that the 
specified item or a particular clipboard format for the item should no 
longer be updated. This terminates the warm or hot link for the specified 
item. 

Parameters hwnd 

cfFormat 

Value of wParam. Identifies the sending window. 

Value of the low-order word of [Paramo Specifies the 
clipboard format of the item for which the update request 
is being retracted. When the cfFormat parameter is NULL, 
all active WM_DDE_ADVISE conversations for the item 
are to be terminated. 

altern Value of the high-order word of [Paramo Specifies the item 
for which the update request is being retracted. When 
altem is NULL, all active WM_DDE_ADVISE 
conversations associated with the client are to be 
terminated. 

Return Value This message does not return a value. 

Comments Posting 
The application posts the WM_DDE_UNADVISE message by calling the 
PostMessage function, not the Send Message function. 

Chapter 6, Messages 529 



WM_PALETTEISCHANGING 

The application allocates altem by calling the GlobalAddAtom function. 

Receiving 
The application posts the WM_DDE_ACK message to respond positively 
or negatively. When posting WM_DDE_ACK, the application can reuse 
the altern atom or delete it and create a new one. 

See Also GlobalAddAtom, PostMessage, WM_DDE_ACK 

3.1 

WM DROPFILES 
hDrop = (HANDLE) wParam; /* handle of internal drop structure */ 

The WM_DROPFILES message is sent when the user releases the left 
mouse button over the window of an application that has registered itself 
as a recipient of dropped files. 

Parameters hDrop Value of wParam. Identifies an internal data structure 
describing the dropped files. This handle is used by the 
DragFinish, DragQueryFile, and DragQueryPoint 
functions to retrieve information about the dropped files. 

Return Value An application should return zero if it processes this message. 

See Also DragAcceptFiles, DragFinish, DragQueryFile, DragQueryPoint 

WM_PALETIEISCHANGING 3.1 

WM PALETTEISCHANGING 
hwndRealize = (HWND) wParam; /* handle of window to realize palette * / 

The WM_P ALETTEISCHANGING mes,sage informs applications that an 
application is going to realize its logical palette. 

Parameters hwndRealize Value of wParam. Specifies the handle of the window that 
is going to realize its logical palette. 

Return Value An application should return zero if it processes this message. 

See Also WM_PALETTECHANGED, WM_QUERYNEWPALETTE 

530 Windows API Guide 



3.1 

WM POWER 
fwPowerEvt = wParam; /* power-event notification message */ 

The WM_POWER message is sent when the system, typically a 
battery-powered personal computer, is about to enter the suspended 
mode. 

Parameters fwPowerEvt Value of wParam. Specifies a power-event notification 
message. This parameter may be one of the following 
values: 

Value 

PWR_SUSPENDREQUEST 

PWR_SUSPENDRESUME 

PWR_ CRITICALRESUME 

Meaning 

Indicates that the system is about to enter the 
suspended mode. 
Indicates that the system is resuming operation 
after entering the suspended mode 
normally-that is, the system sent a 
PWR_SUSPENDREQUEST notification message 
to the application before the system was 
suspended. An application should perform any 
necessary recovery actions. 
Indicates that the system is resuming operation 
after entering the suspended mode without first 
sending a PWR_SUSPENDREQUEST 
notification message to the application. An 
application should perform any necessary 
recovery actions. 

Return Value The value an application should return depends on the value of the 
wParam parameter, as follows: 

Value of wParam 

PWR_SUSPENDREQUEST 

PWR_SUSPENDRESUME 
PWR_ CRITICALRESUME 

Return Value 

PWR_FAIL to prevent the system from entering 
the suspended state; otherwise PWR_ OK 
a 
a 

Comments This message is sent only to an application that is running on a system 
that conforms to the advanced power management (A PM) basic 
input-and-output system (BIOS) specification. The message is sent by the 
power-management driver to each window returned by the 
EnumWindows function. 

Chapter 6, Messages 531 



WM_SYSTEMERROR 

The suspended mode is the state in which the greatest amount of power 
savings occurs, but all operational data and parameters are preserved. 
Random-access memory (RAM) contents are preserved, but many devices 
are likely to be turned off. 

See Also EnumWindows 

3.1 

The WM_QUEUESYNC message is sent by a computer-based training 
(CBT) application to separate user-input messages from other messages 
sent through the journal playback hook (WH--10URNALPLA YBACK). 

Parameters This message has no parameters. 

Return Value A CBT application should return zero if it processes this message. 

Comments Whenever a CBT application uses the journal playback hook, the first and 
last messages rendered are WM_ QUEUESYNC. This allows the CBT 
application to intercept and examine user-initiated messages without 
doing so for events that it sends. 

WM_SYSTEMERROR 

WM SYSTEMERROR 
wErrSpec = wParam; /* specifies when error occurred */ 

The WM_SYSTEMERROR message is sent when the Windows kernel 
encounters an error but cannot display the system-error message box. 

Parameters wErrSpec Value of wParam. Specifies when the error occurred. 
Currently, the only valid value is 1, indicating that the 
error occurred when a task or library was terminating. 

Return Value An application should return zero if it processes this message. 

Comments A shell application should process this message, displaying a message 
box that indicates an error has occurred. 

3.1 

532 Windows API Guide 



WM_USER 

WM USER 

WM_USER is a constant used by applications to help define private 
messages. 

2.x 

Comments The WM_ USER constant is used to distinguish between message values 
that are reserved for use by Windows and values that can be used by an 
application to send messages within a private window class. There are 
four ranges of message numbers: 

Range 

o through WM_USER-1 
WM_ USER through Ox7FFF 

Ox8000 through OxBFFF 
OxCOOO through OxFFFF 

Meaning 

Messages reserved for use by Windows. 
Integer messages for use by private window 
classes. 
Messages reserved for use by Windows. 
String messages for use by applications. 

Message numbers in the first range (0 through WM_ USER - 1) are 
defined by Windows. Values in this range that are not explicitly defined 
are reserved for future use by Windows. This chapter describes messages 
in this range. 

Message numbers in the second range (WM_ USER through Ox7FFF) can 
be defined and used by an application to send messages within a private 
window class. These values cannot be used to define messages that are 
meaningful throughout an application, because some predefined window 
classes already define values in this range. For example, such predefined 
control classes as BUTTON, EDIT, LISTBOX, and COMBOBOX may use 
these values. Messages in this range should not be sent to other 
applications unless the applications have been designed to exchange 
messages and to attach the same meaning to the message numbers. 

Message numbers in the third range (Ox8000 through OxBFFF) are 
reserved for future use by Windows. 

Message numbers in the fourth range (OxCOOO through OxFFFF) are 
defined at run time when an application calls the 
RegisterWindowMessage function to obtain a message number for a 
string. All applications that register the same string can use the associated 
message number for exchanging messages. The actual message number, 
however, is not a constant and cannot be assumed to be the same in 
different Windows sessions. 

Chapter 6, Messages 533 



WM_WINDOWPOSCHANGING 

See Also RegisterWindowMessage 

WM_WINDOWPOSCHANGED 3.1 

WM WINDOWPOSCHANGED 
pwp = (canst WINDOWPOS FAR*) lParam; /* structure address */ 

The WM_ WINDOWPOSCHANGED message is sent to a window whose 
size, position, or z-order has changed as a result of a call to 
SetWindowPos or another window-management function. 

Parameters pwp Value of [Paramo Points to a WINDOWPOS data structure 
that contains information about the window's new size 
and position. The WINDOWPOS structure has the 
following form: 

typedef struct tagWINDOWPOS { /* wp * / 
HWND hwnd; 
HWND hwndInsertAfter; 
int x; 
int y; 
int cx; 
int cy; 
UINT flags; 

}WINDOWPOS; 

Return Value An application should ret~rn zero if it processes this message. 

Comments The DefWindowProc function, when it processes the 
WM_ WINDOWPOSCHANGED message, sends the WM_SIZE and 
WM_MOVE messages to the window. These messages are not sent if an 
application handles the WM_ WINDOWPOSCHANGED message without 
calling DefWindowProc. It is more efficient to perform any move or size 
change processing during the WM_ WINDOWPOSCHANGED message 
without calling DefWindowProc. 

See Also WM_MOVE, WM_SIZE, WM_WINDOWPOSCHANGING 

WM_WINDOWPOSCHANGING 3.1 

WM WINDOWPOSCHANGING 
pwp = (WINDOWPOS FAR*) lParam; /* address of WINDOWPOS structure */ 

534 Windows API Guide 



WM_WINDOWPOSCHANGING 

The WM_ WINDOWPOSCHANGING message is sent to a window 
whose size, position, or z-order is about to change as a result of a call to 
SetWindowPos or another window-management function. 

Parameters pwp Value of IParam. Points to a WINDOWPOS data structure 
that contains information about the window's new size 
and position. The WINDOWPOS structure has the 
following form: 

typedef struet tagWINDOWPOS { /* wp * / 
HWND hwndi 

HWND hwndlnsertAfteri 
int Xi 

int Yi 
int ex; 
int ey; 

UINT flagsi 

}WINDOWPOSi 

Return Value An application should return zero if it processes this message. 

Comments During this message, modifying any of the values in the WINDOWPOS 
structure affects the new size, position, or z-order. An application can 
prevent changes to the window by setting or clearing the appropriate bits 
in the flags member of the WINDOWPOS structure. 

For a window with the WS_OVERLAPPED or WS_THICKFRAME style, 
the DefWindowProc function handles a WM_ WINDOWPOSCHANGING 
message by sending a WM_GETMINMAXINFO message to the window. 
This is done to validate the new size and position of the window and to 
enforce the CS_BYTEALIGNCLIENT and CS_BYTEALIGN client styles. 
An application can override this functionality by not passing the 
WM_ WINDOWPOSCHANGING message to the DefWindowProc 
function. 

See Also WM_WINDOWPOSCHANGED 

Chapter 6, Messages 535 



Notification messages 

536 

2.x 

The BN_HILITE notification message is sent when the user highlights a 
button. This notification is provided for compatibility with applications 
written prior to Windows version 3.0. New applications should use the 
BS_OWNERDRAW button style and the DRAWITEMSTRUCT structure 
for this task. 

See Also DRAWITEMSTRUCT, WM_DRAWITEM 

The BN_P AINT notification message is sent when a button should be 
painted. This notification is provided for compatibility with applications 
written prior to Windows version 3.0. New applications should use the 
BS_OWNERDRAW button style and the DRAWITEMSTRUCT structure 
for this task. 

See Also DRAWITEMSTRUCT, WM_DRAWITEM 

BN_ UNHILITE 

The BN_UNHILITE notification message is sent when the highlight 
should be removed from a button. This notification is provided for 
compatibility with applications written prior to Windows version 3.0. 
New applications should use the BS_OWNERDRAW button style and the 
DRAWITEMSTRUCT structure for this task. 

Windows API Guide 



CBN_SELENDCANCEL 

See Also DRAWITEMSTRUCT, WM_DRAWITEM 

CBN_CLOSEUP 

The CBN_CLOSEUP notification message is sent when the list box of a 
combo box is hidden. The control's parent window receives this 
notification message through a WM_ COMMAND message. 

Parameters wParam 

IParam 

Specifies the identifier of the combo box. 

Specifies the handle of the combo box in the low-order 
word, and specifies the CBN_CLOSEUP notification 
message in the high-order word. 

Comments This notification message is not sent to a combo box that has the 
CBS_SIMPLE style. 

3.1 

The order in which notifications will be sent cannot be predicted. In 
particular, a CBN_SELCHANGE notification may occur either before or 
after a CBN_ CLOSEUP notification. 

See Also CBN_DROPDOWN, CBN_SELCHANGE, WM_COMMAND 

CBN_SELENDCANCEL 3.1 

The CBN_SELENDCANCEL notification message is sent when the user 
clicks an item and then clicks another window or control to hide the list 
box of a combo box. This notification message is sent before the 
CBN_ CLOSEUP notification message to indicate that the user's selection 
should be ignored. 

Parameters wParam 

IParam 

Specifies the identifier of the combo box. 

Specifies the handle of the combo box in the low-order 
word, and specifies the CBN_SELENDCANCEL 
notification message in the high-order word. 

Comments The CBN_SELENDCANCEL or CBN_SELENDOK notification message is 
sent even if the CBN_ CLOSEUP notification message is not sent (as in the 
case of a combo box with the CBS_SIMPLE style). 

See Also CBN_SELENDOK, WM_COMMAND 

Chapter 6, Messages 537 



LBN_SELCANCEL 

3.1 

The CBN_SELENDOK notification message is sent when the user selects 
an item and then either presses the ENTER key or clicks the DOWN ARROW 

key to hide the list box of a combo box. This notification message is sent 
before the CBN_CLOSEUP notification message to indicate that the user's 
selection should be considered valid. 

Parameters wParam Specifies the identifier of the combo box. 

IParam Specifies the handle of the combo box in the low-order 
word, and specifies the CBN_SELENDOK notification 
message in the high-order word. 

Comments The CBN_SELENDOK or CBN_SELENDCANCEL notification message is 
sent even if the CBN_ CLOSEUP notification message is not sent (as in the 
case of a combo box with the CBS_SIMPLE style). 

See Also CBN_SELENDCANCEL, WM_COMMAND 

3.1 

LBN_SELCANCEL 

The LBN_SELCANCEL notification message is sent when the user cancels 
the selection in a list box. The parent window of the list box receives this 
notification message through a WM_ COMMAND message. 

Parameters wParam 

IParam 

Specifies the identifier of the list box. 

Specifies the handle of the list box in the low-order word, 
and specifies the LBN_SELCANCEL notification message 
in the high-order word. 

Comments This notification applies only to a list box that has the LBS_NOTIFY style. 

See Also LBN_DBLCLK, LBN_SELCHANGE, LB_SETCURSEL, WM_COMMAND 

538 Windows API Guide 



c 

ABC 

H A p T E R 

7 

Structures 

3.1 

The ABC structure contains the width of a character in a TrueType font. 

typedef struct tagABC 
int abcA; 
UINT abcB; 
int abcC; 

} ABC; 

TABC = record 
abcA: Integer; 
abcB: Word; 
abcC: Integer; 

end; 

/* abc */ 

Members abcA Specifies the II A" spacing of the character. A spacing is the 
distance to add to the current position before drawing the 
character glyph. 

abcB 

abcC 

Specifies the liB" spacing of the character. B spacing is the 
width of the drawn portion of the character glyph. 

Specifies the "C" spacing of the character. C spacing is the 
distance to add to the current position to provide white 
space to the right of the character glyph. 

Chapter 7, Structures 539 



CBTACTIVATESTRUCT 

Comments The total width of a character is the sum of the A, B, and C spaces. Either 
the A or the C space can be negative, to indicate underhangs or overhangs. 

See Also GetCharABCWidths 

The CBT_CREATEWND structure contains information passed to a 
WH_CBT hook function before a window is created. 

typedef struct tagCBT_CREATEWND { /* cbtcw */ 
CREATESTRUCT FAR* Ipcs; 
HWND hwndlnsertAfter; 

CBT_CREATEWND; 

TCBT CreateWnd=record 
Ipcs: PCreateStruct; 
hWndlnsertAfter: HWnd; 

end; 

3.' 

Members Ipcs Points to a CREATESTRUCT structure that 
contains initialization parameters for the window 
about to be created. 

hwndlnsertAfter Identifies a window in the window manager's list 
that will precede the window being created. If this 
parameter is NULL, the window being created is 
the topmost window. If this parameter is I, the 
window being created is the bottommost window. 

See Also CBTProc, SetWindowsHook 

CBTACTIVATESTRUCT 3. , 

540 

The CBTACTIV ATESTRUCT structure contains information passed to a 
WH_ CBT hook function before a window is activated. 

typedef struct tagCBTACTIVATESTRUCT { /* cas * / 
BOOL fMouse; 
HWND hWndActive; 

} CBTACTIVATESTRUCT; 

Windows API Guide 



TCBTActivateStruct=record 
fMouse: Booli 
hWndActive: HWndi 

endi 

CHOOSECOLOR 

Members fMouse Specifies whether the window is being activated as a result 
of a mouse click. This value is nonzero if a mouse click is 
causing the activation. Otherwise, this value is zero. 

hWndActive Identifies the currently active window. 

See Also SetWindowsHook 

CHOOSECOLOR 3.1 

The CHOOSECOLOR structure contains information that the system uses 
to initialize the system-defined Color dialog box. After the user chooses 
the OK button to close the dialog box, the system returns information 
about the user's selection in this structure. 

#include <commdlg.h> 

typedef struct tagCHOOSECOLOR 
DWORD lStructSizei 
HWND hwndOwneri 
HWND hInstancei 
COLORREF rgbResulti 
COLORREF FAR* lpCustColorSi 
DWORD Flagsi 
LPARAM lCustDatai 

/* cc */ 

UINT (CALLBACK* lpfnHook) (HWND, UINT, WPARAM, LPARAM)i 
LPCSTR lpTemplateNarnei 

}CHOOSECOLORi 

TChooseColor = record 
lStructSize: Longinti 
hWndOwner: HWndi 
hInstance: HWndi 
rgbResult: Longinti 
lpCustColors: PLonginti 
Flags: Longinti 
lCustData: Longinti 
lpfnHook: function (Wnd: HWndi Message, wPararn: Wordi 
lPararn: Longint): Wordi 
lpTemplateNarne: PChari 

endi 

Members IStructSize Specifies the length of the structure, in bytes. This member 
is filled on input. 

Chapter 7, Structures 541 



CHOOSECOLOR 

542 

hwndOwner Identifies the window that owns the dialog box. This 
member can be any valid window handle, or it should be 
NULL if the dialog box is to have no owner. 

If the CC_SHOWHELP flag is set, hwndOwner must 
identify the window that owns the dialog box. The 
window procedure for this owner window receives a 
notification message when the user chooses the Help 
button. (The identifier for the notification message is the 
value returned by the RegisterWindowMessage function 
when HELPMSGSTRING is passed as its argument.) 

This member is filled on input. 

hlnstance Identifies a data block that contains the dialog box 
template specified by the IpTemplateName member. This 
member is used only if the Flags member specifies the 
CC_ENABLETEMPLATE or 
CC_ENABLETEMPLATEHANDLE flag; otherwise, this 
member is ignored. This member is filled on input. 

rgbResult Specifies the color that is initially selected when the dialog 
box is displayed, and specifies the user's color selection 
after the user has chosen the OK button to close dialog box. 
If the CC_RGBINIT flag is set in the Flags member before 
the dialog box is displayed and the value of this member is 
not among the colors available, the system selects the 
nearest solid color available. If this member is NULL, the 
first selected color is black. This member is filled on input 
and output. 

IpCustColors Points to an array of 16 doubleword values, each of which 
specifies the intensities of the red, green, and blue (RGB) 
components of a custom color box in the dialog box. If the 
user modifies a color, the system updates the array with 
the new RGB values. This member is filled on input and 
output. 

Flags Specifies the dialog box initialization flags. This member 
may be a combination of the following values: 

Value Meaning 

CC_ENABLETEMPLATE 

Enables the hook function specified in 
the IpfnHook member. 
Causes the system to use the dialog box 
template identified by the hlnstance 
member and pointed to by the 
IpTemplateName member. 

Windows API Guide 



CHOOSECOLOR 

Value Meaning 

CC_ENABLETEMPLATEHANDLE Indicates that the hlnstance member 
identifies a data block that contains a 
pre-loaded dialog box template. If this 
flag is specified, the system ignores the 
IpTemplateName member. 
Causes the entire dialog box to appear 
when the dialog box is displayed, 
including the portion that allows the user 
to create custom colors. Without this flag, 
the user must select the Define Custom 
Color button to see that portion of the 
dialog box. 

CC_PREVENTFULLOPEN Disables the Define Custom Colors 
button, preventing the user from creating 
custom colors. 

ICustData 

IpfnHook 

Chapter 7, Structures 

Causes the dialog box to use the color 
specified in the rgbResult member as the 
initial color selection. 
Causes the dialog box to show the Help 
button. If this flag is specified, the 
hwndOwner member must not be NULL. 

These flags are used when the structure is 
ini tialized. 

Specifies application-defined data that the system 
passes to the hook function pointed to by the 
IpfnHook member. The system passes a pointer to 
the CHOOSECOLOR structure in the lParam 
parameter of the WM_INITDIALOG message; this 
pointer can be used to retrieve the ICustData 
member. 

Points to a hook function that processes messages 
intended for the dialog box. To enable the hook 
function, an application must specify the 
CC_ENABLEHOOK value in the Flags member; 
otherwise, the system ignores this structure 
member. The hook function must return zero to 
pass a message that it didn't process back to the 
dialog box procedure in COMMDLG.DLL. The 
hook function must return a nonzero value to 
prevent the dialog box procedure in 
COMMDLG.DLL from processing a message it has 
already processed. This member is filled on input. 

543 



CHOOSE FONT 

IpTemplateName Points to a null-terminated string that specifies the 
name of the resource file for the dialog box 
template that is to be substituted for the dialog box 
template in COMMDLG.DLL. An application can 
use the MAKEINTRESOURCE macro for 
numbered dialog box resources. This member is 
used only if the Flags member specifies the 
CC_ENABLETEMPLATE flag; otherwise, this 
member is ignored. This member is filled on input. 

Comments Some members of this structure are filled only when the dialog box is 
created, and some have an initialization value that changes when the user 
closes the dialog box. Whenever a description in the Members section 
does not specify how the value of a member is assigned, the value is 
assigned only when the dialog box is created. 

See Also ChooseColor 

CHOOSEFONT 3.1 

544 

The CHOOSEFONT structure contains information that the system uses to 
initialize the system-defined Font dialog box. After the user chooses the 
OK button to close the dialog box, the system returns information about 
the user's selection in this structure. 

#include <commdlg.h> 

typedef struct tagCHOOSEFONT { /* cf */ 
DWORD lStructSizei 
HWND hwndOwneri 
HDC hDCi 
LOGFONT FAR* lpLogFonti 
int iPointSizei 
DWORD Flagsi 
COLORREF rgbColorSi 
LPARAM lCustDatai 
UINT (CALLBACK* lpfnHook) (HWND, UINT, WPARAM, LPARAM) i 

LPCSTR lpTernplateNamei 
HI NSTANCE hlnstance 
LPSTR lpszStyle 
UINT nFontType 
int 
int 

CHOOSEFONTi 

nSizeMini 
nSizeMaxi 

Windows API Guide 



TChooseFont = record 
lStructSize: Longint; 
hWndOwner: HWnd; 
hDC: HDC; 
lpLogFont: PLogFont; 
iPointSize: Integer; 
Flags: Longint; 
rgbColors: Longint; 
lCustData: Longint; 

CHOOSEFONT 

lpfnHook: function (Wnd: HWnd; Msg, wParam: Word; lParam: Longint): 
Word; 

lpTemplateName: PChar; 
hInstance: THandle; 
lpszStyle: PChar; 
nFontType: Word; 
nSizeMin: Integer; 
nSizeMax: Integer; 

end; 

Members IStructSize Specifies the length of the structure, in bytes. This member 
is filled on input. 

hwndOwner Identifies the window that owns the dialog box. This 
member can be any valid window handle, or it should be 
NULL if the dialog box is to have no owner. 

hOC 

IpLogFont 

Chapter 7, Structures 

If the CF _SHOWHELP flag is set, hwndOwner must 
identify the window that owns the dialog box. The 
window procedure for this owner window receives a 
notification message when the user chooses the Help 
button. (The identifier for the notification message is the 
value returned by the RegisterWindowMessage function 
when HELPMSGSTRING is passed as its argument.) 

This member is filled on input. 

Identifies either the device context or the information 
context of the printer for which fonts are to be listed in the 
dialog box. This member is used only if the Flags member 
specifies the CF _PRINTERFONTS flag; otherwise, this 
member is ignored. 

This member is filled on input. 

Points to a LOG FONT structure. If an application initializes 
the members of this structure before calling ChooseFont 
and sets the CF _INITTOLOGFONTSTRUCT flag, the 
Choose Font function initializes the dialog box with the 
font that is the closest possible match. After the user 
chooses the OK button to close the dialog box, the 
ChooseFont function sets the members of the LOG FONT 
structure based on the user's final selection. 

This member is filled on input and output. 

545 



CHOOSEFONT 

546 

iPointSize Specifies the size of the selected font, in tenths of a point. 
The ChooseFont function sets this value after the user 
chooses the OK button to close the dialog box. 

Flags Specifies the dialog box initialization flags. This member 
can be a combination of the following values: 

Value Meaning 

CF _APPLY Specifies that the ChooseFont function 
should enable the Apply button. 

CF _ANSI ONLY Specifies that the ChooseFont function 
should limit font selection to those fonts 
that use the Windows character set. (If 
this flag is set, the user cannot select a 
font that contains only symbols.) 

CF_BOTH Causes the dialog box to list the available 
printer and screen fonts. The hOC 
member identifies either the device 
context or the information context 
associated with the printer. 

CF _TTONLY Specifies that the ChooseFont function 
should enumerate and allow the selection 
of only TrueType fonts. 

CF _EFFECTS Specifies that the ChooseFont function 
should enable strikeout, underline, and 
color effects. If this flag is set, the 

CF _ENABLETEMPLATE 

CF _ENABLETEMPLATEHANDLE 

CF _FIXEDPITCHONLY 

If StrikeOut and If Underline members of 
the LOGFONT structure and the 
rgbColors member of the CHOOSEFONT 
structure can be set before calling 
ChooseFont. And, if this flag is not set, 
the Choose Font function can set these 
members after the user chooses the OK 
button to close the dialog box. 
Enables the hook function specified in the 
IpfnHook member of this structure. 
Indicates that the hlnstance member 
identifies a data block that contains the 
dialog box template pointed to by 
IpTemplateName. 

Indicates that the hlnstance member 
identifies a data block that contains a 
pre-loaded dialog box template. If this 
flag is specified, the system ignores the 
IpTemplateName member. 
Specifies that the ChooseFont function 
should select only monospace fonts. 

Windows API Guide 



Value 

CF _FORCEFONTEXIST 

CF _INmOLOGFONTSTRUCT 

CF _NOOEMFONTS 

CF _NOSIMULATIONS 

CF _NOVECTORFONTS 

CF _PRINTERFONTS 

Chapter 7, Structures 

CHOOSEFONT 

Meaning 

Specifies that the ChooseFont function 
should indicate an error condition if the 
user attempts to select a font or font style 
that does not exist. 
Specifies that the ChooseFont function 
should use the LOGFONT structure 
pointed to by IpLogFont to initialize the 
dialog box controls. 
Specifies that the ChooseFont function 
should select only font sizes within the 
range specified by the nSizeMin and 
nSizeMax members. 
Specifies that there is no selection in the 
Font (face name) combo box. Applications 
use this flag to support multiple font 
selections. This flag is set on input and 
output. 
Specifies that the ChooseFont function 
should not allow vector-font selections. 
This flag has the same value as 
CF _NOVECTORFONTS. 
Specifies that the ChooseFont function 
should not allow graphics-device 
-interface (GDI) font simulations. 
Specifies that there is no selection in the 
Size combo box. Applications use this flag 
to support multiple size selections. This 
flag is set on input and output. 
Specifies that there is no selection in the 
Font Style combo box. Applications use 
this flag to support multiple style 
selections. This flag is set on input and 
output. 
Specifies that the ChooseFont function 
should not allow vector-font selections. 
This flag has the same value as 
CF _NOOEMFONTS. 
Causes the dialog box to list only the fonts 
supported by the printer associated with 
the device context or information context 
that is identified by the hOC member. 

547 



CHOOSEFONT 

Value Meaning 

CF _SCALABLEONLY Specifies that the ChooseFont function 
should allow the selection of only scalable 
fonts. (Scalable fonts include vector fonts, 
some printer fonts, TrueType fonts, and 
fonts that are scaled by other algorithms 
or technologies.) 

CF _SCREENFONTS Causes the dialog box to list only the 
screen fonts supported by the system. 

CF _SHOWHELP Causes the dialog box to show the Help 
button. If this option is specified, the 
hwndOwner must not be NULL. 

CF _USE STYLE Specifies that the IpszStyle member 
points to a buffer that contains a style­
description string that the ChooseFont 
function should use to initialize the Font 
Style box. When the user chooses the OK 
button to close the dialog box, the 
ChooseFont function copies the style 
description for the user's selection to this 
buffer. 

CF _WYSIWYG Specifies that the ChooseFont function 
should allow the selection of only fonts 
that are available on both the printer and 
the screen. If this flag is set, the CF _BOTH 
and CF _SCALABLE ONLY flags should 
also be set. 

These flags may be set when the structure is 
initialized, except where specified. 

rgbColors If the CF _EFFECTS flag is set, this member 
contains the red, green, and blue (RGB) values the 
ChooseFont function should use to set the text 
color. After the user chooses the OK button to 
close the dialog box, this member contains the 
RGB values of the color the user selected. 

This member is filled on input and output. 

ICustData Specifies application-defined data that the 
application passes to the hook function. The 
system passes a pointer to the CHOOSEFONT 
data structure in the lParam parameter of the 
WM_INITDIALOG message; the ICustData 
member can be retrieved using this pointer. 

548 Windows API Guide 



IpfnHook 

IpTemplateName 

hlnstance 

IpszStyle 

nFontType 

Chapter 7, Structures 

CHOOSEFONT 

Points to a hook function that processes messages 
intended for the dialog box. To enable the hook 
function, an application must specify the 
CF _ENABLEHOOK value in the Flags member; 
otherwise, the system ignores this structure 
member. The hook function must return zero to 
pass a message that it didn't process back to the 
dialog box procedure in COMMDLG.DLL. The 
hook function must return a nonzero value to 
prevent the dialog box procedure in 
COMMDLG.DLL from processing a message it has 
already processed. 

This member is filled on input. 

Points to a null-terminated string that specifies the 
name of the resource file for the dialog box 
template to be substituted for the dialog box 
template in COMMDLG.DLL. An application can 
use the MAKEINTRESOURCE macro for numbered 
dialog box resources. This member is used only if 
the Flags member specifies the 
CF _ENABLETEMPLATE flag; otherwise, this 
member is ignored. 

This member is filled on input. 

I,dentifies a data block that contains the dialog box 
template specified by the IpTemplateName 
member. This member is used only if the Flags 
member specifies the CF _ENABLETEMPLATE or 
the CF _ENABLETEMPLATEHANDLE flag; 
otherwise, this member is ignored. 

This member is filled on input. 

Points to a buffer that contains a style-description 
string for the font. If the CF _ USESTYLE flag is set, 
the ChooseFont function uses the data in this 
buffer to initialize the Font Style box. When the 
user chooses the OK button to close the dialog box, 
the ChooseFont function copies the string in the 
Font Style box into this buffer. 

The buffer pointed to by IpszStyle must be at least 
LF _FACESIZE bytes long. 

This member is filled on input and output. 

Specifies the type of the selected font. This 
member can be one or more of the values in the 
following list: 

549 



CHOOSEFONT 

nSizeMin 

nSizeMax 

See Also Choose Font 

Value Meaning 

BOLD _FONTTYPE Specifies that the font is 
bold. This value applies 
only to TrueType fonts. 
This value corresponds to 
the value of the ntmFlags 
member of the 
NEWTEXTMETRIC 
structure. 

ITALIC_FONTTYPE Specifies that the font is 
italic. This value applies 
only to TrueType fonts. 
This value corresponds to 
the value of the ntmFlags 
member of the 
NEWTEXTMETRIC 
structure. 

PRINTER_FONTTYPE Specifies that the font is a 
printer font. 

REGULAR_FONTTYPE Specifies that the font is 
neither bold nor italic. 
This value applies only to 
TrueType fonts. This value 
corresponds to the value 
of the ntmFlags member 
of the NEWTEXTMETRIC 
structure. 

SCREEN_FONTTYPE Specifies that the font is a 
screen font. 

SIMULATED _FONTTYPE Specifies that the font is 
simulated by GDI. This is 
not set if the 
CF _NOSIMULATIONS 
flag is set. 

Specifies the minimum point size that a user can 
select. The ChooseFont function will recognize 
this member only if the CF _LIMITSIZE flag is set. 

This member is filled on input. 

Specifies the maximum point size that a user can 
select. The ChooseFont function will recognize 
this member only if the CF _LIMITSIZE flag is set. 

This member is filled on input. 

550 Windows API Guide 



CLASSENTRY 

CLASSENTRY 

3.1 

The CLASSENTRY structure contains the name of a Windows class "and a 
near pointer to the next class in the list. 

#include <toolhelp.h> 

typedef struct tagCLASSENTRY 
DWORD dwSize; 
HMODULE hlnst; 

/* ce */ 

char szClassName[MAX_CLASSNAME + 1]; 
WORD wNext; 

CLASSENTRY; 

TClassEntry = record 
dwSize: Longint; 
hlnst: THandle; 
szClassName: array[O .. Max_ClassName] of Char; 
wNext: Word; 

end; 

Members dwSize Specifies the size of the CLASSENTRY structure, in 
bytes. 

hlnst 

szClassName 

wNext 

See Also ClassFirst, ClassNext 

Chapter 7, Structures 

Identifies the instance handle of the task that owns 
the class. An application needs this handle to call 
GetClasslnfo. The hlnst member is really a handle 
to a module, since Windows classes are owned by 
modules. Therefore, this hlnst will not match the 
hlnst passed as a parameter to the WinMain 
function of the owning task. 

Specifies the null-terminated string that contains 
the class name. An application needs this name to 
call GetClasslnfo. 

Specifies the next class in the list. This member is 
reserved for internal use by Windows. 

551 



CO MSTAT 

CO MSTAT 3.1 

The COMSTAT structure contains information about a communications 
device. 

typedef struct tagCOMSTAT 
BYTE status; 
UINT cblnQue; 
UINT cbOutQue; 

}COMSTAT; 

TComStat = record 
Status: Byte; 
cblnQue: Word; 
cbOutQue: Word; 

end; 

/* crnst */ 
/* status of transmission */ 
/* count of characters in Rx Queue */ 
/* count of characters in Tx Queue */ 

count of characters in Rx Queue} 
count of characters in Tx Queue} 

Members status Specifies the status of the transmission. This member can 
be one or more of the following flags: 

cblnQue 

552 

Flag 

CSTF _CTSHOLD 

CSTF _RLSDHOLD 

CSTF_TXIM 

Meaning 

Specifies whether transmission is waiting 
for the CTS (clear-to-send) signal to be 
sent. 
Specifies whether transmission is waiting 
for the DSR (data-set-ready) signal to be 
sent. 
Specifies whether transmission is waiting 
for the RLSD (receive-line-signal-detect) 
signal to be sent. 
Specifies whether transmission is waiting 
as a result of the XOFF character being 
received. 
Specifies whether transmission is waiting 
as a result of the XOFF character being 
transmitted. Transmission halts when the 
XOFF character is transmitted and used 
by systems that take the next character as 
XON I regardless of the actual character. 
Specifies whether the end-of-file (EOF) 
character has been received. 
Specifies whether a character is waiting 
to be transmitted. 

Specifies the number of characters in the receive queue. 

Windows API Guide 



CONVCONTEXT 

cbOutQue Specifies the number of characters in the transmit queue. 

See Also GetCommError 

CONVCONTEXT 3.1 

The CONVCONTEXT structure contains information that makes it possible 
for applications to share data in several different languages. 

Members cb 

#include <ddeml.h> 

typedef struct tagCONVCONTEXT { /* cc 
UINT cb; 
UINT wFlags; 
UINT wCountryID; 
int iCodePage; 
DWORD dwLangID; 
DWORD dwSecurity; 

CONVCONTEXT; 

TConvContext = record 
cb: Word; 
wFlags: Word; 
wCountryID: Word; 
iCodePage: Integer; 
dwLangID: Longint; 
dwSecurity: Longint; 

end; 

*/ 

Specifies the size, in bytes, of the CONVCONTEXT 
structure. 

wFlags Specifies conversation-context flags. Currently, no flags are 
defined for this member. 

wCountrylD Specifies the country-code identifier for topic-name and 
item-name strings. 

iCodePage Specifies the code page for topic-name and item-name 
strings. Unilingual clients should set this member to 
CP _ WINANSI. An application that uses the OEM 
character set should set this member to the value returned 
by the GetKBCodePage function. 

dwLanglD Specifies the language identifier for topic-name and 
item-name strings. 

dwSecurity Specifies a private (application-defined) security code. 

See Also GetKBCodePage 

Chapter 7, Structures 553 



CONVINFO 

CONVINFO 

The CONVINFO structure contains information about a dynamic data 
exchange (DDE) conversation. 

#include <ddeml.h> 

typedef struct tagCONVINFO { /* ci * / 
DWORD cbi 
DWORD hUseri 
HCONV hConvPartneri 
HSZ hszSvcPartneri 
HSZ hszServiceReqi 
HSZ hszTopici 
HSZ hszItemi 
DINT wFmti 
DINT wTypei 
DINT wStatusi 
UINT wConvsti 
UINT wLastErrori 
HCONVLIST hConvListi 
CONVCONTEXT ConvCtxtj 

CONVINFOi 

TConvInfo = record 
cb: Longinti 
hUser: Longinti 
hConvPartner: HConvi 
hszSvcPartner: HSZi 
hszServiceReq: HSZi 
hszTopic: HSZi 
hszItem: HSZi 
wFmt: Wordi 
wType: Wordi 
wStatus: Wordi 
wConvst: Wordi 
wLastError: Wordi 
hConvList: HConvListj 
ConvCtxt: TConvContexti 

end; 

3.1 

Members cb Specifies the length of the structure, in bytes. 

Identifies application-defined data. 

554 

hUser 

hConvPartner Identifies the partner application in the DDE 
conversation. If the partner has not registered itself 
(by using the Ddelnitialize function) to make DDE 
Management Library (DDEML) function calls, this 
member is set to O. An application should not pass 
this member to any DDEML function except 
DdeQueryConvlnfo. 

Windows API Guide 



hszSvcPartner 

hszServiceReq 

hszTopic 

hszltem 

wFmt 

wType 

Value 

XTYP _ADVDATA 

XTYP _ADVREQ 

XTYP _ADVSTART 

XTYP _ADVSTOP 
XTYP _CONNECT 

CONVINFO 

Identifies the service name of the partner 
application. 

Identifies the service name of the server 
application that was requested for connection. 

Identifies the name of the requested topic. 

Identifies the name of the requested item. This 
member is transaction-specific. 

Specifies the format of the data being exchanged. 
This member is transaction-specific. 

Specifies the type of the current transaction. This 
member is transaction-specific and can be one of 
the following values: 

Meaning 

Informs a client that advise data from a server 
has arrived. 
Requests that a server send updated data to 
the client during an advise loop. This 
transaction results when the server calls the 
DdePostAdvise function. 
Requests that a server begin an advise loop 
with a client. 
Notifies a server that an advise loop is ending. 
Requests that a server establish a 
conversation with a client. 

XTYP _CONNECT_CONFIRM Notifies a server that a conversation with a 
client has been established. 

XTYP _DISCONNECT 

XTYP_ERROR 

XTYP_EXECUTE 

XTYP _MONITOR 

XTYP_POKE 

XTYP _REGISTER 

XTYP _REQUEST 
XTYP _UNREGISTER 

Chapter 7, Structures 

Notifies a server that a conversation has 
terminated. 
Notifies a DDEML application that a critical 
error has occurred. The DDEML may have 
insufficient resources to continue. 
Requests that a server execute a command 
sent by a client. 
Notifies an application registered as 
APPCMD _MONITOR of DDE data being 
transmitted. 
Requests that a server accept unsolicited data 
from a client. 
Notifies other DDEML applications that a 
server has registered a service name. 
Requests that a server send data to a client. 
Notifies other DDEML applications that a 
server has unregistered a service name. 

555 



CONVINFO 

Value 

XTYP _ WILDCONNECT 

Meaning 

Requests that a server establish multiple 
conversations with the same client. 

XTYP _XACT_COMPLETE Notifies a client that an asynchronous data 
transaction has completed. 

wStatus 

wConvst 

wLastError 

hConvList 

ConvCtxt 

See Also CONVCONTEXT 

Specifies the status of the current conversation. 
This member can be a combination of the 
following values: 

ST_ADVISE 
ST_BLOCKED 
ST_BLOCKNEXT 
ST_CLIENT 

ST_INLIST 
ST_ISLOCAL 
ST_ISSELF 
ST_TERMINATED 

ST_ CONNECTED 

Specifies the conversation state. This member can 
be one of the following values: 

XST_ADVACKRCVD 
XST_ADVDATAACKRCVD 
XST_ADVDATASENT 
XST_ADVSENT 
XST_ CONNECTED 
XST_DATARCVD 
XST_EXECACKRCVD 
XST_EXECSENT 
XST_INCOMPLETE 

XST_INITl 
XST_INIT2 
XST_NULL 
XST_POKEACKRCVDX 
ST_POKESENT 
XST_REQSENT 
XST_UNADVACKRCV 
DXST_UNADVSENT 

Specifies the error value associated with the last 
transaction. 

If the handle of the current conversation is in a 
conversation list, identifies the conversation list. 
Otherwise, this member is NULL. 

Specifies the conversation context. 

556 Windows API Guide 



CPLINFO 

CPLINFO 

3.1 

The CPLINFO structure contains resource information and a user-defined 
value for an extensible Control Panel application. 

#include <cpl. h> 

typedef struct tagCPLINFO { 1* cpli * 1 
int idIcon; 
int idName; 
int idInfo; 
LONG lData; 

CPLINFO; 

TCPLInfo = record 
idIcon: Integer; 
idName: Integer; 
idInfo: Integer; 
lData: Longint; 

end; 

icon resource id, provided by CP1Applet() } 
name string res. id, provided by CP1Applet() 
info string res. id, provided by CP1Applet() 
user defined data } 

Members idlcon Specifies an icon resource identifier for the application 
icon. This icon is displayed in the Control Panel window. 

idName 

idlnfo 

IData 

Chapter 7, Structures 

Specifies a string resource identifier for the application 
name. The name is the short string displayed below the 
application icon in the Control Panel window. The name is 
also displayed on the Settings menu of Control Panel. 

Specifies a string resource identifier for the application 
description. The description is the descriptive string 
displayed at the bottom of the Control Panel window 
when the application icon is selected. 

Specifies user-defined data for the application. 

557 



CTLINFO 

CTLINFO 3.1 

The CTLINFO structure defines the class name and version number for a 
custom control. The CTLINFO structure also contains an array of 
CTl TYPE structures, each of which lists commonly used combinations of 
control styles (called variants), with a short description and information 
about the suggested size. 

#include <custcntl.h> 

typedefstructtagCTLINFO{ 
UINT wVersion; 
UINT wCtlTypes; 
char szClass[CTLCLASS]; 
char szTitle[CTLTITLE]; 
char szReserved[lO]; 
CTLTYPE Type[CTLTYPES]; 

CTLINFO; 

TCtllnfo = record 

/* control version */ 
/* control types */ 

/* control class name */ 
/* control title */ 

/* reserved for future use */ 
/* control type list */ 

wVersion: Word; { control version } 
wCtlTypes: Word; { control types } 
szClass: array[O .. ctlClass-l] of Char; 

{ control class name} 
szTitle: array[O .. ctlTitle-l] of Char; 

{ control title} 
szReserved: array[O .. 9] of Char; 

{ reserved for future use} 
ctType: array[O .. ctlTypes-l] of TCtlType; 

{ control type list} 
end; 

Members wVersion Specifies the control version number. Although you can 
start your numbering scheme from one digit, most 
implementations use the lower two digits to represent 
minor releases. 

wCtlTypes 

szClass 

szTitie 

558 

Specifies the number of control types supported by this 
class. This value should always be greater than zero and 
less than or equal to the CTl TYPES value. 

Specifies a null-terminated string that contains the control 
class name supported by the dynamic-link library (DLL). 
This string should be no longer than the CTlClASS value. 

Specifies a null-terminated string that contains various 
copyright or author information relating to the control 
library. This string should be no longer than the CTl TITLE 
value. 

Windows API Guide 



CTLSTYLE 

Type Specifies an array of CTl TYPE structures containing 
information that relates to each of the control types 
supported by the class. There should be no more elements 
in the array than specified by the CTl TYPES value. 

Comments An application calls the Classlnfo function to retrieve basic information 
about the control library. Based on the information returned, the 
application can create instances of a control by using one of the supported 
styles. For example, Dialog Editor calls this function to query a library 
about the different control styles it can display. 

The return value of the Classlnfo function identifies a CTLINFO structure 
if the function is successful. This information becomes the property of the 
caller, which must explicitly release it by using the GlobalFree function 
when the structure is no longer needed. 

See Also CTlSTYlE, CTl TYPE 

CTLSTYLE 3. 1 

The CTlSTYlE structure specifies the attributes of the selected control, 
including the current style flags, location, dimensions, and associated text. 

Chapter 7, Structures 

#include <custcntl.h> 

typedefstructtagCTLSTYLE{ 
UINT wX; 
UINT wY; 
UINT 
UINT 
UINT 
DWORD 
char 
char 

CTLSTYLE; 

wCx; 
wCy; 
WId; 
dwStyle; 
szClass[CTLCLASS); 
szTitle[CTLTITLE); 

TCtlStyle = record 

/* x-origin of control */ 
/* y-origin of control */ 
/* width of control */ 
/* height of control */ 
/* control child id */ 
/* control style */ 
/* name of control class */ 
/* control text */ 

wX: Word; x origin of control 
wY: Word; y origin of control 
wCx: Word; width of control } 
wCy: Word; height of control } 
wId: Word; control child id } 
dwStyle: Longint; control style } 
szClass: array[O .. ctlClass-l) of Char; 

{ name of control class 
szTitle: array[O .. ctlTitle-l) of Char; 

{ control text } 
end; 

559 



CTLSTYLE 

Members wX 

wY 

wCx 

wCy 

wid 

dwStyle 

szClass 

szTitle 

Specifies the x-origin, in screen coordinates, of the control 
relative to the client area of the parent window. 

Specifies the y-origin, in screen coordinates, of the control 
relative to the client area of the parent window. 

Specifies the current control width, in screen coordinates. 

Specifies the current control height, in screen coordinates. 

Specifies the current control identifier. In most cases, you 
should not allow the user to change this value because 
Dialog Editor automatically coordinates it with a header 
file. 

Specifies the current control style. The high-order word 
contains the control-specific flags, and the low-order word 
contains the Windows-specific flags. You may let the user 
change these flags to any values supported by your control 
library. 

Specifies a null-terminated string representing the name of 
the current control class. You should not allow the user to 
edit this member, because it is provided for informational 
purposes only. This string should be no longer than the 
CTLCLASS value. 

Specifies with a null-terminated string the text associated 
with the control. This text is usually displayed inside the 
control or may be used to store other associated 
information required by the control. This string should be 
no longer than the CTL TITLE value. 

Comments An application calls the ClassStyle function to display a dialog box to edit 
the style of the selected control. When this function is called, it should 
display a modal dialog box in which the user can edit the CTLSTYLE 
members. The user interface of this dialog box should be consistent with 
that of the predefined controls that Dialog Editor supports. 

See Also CTLINFO, CTLTYPE 

560 Windows API Guide 



CTLTYPE 

CTLTYPE 

The CTl TYPE structure contains information about a control in a 
particular class. The CTLINFO structure includes an array of CTl TYPE 
structures. 

#include <custcntl.h> 

typedefstructtagCTLTYPE{ 
UINT wType; 
UINT wWidth; 
UINT wHeight; 
DWORD dwStyle; 
char szDescr[CTLDESCR]; 

CTLTYPE; 

TCtl Type = record 

/* type style */ 
/* suggested width */ 
/* suggested height */ 
/* default style */ 
/* menu name */ 

wType: Word; type style } 
wWidth: Word; suggested width } 
wHeight: Word; suggested height } 
dwStyle: Longint; default style } 
szDescr: array[O .. ctlDescr-l] of Char; 

{ menu name } 
end; 

3.1 

Members wType Reserved; must be zero. 

wWidth 

wHeight 

dwStyle 

szDescr 

Specifies the suggested width of the control when created 
with Dialog Editor. The width is specified in 
resource-compiler coordinates. 

Specifies the suggested height of the control when created 
using Dialog Editor. The height is specified in 
resource-compiler coordinates. 

Specifies the initial style bits used to obtain this control 
type. This value includes the control-defined flags in the 
high-order word and the Windows-defined flags in the 
low-order word. 

Defines the name to be used by other development tools 
when referring to this particular variant of the base control 
class. Dialog Editor does not refer to this information. This 
string should not be longer than the CTlDESCR value. 

See Also CTLINFO, CTlSTYlE 

Chapter 7, Structures 561 



DDEACK 

DDEACK 2.x 

The DDEACK structure contains status flags that a DDE application 
passes to its partner as part of the WM_DDE_ACK message. The flags 
provide details about the application's response to a WM_DDE_ADVISE, 
WM_DDE_DATA, WM_DDE_EXECUTE, WM_DDE_REQUEST, 
WM_DDE_POKE, or WM_DDE_UNADVISE message. 

#include <dde.h> 

typedef struct tagDDEACK { /* ddeack */ 
WORD bAppReturnCode:8, 

reserved: 6, 
fBusy: 1, 
fAck:l; 

} DDEACK; 

TDDEAck = record 
Flags: Word; 

end; 

Members bAppReturnCode 

tBusy 

tAck 

Specifies an application-defined return code. 

Indicates whether the application was busy and 
unable to respond to the partner's message at the 
time the message was received. A nonzero value 
indicates the server was busy and unable to 
respond. The tBusy member is defined only when 
the tAck member is zero. 

Indicates whether the application accepted the 
message from its partner. A nonzero value 
indicates the server accepted the message. 

See Also WM_DDE_ACK, WM_DDE_ADVISE, WM_DDE_DATA, 
WM_DDE_EXECUTE, WM_DDE_REQUEST, WM_DDE_POKE, 
WM_DDE_UNADVISE, 

562 Windows API Guide 



DDEADVISE 

DDEADVISE 

2.x 

The DDEADVISE structure contains flags that specify how a server should 
send data to a client during an advise loop. A client passes the handle of a 
DDEADVISE structure to a server as part of a WM_DDE_ADVISE 
message. 

#include <dde.h> 

typedef struct tagDDEADVISE { /* ddeadv */ 
WORD reserved: 14, 

fDeferUpd: 1, 
fAckReq: 1; 

short cfFormat; 
DDEADVISE; 

TDDEAdvise = record 
Flags: Word; 
cfFormat: Integer; 

end; 

Members fDeferUpd Indicates whether the server should defer sending updated 
data to the client. A nonzero value tells the server to send a 
WM_DDE_DAT A message with a NULL data handle 
whenever the data item changes. In response, the client can 
post a WM_DDE_REQUEST message to the server to 
obtain a handle to the updated data. 

fAckReq 

cfFormat 

Chapter 7, Structures 

Indicates whether the server should set the fAckReq flag in 
the WM_DDE_DAT A messages that it posts to the client. 
A nonzero value tells the server to set the fAckReq bit. 

Specifies the client application's preferred data format. The 
format must be a standard or registered clipboard format. 
The following standard clipboard formats may be used: 

CF _BITMAP CF _OEMTEXT 
CF_DCF_OEMTEXT CF_PALETTE 
CF _DCF _PALETTE CF _PENDATA 
CF _DCF _PENDATA CF _SYLK 
CF_DCF_SYLK CF_TEXT 
CF_DCF_TEXT CF_TIFF 
CF _METAFILEPICT 

563 



DDEDATA 

DDEDATA 2.x 

The DDEDATA structure contains the data and information about the data 
sent as part of a WM_DDE_DAT A message. 

#include <dde.h> 

typedef struct tagDDEDATA { /* ddedat */ 
WORD unused:12, 

fResponse:1, 
fRelease:1, 
reserved: 1, 
fAckReq: 1; 

short cfFormat; 
BYTE Value[l]; 

DDEDATA; 

TDDEData= record 
Flags: Word; 
cfFormat: Integer; 
Value: array[O .. O] of Char; 

end; 

Members fResponse Indicates whether the application receiving the 
WM_DDE_DATA message should acknowledge receipt of 
the data by sending a WM_DDE_ACK message. A nonzero 
value indicates the application should send the 
acknowledgment. 

fRelease 

fAckReq 

cfFormat 

564 

Indicates if the application receiving the WM_DDE_POKE 
message should free the data. A nonzero value indicates 
the data should be freed. 

Indicates whether the data was sent in response to a 
WM_DDE_REQUEST message or a WM_DDE_ADVISE 
message. A nonzero value indicates the data was sent in 
response to a WM_DDE_REQUEST message. 

Specifies the format of the data. The format should be a 
standard or registered clipboard format. The following 
standard clipboard formats may be used: 

CF_BITMAP 
CF _DCF _ OEMTEXT 
CF _DCF _PALETIE 
CF _DCF _PENDATA 
CF _DCF _SYLK 
CF _DCF _TEXT 
CF _METAFILEPICT 

CF_OEMTEXT 
CF_PALETTE 
CF_PENDATA 
CF_SYLK 
CF_TEXT 
CF_TIFF 

Windows API Guide 



DDEPOKE 

See Also WM_DDE_ACK, WM_DDE_ADVISE, WM_DDE_DATA, 
WM_DDE_POKE, WM_DDE_REQUEST 

DDEPOKE 2.x 

The DDEPOKE structure contains the data and information about the data 
sent as part of a WM_DDE_POKE message. 

#include <dde.h> 

typedef struct tagDDEPOKE { /* ddepok */ 
WORD unused: 13, 

fRelease:1, 
fReserved:2; 

short cfFormat; 
BYTE Value[l]; 

DDEPOKE; 

TDDEPoke = record 
Flags: Word; 
cfFormat: Word; 
Value: array[O .. O] of Byte; 

end; 

Members fRelease Indicates if the application receiving the WM_DDE_POKE 
message should free the data. A nonzero value specifies 
the data should be freed. 

cfFormat 

Value 

Chapter 7, Structures 

Specifies the format of the data. The format should be a 
standard or registered clipboard format. The following 
standard clipboard formats may be used: 

CF _BITMAP CF _OEMTEXT 
CF_DCF_OE~EXT CF_PALETTE 
CF_DCF_PALETTE CF_PENDATA 
CF _DCF _PENDATA CF _SYLK 
CF _DCF _SYLK CF _TEXT 
CF_DCF_TEXT CF_TIFF 
CF _METAFILEPICT 

Contains the data. The size of this array depends on the 
value of the cfFormat member. 

565 



DEBUGHOOKINFO 

DEBUGHOOKINFO 3.1 

The DEBUGHOOKINFO structure contains debugging information. 

typedef struct tagDEBUGHOOKINFO 
HMODULE hModuleHook; 
LPARAM reserved; 
LPARAM IParam; 
WPARAM wParam; 
int code; 

DEBUGHOOKINFO; 

TDebugHookInfo = record 
hModuleHook: THandle; 
reserved: Longint; 
IParam: Longint; 
wParm: Word; 
code: Integer; 

end; 

Members hModuleHook 

reserved 

IParam 

wParam 

code 

Identifies the module containing the filter function. 

Not used. 

Specifies the value to be passed to the hook in the 
IParam parameter of the DebugProc callback 
function. 

Specifies the value to be passed to the hook in the 
wParam parameter of the DebugProc callback 
function. 

Specifies the value to be passed to the hook in the 
code parameter of the DebugProc callback function. 

See Also DebugProc, SetWindowsHook 

566 Windows API Guide 



DEVNAMES 

DEVNAMES 

3.1 

The DEVNAMES structure contains offsets to strings that specify the 
driver, name, and output port of a printer. The PrintDlg function uses 
these strings to initialize controls in the system-defined Print dialog box. 
When the user chooses the OK button to close the dialog box, information 
about the selected printer is returned in this structure. 

#include <commdlg.h> 

typedef struct tagDEVNAMES /* dn */ 
UINT wDriverOffset; 
UINT wDeviceOffset; 
UINT wOUtputOffset; 
UINT wDefault; 
/* optional data may appear here */ 

DEVNAMES; 

TDevNames = record 
wDriverOffset: Word; 
wDeviceOffset: Word; 
wOutputOffset: Word; 
wDefault: Word; 

end; 

Members wDriverOffset Specifies the offset from the beginning of the 
structure to a null-terminated string that specifies 
the Microsoft MS-DOS®filename (without 
extension) of the device driver. On input, this 
string is used to set which printer to initially 
display in the dialog box. 

wDeviceOffset 

wOutputOffset 

wDefault 

Chapter 7, Structures 

Specifies the offset from the beginning of the 
structure to the null-terminated string that 
specifies the name of the device. This string cannot 
exceed 32 bytes in length, including the null 
character, and must be identical to the 
dmDeviceName member of the DEVMODE 
structure. 

Specifies the offset from the beginning of the 
structure to the null-terminated string that 
specifies the MS-DOS device name for the physical 
output medium (output port). 

Specifies whether the strings specified in the 
DEVNAMES structure identify the default printer. 
It is used to verify that the default printer has not 
changed since the last print operation. On input, 

567 



DOCINFO 

this member can be set to DN_DEFAULTPRN. If 
the DN_DEFAULTPRN flag is set, the other values 
in the DEVNAMES structure are checked against 
the current default printer. 

On output, the wDefault member is changed only 
if the Print Setup dialog box was displayed and 
the user chose the OK button to close it. If the 
default printer was selected, the 
DN_DEFAULTPRN flag is set. If a printer is 
specifically selected, the flag is not set. All other 
bits in this member are reserved for internal use by 
the dialog box procedure of the Print dialog box. 

See Also PrintDlg 

DOCINFO 3.1 

The DOCINFO structure contains the input and output filenames used by 
the StartDoc function. 

typedef struct { /* di */ 
int cbSize; 
LPCSTR IpszDocName; 
LPCSTR IpszOutput; 

DOC INFO; 

TDocInfo = record 
cbSize: Integer; 
IpszDocName: PChari 
IpszOutput: PChar; 

end; 

Members cbSize 

IpszDocName 

IpszOutput 

See Also StartDoc 

Specifies the size of the structure, in bytes. 

Points to a null-terminated string specifying the 
name of the document. This string must not be 
longer than 32 characters, including the null 
terminating character. 

Points to a null-terminated string specifying the 
name of an output file. This allows a print job to be 
redirected to a file. If this value is NULL, output 
goes to the device for the specified device context. 

568 Windows API Guide 



DRVCONFIGINFO 

DRIVERINFOSTRUCT 3.1 

The DRIVERINFOSTRUCT structure contains basic information about an 
installable device driver. 

typedef struct tagDRIVERINFOSTRUCT 
UINT length; 
HDRVR hDri ver; 
HINSTANCE hModule; 
char szAliasName[128]; 

DRIVERINFOSTRUCT; 

TDriverInfoStruct=record 
length: Word; 
hDriver: THandle; 
hModule: THandle; 
szAliasName: array[O .. 128] of Char; 

end; 

1* drvinfst */ 

Members length 

hDriver 

hModule 

Specifies the size of the DRIVERINFOSTRUCT structure. 

Identifies an instance of the installable driver. 

Identifies an installable driver module. 

szAliasName Points to a null-terminated string that specifies the driver 
name or an alias under which the driver was loaded. 

See Also GetDriverlnfo 

DRVCONFIGINFO 3.1 

The DRVCONFIGINFO structure contains information about the entries 
for an installable device driver in the SYSTEM.INI file. This structure is 
sent in the IParam parameter of the DRV _CONFIGURE and 
DRV _INSTALL installable-driver messages. 

Chapter 7, Structures 

typedef struct tagDRVCONFIGINFO 
DWORD dwDCISize; 
LPCSTR lpszDCISectionName; 
LPCSTR lpszDCIAliasName; 

DRVCONFIGINFO; 

569 



EVENTMSG 

TDrvConfigInfo=record 
dwDCISize: Longint; 
IpszDCISectionName: PChar; 
IpszDCIAliasName: PChar; 

end; 

Members dwDCISize Specifies the size of the DRVCONFIGINFO 
structure. 

IpszDCISectionName Points to a null-terminated string that specifies the 
name of the section in the SYSTEM.INI file where 

IpszDCIAliasName 

driver information is recorded. 

Points to a null-terminated string that specifies the 
driver name or an alias under which the driver 
was loaded. 

See Also DRV _CONFIGURE, DRV _INSTALL 

EVENTMSG 2.x 

The EVENTMSG structure contains information from the Windows 
application queue. This structure is used to store message information for 
the JournalPlaybackProc callback function. 

typedef struct tagEVENTMSG 
UINT message; 
UINT paramL; 
UINT paramH; 
DWORD time; 

EVENTMSG; 

TEventMsg = record 
message: Word; 
paramL: Word; 
paramH: Word; 
time: Longint; 

end; 

/* em */ 

Members message Specifies the message number. 

paramL 

paramH 

time 

Specifies additional information about the message. The 
exact meaning depends on the message value. 

Specifies additional information about the message. The 
exact meaning depends on the message value. 

Specifies the time at which the message was posted. 

See Also JournalPlaybackProc, SetWindowsHook 

570 Windows API Guide 



FINDREPLACE 

FINDREPLACE 

3.1 

The FINDREPLACE structure contains information that the system uses to 
initialize a system-defined Find dialog box or Replace dialog box. After 
the user chooses the OK button to close the dialog box, the system returns 
information about the user's selections in this structure. 

#include <commdlg.h> 

typedef struct tagFINDREPLACE /* fr */ 
DWORD lStructSizei 
HWND hwndOwner i 
HINSTANCE hInstancei 
DWORD Flagsi 
LPSTR lpstrFindWhati 
LPSTR lpstrReplaceWithi 
UINT wFindWhatLeni 
UINT wReplaceWithLeni 
LPARAM lCustDatai 
UINT (CALLBACK* lpfnHook) (HWND, UINT, WPARAM, LPARAM) i 
LPCSTR lpTemplateNamei 

FINDREPLACEi 

TFindReplace=record 
lStructSize: Longinti 
hWndOwner: HWndi 
hInstance: THandlei 
Flags: Longinti 
lpstrFindWhat: PChari 
lpstrReplaceWith: PChari 
wFindWhatLen: Wordi 
wReplaceWithLen: Wordi 
lCustData: Longinti 
lpfnHook: function (Wnd: HWndi Msg, wParam: Wordi lParam: Longint): 

Wordi 
lpTemplateName: PChari 

end; 

Members IStructSize Specifies the length of the structure, in bytes. This member 
is filled on input. 

hwndOwner Identifies the window that owns the dialog box. This 
member can be any valid window handle, but it must not 
be NULL. 

Chapter 7, Structures 

If the FR_SHOWHELP flag is set, hwndOwner must 
identify the window that owns the dialog box. The 
window procedure for this owner window receives a 
notification message when the user chooses the Help 
button. (The identifier for the notification message is the 

571 



FINDREPLACE 

572 

hlnstance 

Flags 

Value 

value returned by the RegisterWindowMessage function 
when HELPMSGSTRING is passed as its argument.) 

This member is filled on input. 

Identifies a data block that contains a dialog box template 
specified by the IpTemplateName member. This member is 
only used if the Flags member specifies the 
FR_ENABLETEMPLATE or the 
FR_ENABLETEMPLATEHANDLE flag; otherwise, this 
member is ignored. This member is filled on input. 

Specifies the dialog box initialization flags. This member 
can be a combination of the following values: 

Meaning 

Indicates the dialog box is closing. The 
window handle returned by the FindText 
or ReplaceText function is no longer 
valid after this bit is set. This flag is set 
by the system. 
Sets the direction of searches through a 
document. If the flag is set, the search 
direction is down; if the flag is clear, the 
search direction is up. Initially, this flag 
specifies the state of the Up and Down 
buttons; after the user chooses the OK 
button to close the dialog box, this flag 
specifies the user's selection. 

FR_ENABLEHOOK Enables the hook function specified in 
the IpfnHook member of this structure. 
This flag can be set on input. 

FR_ENABLETEMPLATE 

FR_ENABLETEMPLATEHANDLE 

FR_HIDEMATCHCASE 

Causes the system to use the dialog box 
template identified by the hlnstance and 
IpTemplateName members to display the 
dialog box. This flag is used only to 
initialize the dialog box. 
Indicates that the hlnstance member 
identifies a data block that contains a 
pre-loaded dialog box template. The 
system ignores the IpTemplateName 
member if this flag is specified. This flag 
can be set on input. 
Indicates that the application should 
search for the next occurrence of the 
string specified by the IpstrFindWhat 
member. This flag is set by the system. 
Hides and disables the Match Case check 
box. This flag can be set on input. 

Windows API Guide 



FINDREPLACE 

Value Meaning 

FR_HIDEWHOLEWORD Hides and disables the Match Only 
Whole Word check box. This flag can be 
set on input. 

FR_HIDEUPDOWN Hides the Up and Down radio buttons 
that control the direction of searches 
through a document. This flag can be set 
on input. 

FR_MATCHCASE Specifies that the search is to be case 
sensitive. This flag is set when the dialog 
box is created and may be changed by 
the system in response to user input. 

FR_NOMATCHCASE Disables the Match Case check box. This 
flag is used only to initialize the dialog 
box. 

FR_NOUPDOWN Disables the Up and Down buttons. This 
flag is used only to initialize the dialog 
box. 

FR_NOWHOLEWORD Disables the Match Whole Word Only 
check box. This flag is used only to 
initialize the dialog box. 

FR_REPLACE Indicates that the application should 
replace the current occurrence of the 
string specified in the IpstrFindWhat 
member with the string specified in the 
IpstrReplaceWith member. This flag is set 
by the system. 

FR_REPLACEALL Indicates that the application should 
replace all occurrences of the string 
specified in the IpstrFindWhat member 
with the string specified in the 
IpstrReplaceWith member. This flag is set 
by the system. 

FR_SHOWHELP Causes the dialog box to show the Help 
button. If this flag is specified, the 
hwndOwner must not be NULL. This flag 
can be set on input. 

FR_ WHOLE WORD Checks the Match Whole Word Only 
check box. Only whole words that match 
the search string will be considered. This 
flag is set when the dialog box is created 
and may be changed by the system in 
response to user input. 

IpstrFindWhat Specifies the string to search for. If a string is 
specified when the dialog box is created, the 
dialog box will initialize the Find What edit 
control with this string. If the FR_FINDNEXT flag 

Chapter 7, Structures 573 



FINDREPLACE 

IpstrReplaceWith 

wFindWhatLen 

wReplaceWithLen 

ICustData 

IpfnHook 

IpTemplateName 

574 

is set when the dialog box is created, the 
application should search for an occurrence of this 
string (using the FR_DOWN, FR_ WHOLEWORD, 
and FR_MATCHCASE flags to further define the 
direction and type of search). The application must 
allocate a buffer for the string. This buffer should 
be at least 80 bytes long. This flag is set when the 
dialog box is created and may be changed by the 
system in response to user input. 

Specifies the replacement string for replace 
operations. The FindText function ignores this 
member. The ReplaceText function uses this string 
to initialize the Replace With edit control. This flag 
is set when the dialog box is created and may be 
changed by the system in response to user input. 

Specifies the length, in bytes, of the buffer to which 
the IpstrFindWhat member points. This member is 
filled on input. 

Specifies the length, in bytes, of the buffer to which 
the IpstrReplaceWith member points. This 
member is filled on input. 

Specifies application-defined data that the system 
passes to the hook function identified by the 
IpfnHook member. The system passes a pointer to 
the CHOOSECOLOR structure in the IParam 
parameter of the WM_INITDIALOG message; this 
pointer can be used to retrieve the ICustData 
member. 

Points to a hook function that processes messages 
intended for the dialog box. To enable the hook 
function, an application must specify the 
FR_ENABLEHOOK flag in the Flags member; 
otherwise, the system ignores this structure 
member. The hook function must return zero to 
pass a message that it didn't process back to the 
dialog box procedure in COMMDLG.DLL. The 
hook function must return a nonzero value to 
prevent the dialog box procedure in 
COMMDLG.DLL from processing a message it has 
already processed. 

This member is filled on input. 

Points to a null-terminated string that specifies the 
name of the resource file for the dialog box 
template that is to be substituted for the dialog box 

Windows API Guide 



FIXED 

template in COMMDLG.DLL. An application can 
use the MAKEINTRESOURCE macro for numbered 
dialog box resources. This member is used only if 
the Flags member specifies the 
FR_ENABLETEMPLATE flag; otherwise, this 
member is ignored. 

This member is filled on input. 

Comments Some members of this structure are filled only when the dialog box is 
created, some are filled only when the user closes the dialog box, and 
some have an initialization value that changes when the user closes the 
dialog box. Whenever a description in the Members section does not 
specify how the value of a member is assigned, the value is assigned only 
when the dialog box is created. 

See Also FindText, ReplaceText 

FIXED 3.1 

The FIXED structure contains the integral and fractional parts of a 
fixed-point real number. 

typedef struct tagFIXED { /* fx */ 
DINT fract; 
int 

} FIXED; 
value; 

TF ixed = record 
fract: Word; 
value: Integer; 

end; 

Members fract Specifies the fractional part of the number. 

Specifies the integer part of the number. value 

Comments The FIXED structure is used to describe the elements of the MAT2 and 
POINTFX structures. 

See Also GetGlyphOutiine 

Chapter 7, Structures 575 



FMS_GETDRIVEINFO 

FMS_ GETDRIVEINFO 

The FMS_GETDRIVEINFO structure contains information about the drive 
that is selected in the currently active File Manager window. 

#include <wfext.h> 

typedefstructtagFMS_GETDRIVEINFO{/*fmsgdi*/ 
DWORD dwTotalSpacei 
DWORD dwFreeSpace; 
char szPath[260]i 
char szVolume[14]i 
char szShare[128]i 

FMS_GETDRIVEINFO, FAR *LPFMS_GETDRIVEINFO; 

TGetDriveInfo = record 
dwTotalSpace: Longinti 
dwFreeSpace: Longint; 
sZPath: array[O .. 259] of Chari { current directory } 
szVolume: array[O .. 13] of Chari volume label} 
szShare: array[O .. 127] of Chari { if this is a net drive 

end; 

Members dwTotalSpace 

dwFreeSpace 

szPath 

szVolume 

szShare 

Specifies the total amount of storage space, in 
bytes, on the disk associated with the drive. 

Specifies the amount of free storage space, in 
bytes, on the disk associated with the drive. 

Specifies a null-terminated string that contains the 
path of the current directory. 

Specifies a null-terminated string that contains the 
volume label of the disk associated with the drive. 

Specifies a null-terminated string that contains the 
name of the sharepoint (if the drive is being 
accessed through a network). 

See Also FMExtensionProc, FM_ GETDRIVEINFO 

576 Windows API Guide 



FMS_GETFILESEL 

FMS_ GETFILESEL 

The FMS_GETFILESEL structure contains information about a selected 
file in File Manager's directory window or Search Results window. 

#include <wfext.h> 

typedef struct tagFMS_GETFILESEL { /* fmsgfs */ 
UINT wTime; 
UINT wDate; 
DWORD dwSize; 
BYTE bAttr; 
char szName[260]; 

FMS_GETFILESEL; 

TGetFileSel = record 
wTime: Word; 
wDate: Word; 
dwSize: Longint; 
bAttr: Byte; 
szName: array[O .. 259] of Char; 

end; 
{ always fully qualified } 

Members wTime Specifies the time when the file was created. 

Specifies the date when the file was created. 

Specifies the size, in bytes, of the file. 

Specifies the attributes of the file. 

wDate 

dwSize 

bAttr 

szName Specifies a null-terminated string (an OEM string) that 
contains the fully-qualified path of the selected file. Before 
displaying this string, an extension should use the 
OemToAnsi function to convert the string to a Windows 
ANSI string. If a string is to be passed to the MS-DOS file 
system, an extension should not convert it. 

See Also FMExtensionProc 

Chapter 7, Structures 577 



The FMS_LOAD structure contains information that File Manager uses to 
add a custom menu provided by a File Manager extension dynamic-link 
library (DLL). The structure also provides a delta value that the extension 
DLL can use to manipulate the custom menu after File Manager has 
loaded the menu. 

#include <wfext.h> 

typedef struct tagFMS LOAD { /* fmsld */ 
DWORD dwSize; -
char szMenuName[MENU TEXT LEN]; 
HMENU hMenu; --
UINT wMenuDelta; 

FMS_LOAD; 

TFMS Load = record 
dwSize: Longint; { for version checks } 
szMenuName: array[O .. Menu_Text_Len-l) of Char; {output} 
Menu: HMenu; { output } 
wMenuDelta: Word; { input } 

end; 

Members dwSize 

szMenuName 

hMenu 

wMenuDelta 

See Also FMExtensionProc 

Specifies the length of the structure, in bytes. 

Contains a null-terminated string for a menu item 
that appears in File Manager's main menu. 

Identifies the pop-up menu that is added to File 
Manager's main menu. 

Specifies the menu-item delta value. To avoid 
conflicts with its own menu items, File Manager 
renumbers the menu-item identifiers in the 
pop-up menu identified by the hMenu parameter 
by adding this delta value to each identifier. An 
extension DLL that needs to modify a menu item 
must identify the item to modify by adding the 
delta value to the menu item's identifier. The value 
of this member can vary from session to session. 

578 Windows API Guide 



GLOBALENTRY 

GLOBALENTRY 

The GLOBALENTRV structure contains information about a memory 
object on the global heap. 

#include <toolhelp.h> 

typedef struct tagGLOBALENTRY 
DWORD dwSize; 
DWORD dwAddress; 
DWORD dwBlockSize; 
HGLOBAL hBlock; 
WORD wcLock; 
WORD wcPageLock; 
WORD wFlags; 
BOOL wHeapPresent; 
HGLOBAL hOwner; 
WORD wType; 
WORD wData; 
DWORD dwNext; 
DWORD dwNextAlt; 

GLOBALENTRY; 

TGlobalEntry = record 
dwSize: Longint; 
dwAddress: Longint; 
dwBlockSize: Longint; 
hBlock: THandle; 
wcLock: Word; 
wcPageLock: Word; 
wFlags: Word; 
wHeapPresent: Bool; 
hOwner: THandle; 
wType: Word; 
wData: Word; 
dwNext: Longint; 
dwNextAlt: Word; 

end; 

/* ge */ 

3.1 

Members dwSize Specifies the size of the GLOBALENTRV structure, 
in bytes. 

dwAddress 

dwBlockSize 

hBlock 

wcLock 

Chapter 7, Structures 

Specifies the linear address of the global-memory 
object. 

Specifies the size of the global-memory object, in 
bytes. 

Identifies the global-memory object. 

Specifies the lock count. If this value is zero, the 
memory object is not locked. 

579 



GLOBALENTRV 

580 

wcPageLock 

wFlags 

wHeapPresent 

hOwner 

wType 

Specifies the page lock count. If this value is zero, 
the memory page is not locked. 

Specifies additional information about the 
memory object. This member can be the following 
value: 

Value Meaning 

The process data block (PDB) for 
the task is the owner of the 
memory object. 

Indicates whether a local heap exists within the 
global-memory object. 

Identifies the owner of the global-memory object. 

Specifies the memory type of the object. This type 
can be one of the following values: 

Value 

GT_TASK 

Meaning 

The memory type is not 
known. 
The object contains the 
default data segment and the 
stack segment. 
The object contains program 
data. (It may also contain 
stack and local heap data.) 
The object contains program 
code. If GT _CODE is 
specified, the wOata member 
contains the segment number 
for the code. 
The object contains the task 
database. 
The object contains the 
resource type specified in 
wOata. 
The object contains the 
module database. 
The object belongs to the free 
memory pool. 
The object is reserved for 
internal use by Windows. 

Windows API Guide 



wData 

Value 

GD _ACCELERATORS 

GD_CURSOR 

GLOBALENTRY 

Value Meaning 

GT _SENTINEL The object is either the first or 
the last object on the global 
heap. 

GT _BURGERMASTER The object contains a table 
that maps selectors to arena 
handles. 

If the wType member is not GT _CODE or 
GT _RESOURCE, wData is zero. 

IfwType is GT_CODE, GT_DATA, or 
GT_DGROUP, wData contains the segment 
number for the code. 

If wType is GT_RESOURCE, wData specifies the 
type of resource. The type can be one of the 
following values: 

Meaning 

The object contains data from the accelerator 
table. 
The object contains data describing a bitmap. 
This includes the bitmap color table and the 
bitmap bits. 
The object contains data describing a group of 
cursors. This includes the height, width, color 
count, bit count, and ordinal identifier for the 
cursors. 

GD_CURSORCOMPONENT The object contains data describing a single 
cursor. This includes bitmap bits and bitmasks 
for the cursor. 

GD _ERRTABLE 
GD_FONT 

Chapter 7, Structures 

The object contains data describing controls 
within a dialog box. 
The object contains data from the error table. 
The object contains data describing a single 
font. This data is identical to data in a 
Windows font file (.FNT). 
The object contains data describing a group of 
fonts. This includes the number of fonts in the 
resource and a table of metrics for each of these 
fonts. 
The object contains data describing a group of 
icons. This includes the height, width, color 
count, bit count, and ordinal identifier for the 
icons. 

581 



GLOBALINFO 

Value Meaning 

GO _ICONCOMPONENT The object contains data describing a single 
icon. This includes bitmap bits and bitmaps for 
the icon. 

GO_MENU 

GO_NAMETABLE 

GO_RCOATA 

GO_STRING 
GO _USEROEFINEO 

dwNext 

dwNextAlt 

The object contains menu data for normal and 
pop-up menu items. 
The object contains data from the name table. 
The object contains data from a user-defined 
resource. 
The object contains data from the string table. 
The resource has an unknown resource 
identifier or is an application-specific named 
type. 

Reserved for internal use by Windows. 

Reserved for internal use by Windows. 

See Also GlobalEntryHandle, GlobalEntryModule, GlobalFirst, GlobalNext, 
GLOBALINFO 

GLOBALINFO 3.1 

582 

The GLOBALINFO structure contains information about the global heap. 

#include <toolhelp.h> 

typedef struct tagGLOBALINFO { /* gi */ 
DWORD dwSize; 
WORD wcItems; 
WORD wcItemsFree; 
WORD wcItemsLRU; 

GLOBAL INFO ; 

TGlobalInfo = record 
dwSize: Longint; 
wcItems: Word; 
wcItemsFree: Word; 
wcItemsLRU; Word; 

end; 

Members dwSize 

wcltems 

Specifies the size of the GLOBALINFO structure, in bytes. 

Specifies the total number of items on the global heap. 

wcltemsFree Specifies the number of free items on the global heap. 

Windows API Guide 



GLYPHMETRICS 

wcltemsLRU Specifies the number of "least recently used" (LRU) items 
on the global heap. 

See Also Globallnfo, GLOBALENTRY 

GLYPHMETRICS 3.1 

The GL YPHMETRICS structure contains information about the placement 
and orientation of a glyph in a character cell. 

typedef struct tagGLYFHMETRICS { /* gm * / 
UINT gmBlackBoxX; 
UINT gmBlackBoxY; 
POINT gmptGlyphOrigin; 
int gmCellIncX; 
int gmCellIncY; 

GLYFHMETRICS; 

TGlyphMetrics=record 
gmBlackBoxX: Word; 
gmBlackBoxY: Word; 
gmptGlyphOrigin: TPoint; 
gmCellIncX: Integer; 
gmCellIncY: Integer; 

end; 

Members gmBlackBoxX Specifies the width of the smallest rectangle that 
completely encloses the glyph (its "black box"). 

gmBlackBoxY 

gmptGlyphOrigin 

gmCelllncX 

gmCellincY 

Specifies the height of the smallest rectangle that 
completely encloses the glyph (its "black box"). 

Specifies the x- and y-coordinates of the upper-left 
corner of the smallest rectangle that completely 
encloses the glyph. 

Specifies the horizontal distance from the origin of 
the current character cell to the origin of the next 
character cell. 

Specifies the vertical distance from the origin of 
the current character cell to the origin of the next 
character cell. 

Comments Values in the GL YPHMETRICS structure are specified in logical units. 

See Also GetGlyphOutiine 

Chapter 7, Structures 583 



HELPWININFO 

HARDWAREHOOKSTRUCT 3.1 

The HARDWAREHOOKSTRUCT contains information about a hardware 
message placed in the system message queue. 

typedef struct tagHARDWAREHOOKSTRUCT { /* hhs * / 
HWND hWnd; 
UINT wMessage; 
WPARAM wParami 
LPARAM IParam; 

HARDWAREHOOKSTRUCT; 

THardwareHookStruct=record 
hWnd: HWndi 
wMessage: Word; 
wParam: Word; 
IParam: Longint; 

end; 

Members hWnd Identifies the window that will receive the message. 

Specifies the message identifier. 

HELPWININFO 

584 

wMessage 

wParam Specifies additional information about the message. The 
exact meaning depends on the wMessage parameter. 

IParam Specifies additional information about the message. The 
exact meaning depends on the wMessage parameter. 

The HELPWININFO structure contains the size and position of a 
secondary help window. An application can set this size by calling the 
WinHelp function with the HELP _SETWINPOS value. 

typedef struct { 
int wStructSize; 
int Xi 
int y; 
int dx; 
int dy; 
int wMax; 
char rgchMember[2]i 

HELPWININFO i 

3.1 

Windows API Guide 



THelpWinInfo = record 
wStructSize: Integer; 
x: Integer; 
y: Integer; 
dx: Integer; 
dy: Integer; 
wMax: Integer; 
rgchMernber: array[O .. l] of Char; 

end; 

HSZPAIR 

Members wStructSize Specifies the size of the HELPWININFO structure. 

x 

y 

dx 

dy 

wMax 

Specifies the x-coordinate of the upper-left corner of the 
window. 

Specifies the y-coordinate of the upper-left corner of the 
window. 

Specifies the width of the window. 

Specifies the height of the window. 

Specifies whether the window should be maximized or set 
to the given position and dimensions. If this value is I, the 
window is maximized. If it is zero, the size and position of 
the window are determined by the x, y, dx, and dy 
members. 

rgchMember Specifies the name of the window. 

Comments Microsoft Windows Help divides the display into 1024 units in both the x­
and y-directions. To create a secondary window that fills the upper-left 
quadrant of the display, for example, an application would specify zero 
for the x and y members and 512 for the dx and dy members. 

See Also WinHelp 

HSZPAIR 3.1 

The HSZPAIR structure contains a dynamic data exchange (DDE) service 
name and topic name. A DDE server application can use this structure 
during an XTYP _ WILDCONNECT transaction to enumerate the 
service/topic name pairs that it supports. 

Chapter 7, Structures 

#include <ddeml.h> 

typedef struct tagHSZPAIR 
HSZ hszSvc; 
HSZ hszTopic; 

} HSZPAIR; 

/* hp */ 

585 



KERNINGPAIR 

THSZPair = record 
hszSvc: HSZ; 
hszTopic: HSZ; 

end; 

Members hszSvc Identifies a service name. 

Identifies a topic name. 

KERNINGPAIR 

hszTopic 

The KERNINGPAIR structure defines a kerning pair. 

typedef struct tagKERNINGPAIR { 
WORD wFirst; 
WORD wSecond; 
int iKernAmount; 

KERNINGPAIR; 

TKerningPair=record 
wFirst: Word; 
wSecond: Word; 
iKernAmount: Integer; 

end; 

3.1 

Members wFirst Specifies the character code for the first character 
in the kerning pair. 

wSecond 

iKernAmount 

See Also GetKerningPairs 

Specifies the character code for the second 
character in the kerning pair. 

Specifies the amount that this pair will be kerned if 
they appear side by side in the same font and size. 
This value is typically negative, because 
pair-kerning usually results in two characters 
being set more tightly than normal. The value is 
given in logical units-that is, it depends on the 
current mapping mode. 

586 Windows API Guide 



LOCALENTRY 

LOCALENTRY 

3.1 

The LOCALENTRY structure contains information about a memory object 
on the local heap. 

#include <toolhelp.h> 

typedef struct tagLOCALENTRY { 1* le *1 
DWORD dwSize; 
HLOCAL hHandl e; 
WORD wAddress; 
WORD wSize; 
WORD wFlags; 
WORD wcLock; 
WORD wType; 
WORD hHeap; 
WORD wHeapType; 
WORD wNext; 

LOCALENTRY; 

TLocalEntry = record 
dwSize: Longint; 
hHandle: THandle; 
wAddress: Word; 
wSize: Word; 
wFlags: Word; 
wcLock: Word; 
wType: Word; 
hHeap: Word; 
wHeapType: Word; 
wNext: Word; 

end; 

Members dwSize Specifies the size of the LOCALENTRY structure, in bytes. 

Identifies the local-memory object. hHandle 

wAddress 

wSize 

wFlags 

Chapter 7, Structures 

Specifies the address of the local-memory object. 

Specifies the size of the local-memory object, in bytes. 

Specifies whether the memory object is fixed, free, or 
movable. This member can be one of the following values: 

Value 

LF_FREE 
LF _MOVEABLE 

Meaning 

The object resides in a fixed memory 
location. 
The object is part of the free memory pool. 
The object can be moved in order to 
compactmemor~ 

587 



LOCALENTRY 

wcLock 

wType 

588 

Specifies the lock count. If this value is zero, the memory 
object is not locked. 

Specifies the content of the memory object. This member 
can be one of the following values: 

Value 

LT_GDCBRUSH 

LT_ GDCDISABLED _DC 

LT_GDCPALETIE 

LT_GDCPEN 
LT_GDCRGN 

Meaning 

The object belongs to the 
free memory pool. 
The object contains a 
bitmap header. 
The object contains a 
brush. 
The object contains a 
device context. 
The object is reserved for 
internal use by Windows. 
The object contains a font 
header. 
The object is reserved for 
internal use by Windows. 
The object contains a 
metafile device context. 
The object contains a 
metafile header. 
The object contains a 
palette. 
The object contains a pen. 
The object contains a 
region. 
The object is reserved for 
internal use by Windows. 
The object contains an 
atom structure. 
The object is reserved for 
internal use by Windows. 
The object contains a 
combo-box structure. 
The object is reserved for 
internal use by Windows. 
The object contains a 
class structure. 
The object is reserved for 
internal use by Windows. 
The object is reserved for 
internal use by Windows. 

Windows API Guide 



hHeap 

Chapter 7, Structures 

LOCALENTRY 

Value Meaning 

LT_USER_ED The object contains an 
edit-control structure. 

LT_USER_HANDLETABLE The object is reserved for 
internal use by Windows. 

LT_USER_HOOKLIST The object is reserved for 
internal use by Windows. 

LT_USER_HOTKEYLIST The object is reserved for 
internal use by Windows. 

LT_USER_LBIV The object contains a 
list-box structure. 

LT_USER_LOCKINPUTSTATE The object is reserved for 
internal use by Windows. 

LT_USER_MENU The object contains a 
menu structure. 

LT_USER_MISC The object is reserved for 
internal use by Windows. 

LT_USER_MWP The object is reserved for 
internal use by Windows. 

LT_USER_OWNERDRAW The object is reserved for 
internal use by Windows. 

LT_USER_PALETTE The object is reserved for 
internal use by Windows. 

LT_USER_POPUPMENU The object is reserved for 
internal use by Windows. 

LT_USER_PROP The object contains a 
window-property 
structure. 

LT_USER_SPB The object is reserved for 
internal use by Windows. 

LT_USER_STRING The object is reserved for 
internal use by Windows. 

LT_USER_USERSEEUSERDOALLOC The object is reserved for 
internal use by Windows. 

LT_USER_WND The object contains a 
window structure. 

Identifies the local-memory heap. 

589 



LOCALINFO 

wHeapType Specifies the type of local heap. This type can be one of the 
following values: 

wNext 

Value 

NORMAL_HEAP 
USER_HEAP 
GDCHEAP 

Meaning 

The heap is the default heap. 
The heap is used by the USER module. 
The heap is used by the GDI module. 

Specifies the next entry in the local heap. This member is 
reserved for internal use by Windows. 

Comments The wType values are for informational purposes only. Microsoft reserves 
the right to change or delete these tags at any time. Applications should 
never directly change items on the system heaps, as this information will 
change in future versions. The wType values for the USER module are 
included only in the debugging versions of USER.EXE. 

See Also LocalFirst, LocalNext, LOCALINFO 

LOCALINFO 3.1 

The LOCALINFO structure contains information about the local heap. 

#include <toolhelp.h> 

typedef struct tagLOCALINFO { /* Ii */ 
DWORD dwSize; 
WORD wcltems; 

} LOCALINFO; 

TLocallnfo = record 
dwSize: Longint; 
wcltems: Word; 

end; 

Members dwSize 

wcltems 

Specifies the size of the LOCALINFO structure, in bytes. 

Specifies the total number of items on the local heap. 

See Also Locallnfo, LOCALENTRY 

590 Windows API Guide 



MAT2 

The MAT2 structure contains the values for a transformation matrix. 

typedef struct tagMAT2 { /* mat2 */ 
FIXED eM11; 
FIXED eM12; 
FIXED eM21; 
FIXED eM22; 

MAT2; 

TMat2 = record 
eM11: TFixed; 
eM12: TFixed; 
eM21: TFixed; 
eM22: TFixed; 

end; 

MAT2 

3.1 

Members eM11 Specifies a fixed-point value for the Mll component of a 
2-by-2 transformation matrix. 

eM12 

eM21 

eM22 

Specifies a fixed-point value for the M12 component of a 
2-by-2 transformation matrix. 

Specifies a fixed-point value for the M21 component of a 
2-by-2 transformation matrix. 

Specifies a fixed-point value for the M22 component of a 
2-by-2 transformation matrix. 

Comments The identity matrix produces a transformation in which the transformed 
graphical object is identical to the source object. In the identity matrix, the 
value of eM11 is I, the value of eM12 is zero, the value of eM21 is zero, 
and the value of eM22 is 1. 

See Also GetGlyphOutiine 

Chapter 7, Structures 591 



MEMMANINFO 

MEMMANINFO 3.1 

592 

The MEMMANINFO structure contains information about the status and 
performance of the virtual-memory manager. If the memory manager is 
running in standard mode, the only valid member of this structure is the 
dwLargestFreeBlock member. 

#include <toolhelp.h> 

typedef struct tagMEMMANINFO 1* rnmi *1 
DWORD dwSize; 
DWORD dwLargestFreeBlock; 
DWORD dwMaxPagesAvailable; 
DWORD dwMaxPagesLockable; 
DWORD dwTotalLinearSpace; 
DWORD dwTotalUnlockedPages; 
DWORD dwFreePages; 
DWORD dwTotalPages; 
DWORD dwFreeLinearSpace; 
DWORD dwSwapFilePages; 
WORD wPageSize; 

MEMMANINFO; 

TMemManlnfo = record 
dwSize: Longint; 
dwLargestFreeBlock: Longint; 
dwMaxPagesAvailable: Longint; 
dwMaxPagesLockable: Longint; 
dwTotalLinearSpace: Longint; 
dwTotalUnlockedPages: Longint; 
dwFreePages: Longint; 
dwTotalPages: Longint; 
dwFreeLinearSpace: Longint; 
dwSwapFilePages: Longint; 
wPageSize: Word; 

end; 

Members dwSize Specifies the size of the MEMMANINFO 
structure, in bytes. 

dwLargestFreeBlock 

dwMaxPagesAvailable 

dwMaxPagesLockable 

Specifies the largest free block of contiguous 
linear memory in the system, in bytes. 

Specifies the maximum number of pages that 
could be allocated in the system (the value of 
dwLargestFreeBlock divided by the value of 
wPageSize). 

Specifies the maximum number of pages that 
could be allocated and locked. 

Windows API Guide 



METAHEADER 

dwTotalLinearSpace Specifies the size of the total linear address 
space, in pages. 

dwTotalUnlockedPages Specifies the number of unlocked pages in the 
system. This value includes free pages. 

dwFreePages Specifies the number of pages that are not in 
use. 

dwTotalPages Specifies the total number of pages the 
virtual-memory manager manages. This value 
includes free, locked, and unlocked pages. 

dwFreeLinearSpace 

dwSwapFi lePages 

wPageSize 

See Also MemManlnfo 

Specifies the amount of free memory in the 
linear address space, in pages. 

Specifies the number of pages in the system 
swap file. 

Specifies the system page size, in bytes. 

METAHEADER 3.1 

The METAHEADER structure contains information about a metafile. 

typedef struct tagMETAHEADER { /* mh * / 
UINT mtType; 
UINT mtHeaderSize; 
UINT mtVersion; 
DWORD mtSize; 
UINT mtNoObjects; 
DWORD mtMaxRecord; 
UINT mtNoParameters; 

METAHEADER; 

TMetaHeader=record 
mtType : Word; 
mtHeaderSize : Word; 
mtVersion : Word; 
mtSize : Longint; 
mtNoObjects : Word; 
mtMaxRecord : Longint; 
mtNoParameters : Word; 

end; 

Members mtType Specifies whether the metafile is in memory or 
recorded in a disk file. This member can be one of 
the following values: 

Chapter 7, Structures 593 



METARECORD 

mtHeaderSlze 

mtVersion 

mtSize 

mtNoObjects 

mtMaxRecord 

mtNoParameters 

Value 

1 
2 

Meaning 

Metafile is in memory. 
Metafile is in a disk file. 

Specifies the size, in words, of the metafile header. 

Specifies the Windows version number. The 
version number for meta files that support 
device-independent bitmaps (DIBs) is Ox0300. 
Otherwise, the version number is OxOlOO. 

Specifies the size, in words, of the file. 

Specifies the maximum number of objects that 
exist in the metafile at the same time. 

Specifies the size, in words, of the largest record in 
the metafile. 

Reserved. 

See Also METARECORD 

METARECORD 3.1 

The METARECORD structure contains a metafile record. 

typedef struct tagMETARECORD { /* rnr * / 
DWORD rdSize; 
UINT rdFunction; 
UINT rdParm[l]; 

METARECORD; 

TMetaRecord = record 
rdSize: Longint; 
rdFunction: Word; 
rdParm: array[O .. O] of Word; 

end; 

Members rdSize 

rdFunction 

rdParm 

Specifies the size, in words, of the record. 

Specifies the function number. 

Specifies an array of words containing the function 
parameters, in the reverse order in which they are passed 
to the function. 

See Also METAHEADER 

594 Windows API Guide 



MINMAXINFO 

MINMAXINFO 

3.1 

The MINMAXINFO structure contains information about a window's 
maximized size and position and its minimum and maximum tracking 
size. 

typedef struct tagMINMAXINFO { /* mmi */ 
POINT ptReserved; 
POINT ptMaxSize; 
POINT ptMaxPosition; 
POINT ptMinTrackSize; 
POINT ptMaxTrackSize; 

MINMAXINFO; 

TMinMaxInfo = record 
ptReserved: TPoint; 
ptMaxSize: TPoint; 
ptMaxPosition: TPoint; 
ptMinTrackSize: TPoint; 
ptMaxTrackSize: TPoint; 

end; 

Members ptReserved Reserved for internal use. 

ptMaxSize 

ptMaxPosition 

ptMi nTrackSize 

ptMaxTrackSize 

Specifies the maximized width (point.x) and the 
maximized height (point.y) of the window. 

Specifies the position of the left side of the 
maximized window (point.x) and the position of 
the top of the maximized window (point.y). 

Specifies the minimum tracking width (point.x) 
and the minimum tracking height (point.y) of the 
window. 

Specifies the maximum tracking width (point.x) 
and the maximum tracking height (point.y) of the 
window. 

See Also POINT, WM_GETMINMAXINFO 

Chapter 7, Structures 595 



MODULEENTRV 

MODULEENTRY 3.1 

The MODULEENTRV structure contains information about one module in 
the module list. 

#include <toolhelp.h> 

typedef struct tagMODULEENTRY { /* me */ 
DWORD dwSize; 
char szModule[MAX MODULE NAME + 1]; 
HMODULE hModule; - -
WORD wcUsage; 
char szExePath[MAX_PATH + 1]; 
WORD wNext; 

MODULEENTRY; 

TModuleEntry=record 
dwSize: Longint; 
szModule : array[O .. max_Module_Name] of Char; 
hModule: THandle; 
wUsageFlags: Word; 
szExePath: array[O •. max_Path] of Char; 
wNext: Word; 

end; 

Members dwSize 

szModule 

hModule 

wcUsage 

szExePath 

wNext 

Specifies the size of the MODULEENTRV structure, in bytes. 

Specifies the null-terminated string that contains the 
module name. 

Identifies the module handle. 

Specifies the reference count of the module. This is the 
same number returned by the GetModuleUsage function. 

Specifies the null-terminated string that contains the 
fully-qualified executable path for the module. 

Specifies the next module in the module list. This member 
is reserved for internal use by Windows. 

See Also ModuleFindHandle, ModuleFindName, ModuleFirst, ModuleNext 

596 Windows API Guide 



MONCBSTRUCT 

MONCBSTRUCT 3.1 

The MONCBSTRUCT structure contains information about the current 
dynamic data exchange (DDE) transaction. A DDE debugging application 
can use this structure when monitoring transactions that the system 
passes to the DDE callback functions of other applications. 

Members cb 

#include <ddeml.h> 

typedef struct tagMONCBSTRUCT 
UINT cb; 
WORD wReserved; 
DWORD dwTime; 
HANDLE hTask; 
DWORD 
UINT 
UINT 
HCONV 
HSZ 

dwRet; 
wType; 
wFmt; 
hConv; 
hszl; 

HSZ hsz2; 
HDDEDATA hData; 
DWORD dwDatal; 
DWORD dwData2; 

MONCBSTRUCT; 

TMonCBStruct=record 
cb: Word; 
wReserved: Word; 
dwTime: Longint; 
hTask: THandle; 
dwRet: Longint; 
wType: Word; 
wFmt: Word; 
hConv: HConv; 
hszl: HSZ; 
hsz2: HSZ; 
hData: HDDEData; 
dwDatal: Longint; 
dwData2: Longint; 

end; 

/* mcbst */ 

wReserved 

dwTime 

Specifies the length, in bytes, of the structure. 

Reserved. 

Specifies the Windows time at which the transaction 
occurred. Windows time is the number of milliseconds 
that have elapsed since the system was started. 

hTask 

Chapter 7, Structures 

Identifies the task (application instance) containing the 
DDE callback function that received the transaction. 

597 



MONCONVSTRUCT 

dwRet 

wType 

wFmt 

hConv 

hsz1 

hsz2 

hData 

dwData1 

dwData2 

Specifies the value returned by the DDE callback function 
that processed the transaction. 

Specifies the transaction type. 

Specifies the format of the data (if any) exchanged during 
the transaction. 

Identifies the conversation in which the transaction took 
place. 

Identifies a string. 

Identifies a string. 

Identifies the data (if any) exchanged during the 
transaction. 

Specifies additional data. 

Specifies additional data. 

See Also MONERRSTRUCT I MONHSZSTRUCT I MONLINKSTRUCT I 
MONMSGSTRUCT 

MONCONVSTRUCT 3.1 

598 

The MONCONVSTRUCT structure contains information about a 
conversation. A dynamic data exchange (DDE) monitoring application 
can use this structure to obtain information about an advise loop that has 
been established or terminated. 

#include <ddeml.h> 

typedef struct tagMONCONVSTRUCT { /* mcvst */ 
UINT cb; 
BOOL fConnect; 
DWORD dwTime; 
HANDLE hTask; 
HSZ hszSvc; 
HSZ hszTopic; 
HCONV hConvClient; 
HCONV hConvServer; 

} MONCONVSTRUCT; 

Windows API Guide 



Members cb 

TMonConvStruct=record 
cb: Word; 
fConnect: Bool; 
dwTime: Longint; 
hTask: THandle; 
hszSvc: HSz; 
hszTopic: HSz; 
hConvClient: HConv; 
hConvServer: HConv; 

end; 

MONERRSTRUCT 

Specifies the length, in bytes, of the structure. 

fConnect Indicates whether the conversation is currently 
established. A value of TRUE indicates the conversation is 

dwTime 

hTask 

hszSvc 

hszTopic 

established; FALSE indicates it is not. 

Specifies the Windows time at which the conversation was 
established or terminated. Windows time is the number of 
milliseconds that have elapsed since the system was 
started. 

Identifies a task (application instance) that is a partner in 
the conversation. 

Identifies the service name on which the conversation is 
established. 

Identifies the topic name on which the conversation is 
established. 

hConvClient Identifies the client conversation. 

hConvServer Identifies the server conversation. 

See Also MONCBSTRUCT, MONERRSTRUCT, MONHSZSTRUCT, 
MONLINKSTRUCT, MONMSGSTRUCT 

MONERRSTRUCT 3.1 

The MONERRSTRUCT structure contains information about the current 
dynamic data exchange (DOE) error. A DOE monitoring application can 
use this structure to monitor errors returned by DOE Management 
Library functions. 

Chapter 7, Structures 

#include <ddeml.h> 

typedef struct tagMONERRSTRUCT { /* mest */ 
UINT cbi 
urNT wLastError; 
DWORD dwTime; 
HANDLE hTask; 

MONERRSTRUCT; 

599 



MONHSZSTRUCT 

TMonErrStruct = record 
cb: Word; 
wLastError: Word; 
dwTime: Longint; 
hTask: THand1e; 

end; 

Members .cb 

wLastError 

dwTime 

hTask 

Specifies the length, in bytes, of the structure. 

Specifies the current error. 

Specifies the Windows time at which the error occurred. 
Windows time is the number of milliseconds that have 
elapsed since the system was started. 

Identifies the task (application instance) that called the 
DDE function that caused the error. 

See Also MONCBSTRUCT, MONCONVSTRUCT, MONHSZSTRUCT, 
MONLINKSTRUCT, MONMSGSTRUCT 

MONHSZSTRUCT 3.1 

600 

The MONHSZSTRUCT structure contains information about a dynamic 
data exchange (DDE) string handle. A DDE monitoring application can 
use this structure when monitoring the activity of the string-manager 
component of the DDE Management Library (DDEML). 

#inc1ude <ddem1.h> 

typedef struct tagMONHSZSTRUCT { /* mhst */ 
UINT cb; 
BOOL fsAction; 
DWORD dwTime; 
HSZ hsz; 
HANDLE hTask; 
WORD wReserved; 
char str [1] ; 

MONHSZSTRUCT; 

TMonHSZStruct=record 
cb: Word; 
fsAction: Bool; 
dwTime: Longint; 
HSZ: HSZ; 
hTask: THandle; 
wReserved: Word; 

mh value 

Str: array[O .. O] of Char; 
end; 

Windows API Guide 



Members cb 

fsAction 

MONHSZSTRUCT 

Specifies the length, in bytes, of the structure. 

Specifies the action being performed on the string handle 
identified by the hsz member. 

Value 

MH_CLEANUP 

MH_CREATE 

Meaning 

An application is freeing its DDE resources, 
causing the system to delete string handles 
that the application had created. (The 
application called the DdeUninitialize 
function.) 
An application is creating a string handle. 
(The application called the 
DdeCreateStringHandle function.) 
An application is deleting a string handle. 
(The application called the 
DdeFreeStringHandle function.) 
An application is increasing the use count of 
a string handle. (The application called the 
DdeKeepStringHandle function.) 

dwTime Specifies the Windows time at which the action specified 
by the fsAction member takes place. Windows time is the 
number of milliseconds that have elapsed since the system 
was booted. 

hsz Identifies the string. 

hTask Identifies the task (application instance) performing the 
action on the string handle. 

wReserved Reserved. 

str Points to the string identified by the hsz member. 

See Also MONCBSTRUCT, MONCONVSTRUCT, MONERRSTRUCT, 
MONLINKSTRUCT, MONMSGSTRUCT 

Chapter 7, Structures 601 



MONLINKSTRUCT 

MONLINKSTRUCT 3.1 

602 

The MONLINKSTRUCT structure contains information about a dynamic 
data exchange (DOE) advise loop. A DOE monitoring application can use 
this structure to obtain information about an advise loop that has started 
or ended. 

Members cb 

#include <ddeml.h> 

typedef struct tagMONLINKSTRUCT 
UINT cb; 
DWORD dwTime; 
HANDLE hTaski 
BOOL fEstablishedi 
BOOL fNoData; 
HSZ hSZSVCi 
HSZ hszTopic; 
HSZ hszItemi 
UINT wFmti 
BOOL fServer; 
HCONV hConvServer; 
HCONV hConvClient; 

MONLINKSTRUCT; 

TMonLinkStruct=record 
cb: Word; 
dwTime: Longint; 
hTask: THandle; 
fEstablished: Booli 
fNoData: Bool; 
hszSvc: HSz 
hszTopic: HSz; 
hszItem: HSz; 
wFmt: Wordi 
fServer: Bool; 
hConvServer: HConv; 
hConvClient: HConv; 

end; 

/* mlst */ 

Specifies the length, in bytes, of the structure. 

dwTime Specifies the Windows time at which the advise loop was 
started or ended. Windows time is the number of 
milliseconds that have elapsed since the system was 
started. 

hTask Identifies a task (application instance) that is a partner in 
the advise loop. 

Windows API Guide 



fEstablished 

fNoData 

hszSvc 

hszTopic 

hszltem 

wFmt 

fServer 

MONMSGSTRUCT 

Indicates whether an advise loop was successfully 
established. A value of TRUE indicates an advise loop was 
established; FALSE indicates an advise loop was not 
established. 

Indicates whether the XTYPF _NODATA flag was set for 
the advise loop. A value of TRUE indicates the flag is set; 
FALSE indicates the flag was not set. 

Identifies the service name of the server in the advise loop. 

Identifies the topic name on which the advise loop is 
established. 

Identifies the item name that is the subject of the advise 
loop. 

Specifies the format of the data exchanged (if any) during 
the advise loop. 

Indicates whether the link notification came from the 
server. If the notification came from the server, this value 
is TRUE. Otherwise, it is FALSE. 

hConvServer Identifies the server conversation. 

hConvClient Identifies the client conversation. 

See Also MONCBSTRUCT, MONERRSTRUCT, MONHSZSTRUCT, 
MONMSGSTRUCT 

MONMSGSTRUCT 3.1 

The MONMSGSTRUCT structure contains information about a dynamic 
data exchange (DDE) message. A DDE monitoring application can use 
this structure to obtain information about a DDE message that was sent or 
posted. 

Chapter 7, Structures 

#include <ddeml.h> 

typedef struct tagMONMSGSTRUCT { /* mmst */ 
UINT cbi 
HWND hwndToi 
DWORD dwTime i 
HANDLE hTaski 
UINT wMsgi 
WPARAM wParamj 
LFARAM lParamj 

} MONMSGSTRUCTj 

603 



MOUSEHOOKSTRUCT 

Members cb 

TMonMsgStruct = record 
cb: Word; 
hWndTo: HWnd; 
dwTime: Longint; 
hTask: THandle; 
wMsg: Word; 
wParam: Word; 
lParam: Longint; 

end; 

Specifies the length, in bytes, of the structure. 

hwndTo 

dwTime 

Identifies the window that receives the DDE message. 

Specifies the Windows time at which the message was sent 
or posted. Windows time is the number of milliseconds 
that have elapsed since the system was started. 

hTask 

wMsg 

wParam 

IParam 

Identifies the task (application instance) containing the 
window that receives the DDE message. 

Specifies the identifier of the DDE message. 

Specifies the wParam parameter of the DDE message. 

Specifies the IParam parameter of the DDE message. 

See Also MONCBSTRUCT, MONCONVSTRUCT, MONERRSTRUCT, 
MONHSZSTRUCT, MONLINKSTRUCT 

MOUSEHOOKSTRUCT 3.1 

604 

The MOUSEHOOKSTRUCT structure contains information about a mouse 
event. 

typedef struct tagMOUSEHOOKSTRUCT { /* ms */ 
POINT pt; 
HWND hwnd; 
UINT wHitTestCode; 
DWORD dwExtraInfo; 

MOUSEHOOKSTRUCT; 

TMouseHookStruct=record 
pt: TPoint; 
hWnd: HWnd; 
wHitTestCode: Word; 
dwExtraInfo: Longint; 

end; 

Windows API Guide 



Members pt 

NCCALCSIZE_PARAMS 

Specifies a POINT structure that contains the x­
and y-coordinates of the mouse cursor, in screen 
coordinates. 

hwnd Identifies the window that will receive the mouse 
message that corresponds to the mouse event. 

wHitTestCode 

dwExtralnfo 

Specifies the hit-test code. 

Specifies extra information associated with the 
mouse event. An application can retrieve this 
information by calling the GetMessageExtralnfo 
function. 

See Also GetMessageExtralnfo,SetWindowsHook 

3.1 

The NCCALCSIZE_PARAMS structure contains information that an 
application can use while processing the WM_NCCALCSIZE message to 
calculate the size, position, and valid contents of the client area of a 
window. 

typedef struct tagNCCALCSIZE_PARAMS 
RECT rgrc[3]; 
WINDOWPOS FAR* lppos; 

NCCALCSIZE_PARAMS; 

TNCCalcSize Params=record 
rgrc: array[O .. 2] of TRect; 
lppos: PWindowPos; 

end; 

Members rgrc Specifies an array of rectangles. The first contains the new 
coordinates of a window that has been moved or resized. 
The second contains the coordinates of the window before 
it was moved or resized. The third contains the coordinates 
of the client area of a window before it was moved or 
resized. If the window is a child window, the coordinates 
are relative to the client area of the parent window. If the 
window is a top-level window, the coordinates are relative 
to the screen. 

Ippos 

Chapter 7, Structures 

Points to a WINDOWPOS structure that contains the size 
and position values specified in the operation that caused 
the window to be moved or resized. The WINDOWPOS 
structure has the following form: 

605 



NEWCPLINFO 

typedef struct tagWINDOWPOS { /* wp * / 
HWND hwnd; 
HWND hwndlnsertAfter; 
int X; 

int y; 
int cx; 
int cy; 
UINT flags; 

}WINDOWPOS; 

See Also MoveWindow, SetWindowPos, RECT, WINDOWPOS, WM_NCCALCSIZE 

NEWCPLINFO 3.1 

606 

The NEWCPLINFO structure contains resource information and a 
user-defined value for a Control Panel application. 

#include <cpl.h> 

typedef struct tagNEWCPLINFO 
DWORD dwSize; 

/* ncpli */ 

DWORD dwFlags; 
DWORD dwHelpContext; 
LONG lData; 
HICON hlcon; 
char szName[32]; 
char szInfo[64]; 
char szHelpFile[128]; 

NEWCPLINFO; 

TNewCPLlnfo=record 
dwSize: Longint; 
dwFlags: Longint; 

similar to the commdlg 

dwHelpContext: Longint; help context to use } 
lData: Longint; user defined data } 
Icon: Hlconi { icon to use, this is owned by CONTROL.EXE (may be 

deleted) } 
szName: array[O .. 31] of Chari 
szInfo: array[O .. 63] of Char; 
szHelpFile: array[O .. 127] of Chari 

short name } 
long name (status line) 
path to help file to use } 

end; 

Members dwSize 

dwFlags 

dwHelpContext 

IData 

Specifies the length of the structure, in bytes. 

Specifies Control Panel flags. 

Specifies the context number for the topic in the 
help project (.HPJ) file that displays when the user 
selects help for the application. 

Specifies data defined by the application. 

Windows API Guide 



NEWTEXTMETRIC 

hlcon Identifies an icon resource for the application icon. 
This icon is displayed in the Control Panel 
window. 

szName Specifies a null-terminated string that contains the 
application name. The name is the short string 
displayed below the application icon in the 
Control Panel window. The name is also displayed 
in the Settings menu of Control Panel. 

szlnfo Specifies a null-terminated string containing the 
application description. The description displayed 
at the bottom of the Control Panel window when 
the application icon is selected. 

szHelpFile Specifies a null-terminated string that contains the 
path of the help file, if any, for the application. 

NEWTEXTMETRIC 2.x 

The NEWTEXTMETRIC structure contains basic information about a 
physical font. The last four members of the NEWTEXTMETRIC structure 
are not included in the TEXTMETRIC structure; in all other respects, the 
structures are identical. The additional members are used for information 
about TrueType fonts. 

Chapter 7, Structures 

typedef struct tagNEWTEXTMETRIC 
int tmHeight; 
int tmAscent; 
int tmDescenti 
int tmInternalLeadingi 
int tmExternalLeadingi 
int tmAveCharWidthi 
int trnMaxCharWidth; 
int tmWeight; 
BYTE tmItalici 
BYTE tmUnderlined; 
BYTE tmStruckOUt; 
BYTE tmFirstChari 
BYTE tmLastChari 
BYTE tmDefaultChar; 
BYTE tmBreakChar; 
BYTE tmPitchAndFamily; 
BYTE tmCharSeti 
int tmOverhang; 
int tmDigitizedAspectX; 
int tmDigitizedAspectY; 
DWORD ntmFlags; 
UINT ntmSizeEM; 
UINT ntmCellHeight; 
UINT ntmAvgWidth; 

NEWTEXTMETRI C; 

/* ntm */ 

607 



NEWTEXTMETRIC 

TNewTextMetric = record 
tmHeight: Integer; 
tmAscent: Integer; 
tmDescent: Integer; 
tmInternalLeading: Integer; 
tmExternalLeading: Integer; 
tmAveCharWidth: Integer; 
tmMaxCharWidth: Integer; 
tmWeight: Integer; 
tmItalic: Byte; 
tmUnderlined: Byte; 
tmStruckOut: Byte; 
tmFirstChar:Byte; 
tmLastChar: Byte; 
tmDefaultChar: Byte; 
tmBreakChar: Byte; 
tmPitchAndFamily: Byte; 
tmCharSet: Byte; 
tmOverhang: Integer; 
tmDigitizedAspectX: Integer; 
tmDigitizedAspectY: Integer; 
ntmFlags: Longint; 
ntmSizeEM: Word; 
ntmCellHeight: Word; 
ntmAvgWidth: Word; 

end; 

various flags (fsSelection) } 
size of EM } 
height of font in notional units 
average with in notional units } 

Members tmHeight Specifies the height of character cells. (The height 
is the sum of the tmAscent and tmDescent 
members.) 

tmAscent 

tmDescent 

tmlnternalLeading 

tm External Lead ing 

608 

Specifies the ascent of character cells. (The ascent 
is the space between the base line and the top of 
the character cell.) 

Specifies the descent of character cells. (The 
descent is the space between the bottom of the 
character cell and the base line.) 

Specifies the difference between the point size of a 
font and the physical size of the font. For 
TrueType fonts, this value is equal to tmHeight 
minus (5 * ntmSizeEM), where 5 is the scaling 
factor for the TrueType font. For bitmap fonts, this 
value is used to determine the point size of a font; 
when an application specifies a negative value in 
the If Height member of the LOG FONT structure, 
the application is requesting a font whose height 
equals tmHeight minus tmlnternalLeading. 

Specifies the amount of extra leading (space) that 
the application adds between rows. Since this area 
is outside the character cell, it contains no marks 
and will not be altered by text output calls in either 

Windows API Guide 



tmAveCharWidth 

tmMaxCharWidth 

tmWeight 

tmltalic 

tmUnderlined 

tmStruckOut 

tmFirstChar 

tmLastChar 

tm DefaultChar 

tmBreakChar 

Chapter 7, Structures 

NEWTEXTMETRIC 

opaque or transparent mode. The font designer 
sometimes sets this member to zero. 

Specifies the average width of characters in the 
font. For ANSC CHARSET fonts, this is a weighted 
average of the characters "a" through "z" and the 
space character. For other character sets, this value 
is an unweighted average of all characters in the 
font. 

Specifies the width of the widest character in the 
font. 

Specifies the weight of the font. This member can 
be one of the following values: 

Constant Value 

FW _DONTCARE 0 
FW_THIN 100 
FW _EXTRALIGHT 200 
FW _ULTRALIGHT 200 
FW_LIGHT 300 
FW_NORMAL 400 
FW_REGULAR 400 
FW_MEDIUM 500 
FW _SEMIBOLD 600 
FW _DEMIBOLD 600 
FW_BOLD 700 
FW _EXTRABOLD 800 
FW_ULTRABOLD 800 
FW_BLACK 900 
FW_HEAVY 900 

Specifies an italic font if it is nonzero. 

Specifies an underlined font if it is nonzero. 

Specifies a "struckout" font if it is nonzero. 

Specifies the value of the first character defined in 
the font. 

Specifies the value of the last character defined in 
the font. 

Specifies the value of the character that will be 
substituted for characters not in the font. 

Specifies the value of the character that will be 
used to define word breaks for text justification. 

609 



NEWTEXTMETRIC 

tmPitchAndFamily 

610 

Specifies the pitch and family of the selected font. 
The four low-order bits identify the type of font, as 
follows: 

Value 

TMPF_PITCH 
TMPF _VECTOR 

TMPF _TRUETYPE 
TMPF _DEVICE 

Meaning 

Designates a fixed-pitch font. 
Designates a vector or 
TrueType font. 
Designates a TrueType font. 
Designates a device font. 

Some fonts are identified by several of these 
bits-for example, Courier New, the 
TMPF _PITCH, TMPF _VECTOR, and TMPF _TT 
bits would be set for the monospace TrueType font. 

When the TMPF _TT bit is set, the font is usable on 
all output devices. For example, if a TrueType font 
existed on a printer but could not be used on the 
display, the TMPF _TT bit would not be set for that 
font. 

The four high-order bits specify the font family. 
The tmPitchAndFamily member can be combined 
with the hexadecimal value OxFO by using the 
bitwise AND operator and can then be compared 
with the font family names for an identical match. 
The following font families are defined: 

Value 

FF _DECORATIVE 

FF_DONTCARE 
FF_MODERN 

Meaning 

Novelty fonts. Old English is 
an example. 
Don't care or don't know. 
Fonts with constant stroke 
width, with or without serifs. 
Pica, Elite, and Courier New 
are examples. 
Fonts with variable stroke 
width and with serifs. Times 
New Roman and New 
Century Schoolbook are 
examples. 
Fonts designed to look like 
handwriting. Script and 
Cursive are examples. 

Windows API Guide 



tmCharSet 

tmOverhang 

Value 

NEWTEXTMETRIC 

Meaning 

Fonts with variable stroke 
width and without serifs. MS 
Sans Serif is an example. 

Specifies the character set of the font. The 
following values are defined: 

Constant Value 

ANSCCHARSET 0 
DEFAULT_ CHARSET 1 
SYMBOL_ CHARSET 2 
SHIFfJIS_CHARSET 128 
OEM_ CHARSET 255 

Specifies the extra width that is added to some 
synthesized fonts. When synthesizing some 
attributes, such as bold or italic, graphics-device 
interface (GDI) or a device adds width to a string 
on both a per-character and per-string basis. For 
example, GDI makes a string bold by expanding 
the intra character spacing and over striking by an 
offset value and italicizes a font by skewing the 
string. In either case, the string is wider after the 
attribute is synthesized. For bold strings, the 
overhang is the distance by which the overstrike is 
offset. For italic strings, the overhang is the 
amount the top of the font is skewed past the 
bottom of the font. 

The tmOverhang member is zero for many italic 
and bold TrueType fonts because many TrueType 
fonts include italic and bold faces that are not 
synthesized. For example, the overhang for 
Courier New Italic is zero. 

An application that uses raster fonts can use the 
overhang value to determine the spacing between 
words that have different attributes. 

tmDigitizedAspectX Specifies the horizontal aspect of the device for 
which the font was designed. 

tmDigitizedAspectV Specifies the vertical aspect of the device for which 
the font was designed. The ratio of the 
tmDigitizedAspectX and tmDigitizedAspectV 
members is the aspect ratio of the device for which 
the font was designed. 

Chapter 7, Structures 611 



NFYLOADSEG 

ntmFlags 

ntmSizeEM 

ntmCeliHeight 

ntmAvgWidth 

Specifies some elements of the font style. This 
member can be one or more of the following 
values: 

NTM_REGULAR 
NTM_BOLD 
NTM_ITALIC 

The NTM_BOLD and NTM_ITALIC flags could be 
combined with the OR operator to specify a bold 
italic font. 

Specifies the size of the em square for the font, in 
the units for which the font was designed (notional 
units). 

Specifies the height of the font, in the units for 
which the font was designed (notional units). This 
value should be compared against the value of the 
ntmSizeEM member. 

Specifies the average width of characters in the 
font, in the units for which the font was designed 
(notional units). This value should be compared 
against the value of the ntmSizeEM member. 

Comments The sizes in the NEWTEXTMETRIC structure are typically given in logical 
units; that is, they depend on the current mapping mode of the display 
context. 

See Also EnumFontFamilies, EnumFonts, GetDeviceCaps, GetTextMetrics 

NFYLOADSEG 3.1 

612 

The NFYLOADSEG structure contains information about the segment 
being loaded when the kernel sends a load-segment notification. 

#include <toolhelp.h> 

typedef struct tagNFYLOADSEG { /* nfyls */ 
DWORD dwSize; 
WORD wSelectori 
WORD wSegNuffii 
WORD wTypei 
WORD wclnstancei 
LPCSTR IpstrModuleNamei 

} NFYLOADSEG i 

Windows API Guide 



TNFYLoadSeg = record 
dwSize: Longint; 
wSelector: Word; 
wSegNum: Word; 
wType: Word; 
hInstance: THandle; 
lpstrModuleName: PChar; 

end; 

NFYLOGERROR 

Members dwSize Specifies the size of the NFYLOADSEG structure, 
in bytes. 

wSelector 

wSegNum 

wType 

Contains the selector of the segment being loaded. 

Contains the executable-file segment number. 

Indicates the type of information in the segment. 
Only the low bit of wType is used. This type can be 
one of the following values: 

Value Meaning 

o The segment contains code. 
1 The segment contains data. 

wclnstance 

IpstrModuleName 

Identifies the application instance being loaded. 

Points to a null-terminated string containing the 
name of the module that owns the segment being 
loaded. 

See Also NotifyRegister 

NFYLOGERROR 3.1 

The NFYLOGERROR structure contains information about a validation 
error that caused the kernel to send an NFY_LOGERROR notification. 

#include <toolhelp.h> 

typedef struct tagNFYLOGERROR { /* nfyle */ 
DWORD dwSize; 
DINT wErrCode; 
void FAR* lpInfo; 

NFYLOGERROR; 

Chapter 7, Structures 613 



NFYLOGPARAMERROR 

TNFYLogError=record 
dwSize: Longint; 
wErrCode: Word; 
Iplnfo: PChar; { Error code-dependent } 

end; 

Members dwSize 

wErrCode 

Specifies the size of the NFYLOGERROR structure, in bytes. 

Identifies the error value that caused the notification to be 
sent. 

Iplnfo Points to additional information, dependent on the error 
value. 

See Also NotifyRegister 

N FYLOGPARAM ERROR 

The NFYLOGPARAMERROR structure contains information about a 
parameter-validation error that caused the kernel to send an 
NFY _LOGP ARAMERROR notification. 

#include <toolhelp.h> 

typedef struct tagNFYLOGPARAMERROR { /* nfylpe */ 
DWORD dwSize; 
UINT wErrCode; 
FARPROC IpfnErrorAddr; 
void FAR* FAR* IpBadParam; 

NFYLOGPARAMERROR; 

TNFYLogParamError=record 
dwSize: Longint; 
wErrCode: Word; 
IpfnErrorAddr : TFarProc; 
IpBadParam: PChar; 

end; 

3.1 

Members dwSize Specifies the size of the NFYLOGPARAMERROR 
structure, in bytes. 

wErrCode 

IpfnErrorAddr 

IpBadParam 

See Also NotifyRegister 

Identifies the error value that caused the 
notification to be sent. 

Points to the address of the function with the 
invalid parameter. 

Points to the name of the invalid parameter. 

614 Windows API Guide 



NFYRIP 

NFYRIP 

The NFYRIP structure contains information about the system when a 
system debugging error (RIP) occurs. 

#include <toolhelp.h> 

typedef struct tagNFYRIP { /* nfyr */ 
DWORD dwSize; 
WORD wIP; 
WORD wCS; 
WORD wSS; 
WORD wBP; 
WORD wExitCode; 

NFYRIP; 

TNFYRi P = record 
dwSize: Longint; 
wIP: Word; 
wCS: Word; 
wSS: Word; 
wBP: Word; 

wExitCode :Word; 
end; 

3.1 

Members dwSize Specifies the size of the NFYRIP structure, in bytes. 

Contains the value in the IP register at the time of the RIP. 

Contains the value in the CS register at the time of the RIP. 

Contains the value in the 55 register at the time of the RIP. 

Contains the value in the BP register at the time of the RIP. 

Contains an exit code that describes why the RIP occurred. 

wlP 

wCS 

wSS 

wBP 

wExitCode 

Comments The StackTraceCSIPFirst function uses the C5:IP and 5S:BP values 
presented in this structure. The first frame in the stack identified by these 
values points to the FatalExit function. The next frame points to the 
routine that called FatalExit, usually in USER.EXE, GDI.EXE, or either 
KRNL286.EXE or KRNL386.EXE. 

See Also FatalExit, NotifyRegister, StackTraceCSIPFirst 

Chapter 7, Structures 615 



NFYSTARTDLL 

NFYSTARTDLL 

The NFYSTARTDLL structure contains information about the 
dynamic-link library (DLL) being loaded when the kernel sends a 
load-DLL notification. 

#include <toolhelp.h> 

typedef struct tagNFYSTARTDLL { /* nfysd */ 
DWORD dwSize; 
HMODULE hModul e; 
WORD wCS; 
WORD wIP; 

NFYSTARTDLL; 

TNFYStartDLL = record 
dwSize: Longint; 
hModule: THandle; 
wCS: Word; 
wIP: Word; 

end; 

3.' 

Members dwSize Specifies the size of the NFYSTARTDLL structure, in bytes. 

Identifies the library module being loaded. hModule 

wCS 

wlP 

See Also NotifyRegister 

Contains the value in the CS register at load time. This 
value is used with the value of the wlP member to 
determine the load address of the library. 

Contains the value in the IP register at load time. This 
value is used with the wCS value to determine the load 
address of the library. 

616 Windows API Guide 



OLECLIENT 

OLECLlENMBL 

3.' 

The OLECLIENT structure points to an OLECLlENTVTBL structure and 
can store state information for use by the client application. 

#include <ole.h> 

typedef struct _OLECLIENT { /* oc */ 
LPOLECLIENTVTBL lpvtbl; 

/* any client-supplied state information */ 

OLECLIENT; 

TOleClient = record 
lpvtbl: POleClientVTBL; 

end; 

Members Ipvtbl Points to a table of function pointers for the client. 

Comments Servers and object handlers should not attempt to use any state 
information supplied in the OLECLIENT structure. The use and meaning 
of this information is entirely dependent on the client application. 
Because a pointer to this structure is supplied as a parameter to the 
client's callback function, this is the preferred method for the client 
application to store private object-state information. 

OLECLlENTVTBL 3.' 

The OLECLlENTVTBL structure contains a pointer to a callback function 
for the client application. 

Chapter 7, Structures 

#include <ole.h> 

typedef struct _OLECLIENTVTBL /* ocv */ 
int (CALLBACK* CallBack) (LPOLECLIENT, OLE_NOTIFICATION, 

LPOLEOBJECT); 
} OLECLIENTVTBL; 

TOleClientVTbl = record 
CallBack: function (Client: POleClient; Nofication: TOle_Notification; 
OleObject: POleObject): Integer; 

end; 

617 



OLECLlENMBL 

618 

Comments The address passed as the CallBack member must be created by using the 
MakeProclnstance function. 

Function ClientCaliback 

Syntax INT ClientCallback(lpclient, notification, lpobject) 

The ClientCaliback function must use the Pascal calling convention and 
must be declared FAR. 

Parameters 

lpclient 

notification 

Points to the client structure associated with the object. The 
library retrieves this pointer from its object structure when 
a notification occurs, uses it to locate the callback function, 
and passes the pointer to the client structure for the client 
application's use. 

Specifies the reason for the notification. This parameter can 
be one of the following values: 

Value Meaning 

The linked object has changed. 
(This notification is not sent for 
embedded objects.) A typical action 
to take with this notification is 
either to redraw or to save the 
object. 
The object has been closed in its 
server. When the client receives this 
notification, it should not call any 
function that causes an 
asynchronous operation until it 
regains control of program 
execution. 
A lengthy drawing operation is 
occurring. This notification allows 
the drawing to be interrupted. 
The server has responded to a 
request by indicating that it is busy. 
This notification requests the client 
to determine whether the library 
should continue to make the 
request. If the callback function 
returns FALSE, the transaction 
with the server is discontinued. 

Windows API Guide 



Ipobject 

Return Value 

Value 

OLECLlENMBL 

Meaning 

The object has been released 
because an asynchronous operation 
has finished. The client should not 
quit until all objects have been 
released. The client application can 
call the OleQueryReleaseError 
function to determine whether the 
operation succeeded. It can also 
call the OleQueryReleaseMethod 
function, if necessary, to verify that 
that operation has ended .. 
The linked object has been 
renamed in its server. This 
notification is for information only, 
because the library automatically 
updates its link information. 
The linked object has been saved in 
its server. The client receives this 
notification when the server calls 
the OleSavedServerDoc function 
in response to the user choosing 
the Update command in the 
server's File menu. 

When the client receives the OLE_CLOSED notification, it 
typically stores the condition and returns to the client 
library, taking action only when the client library returns 
control of program execution to the client application. If 
the client application must take action before regaining 
control, it should not call any functions that could result in 
an asynchronous operation. 

Points to the object that caused the notification to be sent. 
Applications that use the same client structure for more 
than one object use the Ipobject parameter to distinguish 
between notifications. 

When the notification parameter specifies either OLE_QUERY_PAINT or 
OLE_QUERY_RETRY, the client should return TRUE if the library should 
continue, or FALSE to terminate the painting operation or discontinue the 
server transaction. When the notification parameter does not specify either 
OLE_QUERY _PAINT or OLE_ QUERY_RETRY, the return value is 
ignored. 

Chapter 7, Structures 619 



OLEOBJECT 

Comments 
The client application should act on these notifications at the next 
appropriate time; for example, as part of the main event loop or when 
closing the object. The updating of an object can be deferred until the user 
requests the update, if the client provides that functionality. The client 
may call the library from a notification callback function (the library is 
reentrant). The client should not attempt an asynchronous operation 
while certain other operations are in progress (for example, opening or 
deleting an object). The client also should not enter a message-dispatch 
loop inside the callback function. When the client application calls a 
function that would cause an asynchronous operation, the client library 
returns OLE_WAIT_FOR_RELEASE when the function is called, notifies 
the application when the operation completes by using OLE_RELEASE, 
and returns OLE_BUSY if the client attempts to invoke a conflicting 
operation while the previous one is in progress. The client can determine 
if an asynchronous operation is in progress by calling 
OleQueryReleaseStatus, which returns OLE_BUSY if the operation has 
not yet completed. 

See Also OleQueryReleaseStatus 

OLEOBJECT 3.1 

620 

The OLEOBJECT structure points to a table of function pointers for an 
object. This structure is initialized and maintained by servers for the 
server library. 

#include <ole.h> 

typedef struct _OLEOBJECT 
LPOLEOBJECTVTBL lpvtbl; 

/* 00 */ 

. /* any server-supplied state information */ 

} OLEOBJECT; 

TOleObject = record 
lpvtbl: POleObjectVTbl; 

end; 

Members Ipvtbl Points to a table of function pointers for the object. 

Windows API Guide 



OLEOBJECMBL 

OLEOBJECTVTBL 3.1 

The OLEOBJECTVTBL structure points to functions that manipulate an 
object. A server application creates this structure and an OLEOBJECT 
structure to give the server library access to an object. 

Chapter 7, Structures 

#include <ole.h> 

typedef struct _OLEOBJECTVTBL /* oov */ 
void FAR* (CALLBACK* QueryProtocol) (LPOLEOBJECT, OLE_LPCSTR); 
OLESTATUS (CALLBACK* Release) (LPOLEOBJECT); 
OLESTATUS (CALLBACK* Show) (LPOLEOBJECT, BOOL); 
OLESTATUS (CALLBACK* DoVerb) (LPOLEOBJECT, UINT, BOOL, BOOL); 
OLESTATUS (CALLBACK* GetData) (LPOLEOBJECT, OLECLIPFORMAT, 

HANDLE FAR*); 
OLE STATUS (CALLBACK* SetData) (LPOLEOBJECT, OLECLIPFORMAT, HANDLE); 
OLE STATUS (CALLBACK* SetTargetDevice) (LPOLEOBJECT, HGLOBAL); 
OLE STATUS (CALLBACK* SetBounds) (LPOLEOBJECT, OLE_CONST RECT FAR*); 
OLECLIPFORMAT (CALLBACK* EnumFormats) (LPOLEOBJECT, OLECLIPFORMAT); 
OLE STATUS (CALLBACK* SetColorScheme) (LPOLEOBJECT, 

OLE_CONST LOGPALETTE FAR*) ; 

/* 
* Server applications implement only the functions listed above. 
* Object handlers can use any of the functions in this structure 
* to modify default server behavior. 
*/ 

OLE STATUS (CALLBACK* Delete) (LPOLEOBJECT); 
OLE STATUS (CALLBACK* SetHostNames) (LPOLEOBJECT, OLE_LPCSTR, 

OLE _ LPCSTR) ; 
OLESTATUS (CALLBACK* SaveToStream) (LPOLEOBJECT, LPOLESTREAM); 
OLE STATUS (CALLBACK* Clone) (LPOLEOBJECT, LPOLECLIENT, LHCLIENTDOC, 

OLE LPCSTR, LPOLEOBJECT FAR*); 
OLESTATUS (CALLBACK* CopyFromLink) (LPOLEOBJECT, LPOLECLIENT, 

LHCLIENTDOC, OLE_LPCSTR, LPOLEOBJECT FAR*); 
OLESTATUS (CALLBACK* Equal) (LPOLEOBJECT, LPOLEOBJECT); 
OLE STATUS (CALLBACK* CopyToClipboard) (LPOLEOBJECT); 
OLESTATUS (CALLBACK* Draw) (LPOLEOBJECT, HOC, OLE _ CONST RECT FAR*, 

OLE CONST RECT FAR*, HDC); 
OLESTATUS (CALLBACK* Activate) (LPOLEOBJECT, UINT, BOOL, BOOL, HWND, 

OLE_CONST RECT FAR*); 
OLESTATUS (CALLBACK* Execute) (LPOLEOBJECT, HGLOBAL, UINT); 
OLESTATUS (CALLBACK* Close) (LPOLEOBJECT) ; 
OLESTATUS (CALLBACK* Update) (LPOLEOBJECT); 
OLE STATUS (CALLBACK* Reconnect) (LPOLEOBJECT) ; 
OLE STATUS (CALLBACK* ObjectConvert) (LPOLEOBJECT, OLE_LPCSTR, 

LPOLECLIENT, LHCLIENTDOC, OLE_LPCSTR, LPOLEOBJECT FAR*); 
OLE STATUS (CALLBACK* GetLinkUpdateOptions) (LPOLEOBJECT, 

OLEOPT_UPDATE FAR*); 
OLESTATUS (CALLBACK* SetLinkUpdateOptions) (LPOLEOBJECT, 

OLEOPT _UPDATE) ; 
OLE STATUS (CALLBACK* Rename) (LPOLEOBJECT, OLE_LPCSTR); 
OLE STATUS (CALLBACK* QueryName) (LPOLEOBJECT, LPSTR, UINT FAR*); 
OLE STATUS (CALLBACK* QueryType) (LPOLEOBJECT, LONG FAR*); 
OLESTATUS (CALLBACK* QueryBounds) (LPOLEOBJECT, RECT FAR*); 

621 



OLEOBJECMBL 

622 

OLESTATUS (CALLBACK* QuerySize) (LPOLEOBJECT, DWORD FAR*); 
OLESTATUS (CALLBACK* QueryOpen) (LPOLEOBJECT); 
OLESTATUS (CALLBACK* QueryOutOfDate) (LPOLEOBJECT); 
OLE STATUS (CALLBACK* QueryReleaseStatus) (LPOLEOBJECT); 
OLESTATUS (CALLBACK* QueryReleaseError) (LPOLEOBJECT); 
OLE_RELEASE_METHOD (CALLBACK* QueryReleaseMethod) (LPOLEOBJECT); 
OLESTATUS (CALLBACK* RequestData) (LPOLEOBJECT, OLECLIPFORMAT); 
OLESTATUS (CALLBACK* ObjectLong) (LPOLEOBJECT, UINT, LONG FAR*); 

OLEOBJECTVTBL; 

TOleObjectVTbl=record 
QueryProtocol: function (Self: POleObject; Protocol: PChar): 

Pointer; 
Release: function (Self: POleObject): TOleStatus; 
Show: function (Self: POleObject; TakeFocus: Bool): TOleStatus; 
DoVerb: function (Self: POleObject; Verb: Word; Show, Focus: Bool): 

TOleStatus; 
GetData: function (Self: POleObject; Format: TOleClipFormat; 

var Handle: THandle): TOleStatus; 
SetData: function (Self: POleObject; Format: TOleClipFormat; 

Data: THandle): TOleStatus; 
SetTargetDevice: function (Self: POleObject; 

TargetDevice: THandle): TOleStatus; 
SetBounds: function (Self: POleObject; var Bounds: TRect): 

TOleStatus; 
EnumFormats: function (Self: POleObject; 

Format: TOleClipFormat): TOleClipFormat; 
SetColorScheme: function (Self: POleObject; var Palette: 

TLogPalette): TOleStatus; 

Server has to implement only the above methods. 

Extra methods required for client. 

Delete: function (Self: POleObject): TOleStatus; 
SetHostNames: function (Self: POleObject; Client, 

ClientObj: PChar): TOleStatus; 
SaveToStream: function (Self: POleObject; Stream: POleStream): 

TOleStatus; 
Clone: function (Self: POleObject; Client: POleClient; 

ClientDoc: LHClientDoc; ObjectName: PChar; 
var OleObject: POleObject): TOleStatus; 

CopyFromLink: function (Self: POleObject; Client: POleClient; 
ClientDoc: LHClientDoc; ObjName: PChar; 
var OleObject: POleObject): TOleStatus; 

Equal: function (Self: POleObject; OleObject: POleObject): 
TOleStatus; 

CopyToClipboard: function (Self: POleObject): TOleStatus; 
Draw: function (Self: POleObject; DC: HDC; var Bounds, WBounds: 

TRect; FormatDC: HDC): TOleStatus; 
Activate: function (Self: POleObject; Verb: Word; Show, TakeFocus: 

Bool; hWnd: HWnd; Bounds: PRect): TOleStatus; 
Execute: function (Self: POleObject; Commands: THandle; 

Reserved: Word): TOleStatus; 
Close: function (Self: POleObject): TOleStatus; 
Update: function (Self: POleObject): TOleStatus; 
Reconnect: function (Self: POleObject): TOleStatus; 

Windows API Guide 



OLEOBJECMBL 

ObjectConvert: function (Self: POleObjecti Protocol: PChari 
Client: POleClienti ClientDoc: LHClientDoci ObjName: PChari 
var OleObject: POleObject): TOleStatusi 

GetLinkUpdateOptions: function (Self: POleObjecti 
var UpdateOpt: TOleOpt Update): TOleStatusi 

SetLinkUpdateOptions: fu~ction (Self: POleObjecti 
UpdateOpt: TOleOpt_Update): TOleStatusi 

Rename: function (Self: POleObjecti NewName: PChar): TOleStatusi 
QueryName: function (Self: POleObjecti Name: PChari 

var NameSize: Word): TOleStatus; 

QueryType: function (Self: POleObject; var ObjType: Longint): 
TOleStatusi 

QueryBounds: function (Self: POleObject; var Bounds: TRect): 
TOleStatus; 

QuerySize: function (Self: POleObject; var Size: Longint): 
TOleStatus; 

QueryOpen: function (Self: POleObject): TOleStatus; 
QueryOutOfDate: function (Self: POleObject): TOleStatus; 

QueryReleaseStatus: function (Self: POleObject): TOleStatus; 
QueryReleaseError: function (Self: POleObject): TOleStatus; 
QueryReleaseMethod: function (Self: POleObject): 

TOle_Rei ease_Method; 

RequestData: function (Self: POleObject; 
Format: TOleClipFormat): TOleStatus; 

ObjectLong: function (Self: POleObjecti Flags: Word; 
Data: PLongint): TOleStatus; 

This method is internal only 
ChangeData: function (Self: POleObjecti Data: THandle; 
Client: POleClient; Flag: Bool): TOleStatus; 

end; 

Server applications do not need to implement functions beyond the 
SetColorScheme function. Object handlers can provide specialized 
treatment for some or all of the functions in the OLEOBJECTVTBL 
structure. 

The following list of structure members does not document all the 
functions pointed to by the OLEOBJECTVTBL structure. For information 
about the functions not documented here, see the documentation for the 
corresponding function for object linking and embedding (OLE). For 
example, for more information about the QueryProtocol member, see the 
OleQueryProtocol function. 

Chapter 7, Structures 623 



OLEOBJECMBL 

624 

Comments The following functions in OLEOBJECTVTBL should return OLE_BUSY 
when appropriate: 

Activate 
Close 
CopyFromLink 
Delete 
DoVerb 
Execute 
ObjectConvert 
Reconnect 
RequestData 

Function Release 

SetBounds 
SetCol0I5cheme 
SetData 
SetHostNames 
SetLinkUpdateOptions 
SetTargetDevice 
Show 
Update 

Syntax OLE STATUS (FAR PASCAL *Release)(lpObject) 

The Release function causes the server to free the resources associated 
with the specified OLEOBJECT structure. 

Parameters 

IpObject 

Return Value 

Points to the OLEOBJECT structure to be released. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 
The server application should not destroy data when the library calls the 
Release function. The library calls the Release function when no clients 
are connected to the object. 

Function Show 

Syntax OLE STATUS (FAR PASCAL *Show)(lpObject, ITakeFocus) 
function Show(Self: POleObject; TakeFocus: Bool): TOleStatus; 

The Show function causes the server to show an object, displaying its 
window and scrolling (if necessary) to make the object visible. 

Parameters 

IpObject 

fTakeFocus 

Points to the OLEOBJECT structure to show. 

Specifies whether the server window gets the focus. If the 
server window is to get the focus, this value is TRUE. 
Otherwise, this value is FALSE. 

Windows API Guide 



OLEOBJECMBL 

Return Value 
The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 
The library calls the Show function when the server application should 
show the document to the user for editing or to request the server to scroll 
the document to bring the object into view. 

Function DoVerb 

Syntax OLE STATUS (FAR PASCAL *DoVerb)(lpObject, iVerb, fShow, 
fTakeFocus) 

The DoVerb function specifies what kind of action the server should take 
when a user activates an object. 

Parameters 

IpObject Points to the object to activate. 

iVerb Specifies the action to take. The meaning of this parameter 
is determined by the server application. 

fShow Specifies whether to show the server window. This value 
is TRUE to show the window; otherwise, it is FALSE. 

[fakeFocus Specifies whether the server window gets the focus. If the 
server window is to get the focus, this value is TRUE. 
Otherwise, it is FALSE. This parameter is relevant only if 
the fShow parameter is TRUE. 

Return Value 
The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 
All servers must support the editing of objects. If a server does not 
support any verbs except Edit, it should edit the object no matter what 
value is specified by the iVerb parameter. 

Function Get Data 

Syntax OLE STATUS (FAR PASCAL *GetData)(lpObject, cfFormat,lphdata) 

Chapter 7, Structures 625 



OLEOBJECMBL 

626 

The GetData function retrieves data from an object in a specified format. 
The server application should allocate memory, fill it with the data, and 
return the data through the Iphdata parameter. 

Parameters 

IpObject 

cfFormat 

Iphdata 

Return Value 

Points to the OLEOBJECT structure from which data is 
requested. 

Specifies the format in which the data is requested. 

Points to the handle of the allocated memory that the 
server application returns. The library frees the memory 
when it is no longer needed. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value, which may be one of the following: 

OLE_ERROR_BLANK 
OLE_ERROR_FORMAT 
OLE_ERROR_OBJECT 

Function SetData 

Syntax OLE STATUS (FAR PASCAL *SetData)OpObject, cfFormat, hdata) 

The Set Data function stores data in an object in a specified format. This 
function is called (with the Native data format) when a client opens an 
embedded object for editing. This function is also used if the client calls 
the OleSetData function with some other format. 

Parameters 

IpObject 

cfFormat 

hdata 

Return Value 

Points to the OLEOBJECT structure in which data is stored. 

Specifies the format of the data. 

Identifies a place in memory from which the server 
application should extract the data. The server should 
delete this handle after it uses the data. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Windows API Guide 



OLEOBJECMBL 

Comments 
The server application is responsible for the memory identified by the 
hdata parameter. The server must delete this data even if it returns 
OLE_BUSY or if an error occurs. 

Function SetTargetDevice 

Syntax OLESTA TUS (FAR PASCAL *SetTargetDevice)OpObject, hotd) 

The SetTargetDevice function communicates information about the 
client's target device for the object. The server can use this information to 
customize output for the target device. 

Parameters 

IpObject 

hotd 

Return Value 

Points to the OLEOBJECT structure for which the target 
device is specified. 

Identifies an OLETARGETDEVICE structure. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 
The server application is responsible for the memory identified by the 
hotd parameter. The server must delete this data even if it returns 
OLE_BUSY or if an error occurs. 

The library passes NULL for the hotd parameter to indicate that the 
rendering is necessary for the screen. 

See Also 
OleSetTargetDevice 

Function ObjectLong 

Syntax OLESTATUS (FAR PASCAL *ObjectLong)OpObject, wFlags,lpData) 

The ObjectLong function allows the calling application to store data with 
an object. This function is typically used by object handlers. 

Parameters 

IpObject Points to the OLEOBJECT structure for which the data is 
stored. 

Chapter 7, Structures 627 



OLEOBJECMBL 

628 

wFlags 

lpData 

Return Value 

Specifies the method used for setting and retrieving data. 
It can be one or more of the following values: 

Value Meaning 

Data is written to the location specified by 
the IpData parameter, replacing any data 
already there. 
Data is read from the location specified by 
the IpData parameter. 
Data is written or read by an object handler. 
This value prevents data from an object 
handler from being replaced by other 
applications. 

If the calling application specifies OF_SET and OF_GET, 
the function returns a pointer to the previous data and 
replaces the data pointed to by the lpData parameter with 
the data specified by the calling application. 

Points to data to be written or read. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Function SetColorScheme 

Syntax OLESTATUS SetColorScheme(lpObject,lpPal) 

The SetColorScheme function sends the server application the color 
palette recommended by the client application. 

Parameters 

lpObject 

lpPal 

Return Value 

Points to an OLEOBJECT structure for which the client 
application recommends a palette. 

Points to a LOGPALETTE structure specifying the 
recommended palette. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Windows API Guide 



OLESERVER 

OLESERVER 

Comments 
Server applications are not required to use the palette recommended by 
the client application. 

Before returning from the SetColorScheme function, the server 
application should use the palette pointed to by the IpPal parameter in a 
call to the CreatePalette function to create the handle of the palette: 

hpal=CreatePalette(lpPal) ; 

The server can then use the palette handle to refer to the palette. 

The first palette entry in the LOGPALETTE structure specifies the 
foreground color recommended by the client application. The second 
palette entry specifies the background color. The first half of the 
remaining palette entries are fill colors, and the second half are colors for 
lines and text. 

Client applications typically specify an even number of palette entries. 
When there is an uneven number of entries, the server should interpret 
the odd entry as a fill color; that is, if there are five entries, three should be 
interpreted as fill colors and two as line and text colors. 

3.1 

The OLESERVER structure points to a table of function pointers for the 
server. This structure is initialized and maintained by servers for the 
server library. 

#include <ole.h> 

typedef struct _ OLE SERVER 
LPOLESERVERVTBL lpvtbl; 

/* os */ 

. /* any server-supplied state information */ 

OLESERVER; 

TOleServer = record 
lpvtbl: POleServerVTbl; 

end; 

Members Ipvtbl Points to a table of function pointers for the server. 

Chapter 7, Structures 629 



OLESERVERDOCVTBL 

OLESERVERDOC 3.1 

The OLESERVERDOC structure points to a table of function pointers for a 
document. This structure is initialized and maintained by servers for the 
server library. 

#include <ole.h> 

typedef struct _OLESERVERDOC /* osd */ 
LPOLESERVERDOCVTBL lpvtbl; 

/* any server-supplied document-state information */ 

OLESERVERDOC; 

TOleServerDoc = record 
lpvtbl: POleServerDocVTbl; 

end; 

Members Ipvtbl Points to a table of function pointers for the document. 

OLESERVERDOCVTBL 3.1 

630 

The OLESERVERDOCVTBL structure points to functions that manipulate 
a document. A server application creates this structure and an 
OLESERVERDOC structure to give the server library access to a 
document. 

#include <ole.h> 

typedef struct _OLESERVERDOCVTBL /* odv */ 
OLESTATUS (CALLBACK* Save) (LPOLESERVERDOC); 
OLESTATUS (CALLBACK* Close) (LPOLESERVERDOC) ; 
OLESTATUS (CALLBACK* SetHostNames) (LPOLESERVERDOC, OLE_LPCSTR, 

OLE LPCSTR); 
OLESTATUS (CALLBACK* SetDocDimensions) (LPOLESERVERDOC, 

OLE_CONST RECT FAR*); 
OLESTATUS (CALLBACK* GetObject) (LPOLESERVERDOC, OLE_LPCSTR, 

LPOLEOBJECT FAR*, LPOLECLIENT); 
OLESTATUS (CALLBACK* Release) (LPOLESERVERDOC); 
OLESTATUS (CALLBACK* SetColorScheme) (LPOLESERVERDOC, 

OLE_CONST LOGPALETTE FAR*); 
OLESTATUS (CALLBACK* Execute) (LPOLESERVERDOC, HGLOBAL); 

OLESERVERDOCVTBL; 

Windows API Guide 



OLESERVERDOCVTBL 

TOleServerDocVTbl=record 
Save: function (Doc: POleServerDoc): TOleStatusi 
Close: function (Doc: POleServerDoc): TOleStatusi 
SetHostNames: function (Doc: POleServerDoc; Client, Doc: PChar): 

TOleStatusi 
SetDocDimensions: function (Doc: POleServerDoc; 

var Bounds: TRect): TOleStatus; 
GetObject: function (Doc: POleServerDoci Item: PChar; 

var OleObject: POleObject; Client: POleClient): TOleStatus; 
Release: function (Doc: POleServerDoc): TOleStatusi 
SetColorScheme: function (Doc: POleServerDoc; 

var Palette: TLogPalette): TOleStatus; 
Execute: function (Doc: POleServerDoc; Commands: THandle): 

TOleStatus; 
end; 

Documents opened or created on request from the library should not be 
shown to the user for editing until the library requests that they be shown. 

Every function except Release can return OLE_BUSY. 

Function Save 

Syntax OLESTATUS Save(lpDoc) 

The Save function instructs the server to save the document. 

Parameters 

IpDoc Points to an OLESERVERDOC structure corresponding to 
the document to save. 

Return Value 
The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Function Close 

Syntax OLE STATUS Close(lpDoc) 

The Close function instructs the server application to unconditionally 
close the document. The library calls this function when the client 
application initiates the closure. 

Parameters 

IpDoc Points to an OLESERVERDOC structure corresponding to 
the document to close. 

Chapter 7, Structures 631 



OLESERVERDOCVTBL 

632 

Return Value 
The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 

The library always calls the Close function before calling the Release 
function in the OLESERVERVTBL structure. 

The server application should not prompt the user to save the document 
or take other actions; messages of this kind are handled by the client 
application. 

When the library calls the Close function, the server should respond by 
calling the OleRevokeServerDoc function. The resources for the 
document are freed when the library calls the Release function. The 
server should not wait for the Release function by entering a 
message-dispatch loop after calling OleRevokeServerDoc. (A server 
should never enter message-dispatch loops while processing any of these 
functions.) 

When a document is closed, the server should free the memory for the 
OLESERVERDOCVTBL structure and associated resources. 

Function SetHostNames 

Syntax OLE STATUS SetHostNames(lpDoc, IpszClient,lpszDoc) 

The SetHostNames function sets the name that should be used for a 
window title. This name is used only for an embedded object, because a 
linked object has its own title. This function is used only for documents 
that are embedded objects. 

Parameters 

IpDoc 

IpszClient 

IpszDoc 

Points to an OLESERVERDOC structure corresponding to 
a document that is the embedded object for which a name 
is specified. 

Points to a null-terminated string specifying the name of 
the client. 

Points to a null-terminated string specifying the client's 
name for the object. 

Windows API Guide 



OLESERVERDOCVTBL 

Return Value 
The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Function SetDocDimensions 

Syntax OLESTA TUS SetDocDimensions(lpDoc, IpRect) 

The SetDocDimensions function gives the server the rectangle on the 
target device for which the object should be formatted. This function is 
relevant only for documents that are embedded objects. 

Parameters 

IpDoc 

IpRect 

Return Value 

Points to the OLESERVERDOC structure corresponding to 
the document that is the embedded object for which the 
target size is specified. 

Points to a RECT structure containing the target size of the 
object, in MM_HIMETRIC units. (In the MM_HIMETRIC 
mapping mode, the positive y-direction is up.) 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Function GetObject 

Syntax OLESTATUS GetObject(lpDoc,lpszltem,lplpObject, IpClient) 

The GetObject function requests the server to create an OLEOBJECT 
structure. 

Parameters 

IpDoc 

IpszItem 

IplpObject 

Chapter 7, Structures 

Points to an OLESERVERDOC structure corresponding to 
this document. 

Points to a null-terminated string specifying the name of 
an item in the specified document for which an object 
structure is requested. If this string is set to NULL, the 
entire document is requested. This string cannot contain a 
slash mark U). 
Points to a variable of type LPOLEOBJECT in which the 
server application should return a long pointer to the 
allocated OLEOBJECT structure. 

633 



OLESERVERDOCVTBL 

634 

IpClient 

Retum Value 

Points to an OLECLIENT structure allocated by the library. 
The server should associate the OLECLIENT structure with 
the object and use it to notify the library of changes to the 
object. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 

The server application should allocate and initialize the OLEOBJECT 
structure, associate it with the OLECLIENT structure pointed to by the 
IpClient parameter, and return a pointer to the OLEOBJECT structure 
through the IplpObject argument. 

The library calls the GetObject function to associate a client with the part 
of the document identified by the IpszItem parameter. When a client has 
been associated with an object by this function, the server can send 
notifications to the client. 

Applications should be prepared to handle multiple calls to GetObject for 
a given object. This entails creating multiple OLECLIENT structures and 
sending notifications to each of these structures when appropriate. 
Multiple calls to GetObject are possible because some client applications 
that implement object linking and embedding (OLE) by using dynamic 
data exchange (DDE) rather than the OLE dynamic-link libraries may use 
both NULL and an actual item name for the IpszItem parameter. 

Function Release 

Syntax OLESTATUS Release(lpDoc) 

The Release function notifies the server when a revoked document has 
terminated conversations and can be destroyed. 

Parameters 

IpDoc 

Retum Value 

Points to an OLESERVERDOC structure for which the 
handle was revoked and which can now be released. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Windows API Guide 



OLESERVERDOCVTBL 

Function SetColorScheme 

Syntax OLESTATUS SetColorScheme(lpDoc,lpPal) 

The SetColorScheme function sends the server application the color 
. palette recommended by the client application. 

Parameters 

IpDoc 

IpPal 

Return Value 

Points to an OLESERVERDOC structure for which the 
client application recommends a palette. 

Points to a LOGPALETIE structure specifying the 
recommended palette. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 
Server applications are not required to use the palette recommended by 
the client application. 

Before returning from the SetColorScheme function, the server 
application should create a handle to the palette. To do this, the server 
application should use the palette pointed to by the IpPal parameter in a 
call to the CreatePalette function, as shown in the following example. 

hpal=CreatePalette(lpPal) ; 

The server can then use the palette handle to refer to the palette. 

The first palette entry in the LOGPALETIE structure specifies the 
foreground color recommended by the client application. The second 
palette entry specifies the background color. The first half of the 
remaining palette entries are fill colors, and the second half are colors for 
lines and text. 

Client applications typically specify an even number of palette entries. 
When there is an uneven number of entries, the server should interpret 
the odd entry as a fill color; that is, if there are five entries, three should be 
interpreted as fill colors and two as line and text colors. 

Chapter 7, Structures 635 



OLESERVERVTBL 

Function Execute 

Syntax OLESTATUS Execute(lpDoc, hCommands) 

The Execute function receives WM_DDE_EXECUTE commands sent by 
client applications. The applications send these commands by calling the 
OleExecute function. 

Parameters 

IpDoc 

hCommands 

Return Value 

Points to an OLESERVERDOC structure to which the 
dynamic data exchange (DOE) commands apply. 

Identifies memory containing one or more DDE execute 
commands. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 
The server should never free the handle specified in the hCommands 
parameter. 

OLESERVERVTBL 3.1 

636 

The OLESERVERVTBL structure points to functions that manipulate a 
server. After a server application creates this structure and an 
OLESERVER structure, the server library can perform operations on the 
server application. 

#include <ole.h> 

typedef struct _OLESERVERVTBL { /* osv */ 
OLESTATUS (CALLBACK* Open) (LPOLESERVER, LHSERVERDOC, 

OLE_LPCSTR, LPOLESERVERDOC FAR*); 
OLESTATUS (CALLBACK* Create) (LPOLESERVER, LHSERVERDOC, 

OLE_LPCSTR, OLE_LPCSTR, LPOLESERVERDOC FAR*); 
OLESTATUS (CALLBACK* CreateFromTemplate) (LPOLESERVER, 

LHSERVERDOC, OLE_LPCSTR, OLE_LPCSTR, OLE_LPCSTR, 
LPOLESERVERDOC FAR *) ; 

OLESTATUS (CALLBACK* Edit) (LPOLESERVER, LHSERVERDOC, 
OLE_LPCSTR, OLE_LPCSTR, LPOLESERVERDOC FAR*); 

OLESTATUS (CALLBACK* Exit) (LPOLESERVER); 
OLESTATUS (CALLBACK* Release) (LPOLESERVER); 
OLESTATUS (CALLBACK* Execute) (LPOLESERVER, HGLOBAL); 

OLESERVERVTBL; 

Windows API Guide 



OLESERVERVTBL 

TOleServerVTbl=record 
Open: function (Server: POleServeri Doc: LHServerDoci DocName: PChari 

var ServerDoc: POleServerDoc): TOleStatusi 
Create: function (Server: POleServeri Doc: LHServerDoci Class, 

DocName: PChari var ServerDoc: POleServerDoc): TOleStatusi 
CreateFromTemplate: function (Server: POleServeri Doc: LHServerDoci 

Class, DocName, TemplateName: PChari var ServerDoc: POleServerDoc): 
TOleStatus i 

Edit: function (Server: POleServeri Doc: LHServerDoci Class, 
DocName: PChari var ServerDoc: POleServerDoc): TOleStatusi 

Exit: function (Server: POle Server) : TOleStatusi 
Release: function (Server: POleServer): TOleStatusi 
Execute: function (Server: POleServeri Commands: THandle): TOleStatusi 

end; 

Every function except Release can return OLE_BUSY. 

Function Open 

Syntax OLE STATUS Open(lpServer, IhDoc, IpszDoc, IplpDoc) 

The Open function opens an existing file and prepares to edit the 
contents. A server typically uses this function to open a linked object for a 
client application. 

Parameters 

lpServer 

lhDoc 

lpszDoc 

lplpDoc 

Return Value 

Points to an OLESERVER structure identifying the server. 

Identifies the document. The library uses this handle 
internally. 

Points to a null-terminated string specifying the 
permanent name of the document to be opened. Typically 
this string is a path, but for some applications it might be 
further qualified. For example, the string might specify a 
particular table in a database. 

Points to a variable of type LPOLESERVERDOC in which 
the server application returns a long pointer to the 
OLESERVERDOC structure it has created in response to 
this function. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 
When the library calls this function, the server application opens a 
specified document, allocates and initializes an OLESERVERDOC 
structure, associates the library's handle with the document, and returns 

Chapter 7, Structures 637 



OLESERVERVTBL 

638 

the address of the structure. The server does not show the document or its 
window. 

Function Create 

Syntax OLESTATUS CreateOpServer,lhDoc,lpszClass,lpszDoc,lplpDoc) 

The Create function makes a new object that is to be embedded in the 
client application. The IpszDoc parameter identifies the object but should 
not be used to create a file for the object. 

Parameters 

IpSe rver 

IhDoc 

IpszClass 

IpszDoc 

IplpDoc 

Retum Value 

Points to an OLESERVER structure identifying the server. 

Identifies the document. The library uses this handle 
internally. 

Points to a null-terminated string specifying the class of 
document to create. 

Points to a null-terminated string specifying a name for the 
document to be created. This name can be used to identify 
the document in window titles. 

Points to a variable of type LPOLESERVERDOC in which 
the server application should return a long pointer to the 
created OLESERVERDOC structure. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 
When the library calls this function, the server application creates a 
document of a specified class, allocates and initializes an 
OLESERVERDOC structure, associates the library's handle with the 
document, and returns the address of the structure. This function opens 
the created document for editing and embeds it in the client when it is 
updated or closed. 

Server applications often track changes to the document specified in this 
function, so that the user can be prompted to save changes when 
necessary. 

Windows API Guide 



OLESERVERVTBL 

Function CreateFromTemplate 

Syntax OLESTATUS CreateFromTemplateOpServer, IhDoc, IpszClass, IpszDoc, 
IpszTemplate,lplpDoc) 

The CreateFromTemplate function creates a new document that is 
initialized with the data in a specified file. The new document is opened 
for editing by this function and embedded in the client when it is updated 
or closed. 

Parameters 

IpServer 

IhDoc 

IpszClass 

IpszDoc 

lpsz Templa te 

IplpDoc 

Return Value 

Points to an OLESERVER structure identifying the server. 

Identifies the document. The library uses this handle 
internally. 

Points to a null-terminated string specifying the class of 
document to create. 

Points to a null-terminated string specifying a name for the 
document to be created. This name need not be used by 
the server application but can be used in window titles. 

Points to a null-terminated string specifying the 
permanent name of the document to use to initialize the 
new document. Typically this string is a path, but for some 
applications it might be further qualified. For example, the 
string might specify a particular table in a database. 

Points to a variable of type LPOLESERVERDOC in which 
the server application should return a long pointer to the 
created OLESERVERDOC structure. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 
When the library calls this function, the server application creates a 
document of a specified class, allocates and initializes an 
OLESERVERDOC structure, associates the library's handle with the 
document, and returns the address of the structure. 

A server application often tracks changes to the document specified in 
this function, so that the user can be prompted to save changes when 
necessary. 

Chapter 7, Structures 639 



OLESERVERVTBL 

640 

Function Edit 

Syntax OLE STATUS Edit(lpServer, IhDoc,lpszClass,lpszDoc,lplpDoc) 

The Edit function creates a document that is initialized with data 
retrieved by a subsequent call to the Set Data function. The object is 
embedded in the client application. The server does not show the 
document or its window. 

Parameters 

lpServer 

lhDac 

lpszClass 

lpszDac 

lplpDac 

Return Value 

Points to an OLESERVER structure identifying the server. 

Identifies the document. The library uses this handle 
internally. 

Points to a null-terminated string specifying the class of 
document to create. 

Points to a null-terminated string specifying a name for the 
document to be created. This name need not be used by 
the server application but may be used-for example, in a 
window title. 

Points to a variable of type LPOLESERVERDOC in which 
the server application should return a long pointer to the 
created OLESERVERDOC structure. 

The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 
When the library calls this function, the server application creates a 
document of a specified class, allocates and initializes an 
OLESERVERDOC structure, associates the library's handle with the 
document, and returns the address of the structure. 

The document created by the Edit function retrieves the initial data from 
the client in a subsequent call to the Set Data function. The user can edit 
the document after the data has been retrieved and the library has used 
either the Show function in the OLEOBJECTVTBL structure or the 
DoVerb function with an Edit verb to show the document to the user. 

Windows API Guide 



OLESERVERVTBL 

Function Exit 

Syntax OLESTA TUS Exit(lpServer) 

The Exit function instructs the server application to close documents and 
quit. 

Parameters 

IpServer Points to an OLESERVER structure identifying the server. 

Return Value 
The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 

The server library calls the Exit function to instruct a server application to 
terminate. If the server application has no open documents when the Exit 
function is called, it should call the OleRevokeServer function. 

Function Release 

Syntax OLESTA TUS ReleaseOpServer) 

The Release function notifies a server that all connections to it have 
closed and that it is safe to quit. 

Parameters 

IpServer Points to an OLESERVER structure identifying the server. 

Return Value 
The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 
The server library calls the Release function when it is safe for a server to 
quit. When a server application calls the OleRevokeServer function, the 
application must continue to dispatch messages and wait for the library to 
call the Release function before quitting. 

When the server is invisible and the library calls Release, the server must 
exit. (The only exception is when an application supports multiple 
servers; in this case, an invisible server is sometimes not revocable when 
the library calls Release.) If the server has no open documents and it was 

Chapter 7, Structures 641 



OLESERVERVTBL 

642 

started with the IEmbedding option (indicating that it was started by a 
client application), the server should exit when the library calls the 
Release function. If the user has explicitly loaded a document into a 
single-instance multiple document interface server, however, the server 
should not exit when the library calls Release. Typically, a single-instance 
server is a multiple document interface (MOl) server. 

All registered server structures must be released before a server can quit. 

A server can call the PostQuitMessage function inside the Release 
function. -

Function Execute 

Syntax OLE STATUS Execute(lpServer, hCommands} 

The Execute function receives WM_OOE_EXECUTE commands sent by 
client applications. The applications send these commands by calling the 
Ole Execute function. 

Parameters 

IpServer Points to an OLESERVER structure identifying the server. 

hCommands Identifies memory containing one or more dynamic data 
exchange (DOE) execute commands. 

Return Value 
The return value is OLE_OK if the function is successful. Otherwise, it is 
an error value. 

Comments 
The server should never free the handle specified in the hCommands 
parameter. 

Windows API Guide 



OLESTREAM 

OLESTREAMVTBL 

3.1 

The OLESTREAM structure points to an OLESTREAMVTBL structure that 
provides stream input and output functions. These functions are used by 
the client library for stream operations on objects. The OLESTREAM 
structure is allocated and initialized by client applications. 

#include <ole.h> 

typedef struct _ OLE STREAM 
LPOLESTREAMVTBL lpstbl; 

} OLESTREAM; 

TOleStrearn = record 
lpstbl: POleStreamVTbl; 

end; 

/* ostr */ 

Members Ipstbl Points to an OLESTREAMVTBL structure. 

OLESTREAMVTBL 

The OLESTREAMVTBL structure points to functions the client library 
uses for stream operations on objects. This structure is allocated and 
initialized by client applications. 

#include <ole.h> 

typedef struct _OLESTREAMVTBL /* ostrv */ 
DWORD (CALLBACK* Get) (LPOLESTREAM, void FAR*, DWORD); 
DWORD (CALLBACK* Put) (LPOLESTREAM, OLE_CONST void FAR*, DWORD); 

} OLESTREAMVTBL; 

TOleStrearnVTbl = record 
Get: function (Stream: POleStrearn; Buffer: PChari Size: Longint) : 

Longint; 
Put: function (Stream: POleStrearni Buffer: PChari Size: Longint) : 

Longinti 
end; 

3.1 

Comments The stream is valid only for the duration of the function to which it is 
passed. The library obtains everything it requires while the stream is valid. 

The return values for the stream functions may indicate that an error has 
occurred, but these values do not indicate the nature of the error. The 

Chapter 7, Structures 643 



OLESTREAMVTBL 

644 

client application is responsible for any required error-recovery 
operations. 

A client application can use these functions to provide variations on the 
standard stream procedures; for example, the client could change the 
permanent storage of some objects so that they were stored in a database 
instead of the client document. 

Function Get 

Syntax DWORD Get(lpstream, IpszBuf, cbbuf) 

The Get function gets data from the specified stream. 

Parameters 

Ipstream 

IpszBuf 

cbbuf 

Return Value 

Points to an OLESTREAM structure allocated by the client. 

Points to a buffer to fill with data from the stream. 

Specifies the number of bytes to read into the buffer. 

The return value is the number of bytes actually read into the buffer if the 
function is successful. If the end of the file is encountered, the return 
value is zero. A negative return value indicates that an error occurred. 

Comments 
The value specified by the cbbuf parameter can be larger than 64K. If the 
client application uses a stream-reading function that is limited to 64K, it 
should call that function repeatedly until it has read the number of bytes 
specified by cbbuf. Whenever the data size is larger than 64K, the pointer 
to the data buffer is always at the beginning of the segment. 

Function Put 

Syntax DWORD Put(lpstream, IpszBuf, cbbuf) 

The Put function puts data into the specified stream. 

Parameters 

Ipstream 

IpszBuf 

cbbuf 

Points to an OLESTREAM structure allocated by the client. 

Points to a buffer from which to write data into the stream. 

Specifies the number of bytes to write into the stream. 

Windows API Guide 



OLETARGETDEVICE 

Return Value 
The return value is the number of bytes actually written to the stream. A 
return value less than the number specified in the cbbuf parameter 
indicates that either there was insufficient space in the stream or an error 
occurred. 

Comments 
The value specified by the cbbuf parameter can be greater than 64K. If the 
client application uses a stream-writing function that is limited to 64K, it 
should call that function repeatedly until it has written the number of 
bytes specified by cbbuf. Whenever the data size is greater than 64K, the 
pointer to the data buffer is always at the beginning of the segment. 

OLETARGETDEVICE 3.1 

The OLETARGETDEVICE structure contains information about the target 
device that a client application is using. Server applications can use the 
information in this structure to change the rendering of an object, if 
necessary. A client application provides a handle to this structure in a call 
to the OleSetTargetDevice function. 

Chapter 7, Structures 

#include <ole.h> 

typedef struct _OLETARGETDEVICE 
UINT otdDeviceNameOffset; 
UINT otdDriverNameOffset; 
UINT otdPortNameOffset; 
UINT otdExtDevrnodeOffset; 
UINT otdExtDevrnodeSize; 
UINT otdEnvironmentOffset; 
UINT otdEnvironmentSize; 
BYTE otdData[l]; 

OLETARGETDEVICE; 

TOleTargetDevice = record 
otdDeviceNameOffset: Word; 
otdDriverNameOffset: Word; 
otdPortNameOffset: Word; 
otdExtDevrnodeOffset: Word; 
otdExtDevrnodeSize: Word; 
otdEnvironmentOffset: Word; 
otdEnvironmentSize: Word; 
otdData: array[O .. O] of Byte; 

end; 

645 



OPENFILENAME 

Members otdDeviceNameOffset Specifies the offset from the beginning of the 
array to the name of the device. 

otdDriverNameOffset Specifies the offset from the beginning of the 
array to the name of the device driver. 

otdPortNameOffset Specifies the offset from the beginning of the 
array to the name of the port. 

otdExtDevmodeOffset Specifies the offset from the beginning of the 
array to a DEVMODE structure retrieved by the 
ExtDeviceMode function. 

otdExtDevmodeSize Specifies the size of the DEVMODE structure 
whose offset is specified by the 
otdExtDevmodeOffset member. 

otdEnvironmentOffset Specifies the offset from the beginning of the 
array to the device environment. 

otdEnvironmentSize Specifies the size of the environment whose 
offset is specified by the otdEnvironmentOffset 
member. 

otdData Specifies an array of bytes containing data for 
the target device. 

Comments The otdDeviceNameOffset, otdDriverNameOffset, and 
otdPortNameOffset members should be NULL-terminated. 

In Windows 3.1, the ability to connect multiple printers to one port has 
made the environment obsolete. The environment information retrieved 
by the GetEnvironment function can occasionally be incorrect. To ensure 
that the OLETARGETDEVICE structure is initialized correctly, the 
application should copy information from the DEVMODE structure 
retrieved by a call to the ExtDeviceMode function to the environment 
position of the OLETARGETDEVICE structure. 

See Also OleSetTargetDevice 

OPENFILENAME 3.1 

646 

The OPENFILENAME structure contains information that the system uses 
to initialize the system-defined Open dialog box or Save dialog box. After 
the user chooses the OK button to close the dialog box, the system returns 
information about the user's selection in this structure. 

Windows API Guide 



OPEN FILENAME 

#include <commdlg.h> 

typedef struct tagOPENFILENAME { /* ofn */ 
DWORD lStructSizei 
HWND hwndOwner i 
HINSTANCE hInstancei 
LPCSTR lpstrFilteri 
LPSTR lpstrCustomFilteri 
DWORD nMaxCustFilteri 
DWORD nFilterIndeXi 
LPSTR lpstrFilei 
DWORD nMaxFilei 
LPSTR lpstrFileTitle; 
DWORD nMaxFileTitle; 
LPCSTR lpstrInitialDir; 
LPCSTR lpstrTitlei 
DWORD Flags; 
UINT nFileOffseti 
UINT nFileExtensioni 
LPCSTR lpstrDefExti 
LPARAM lCustDatai 
OINT (CALLBACK *lpfnHook) (HWND, OINT, WPARAM, LPARAM) i 

LPCSTR lpTemplateNamei 
OPENFILENAMEi 

TOpenFilename = record 
lStructSize: Longinti 
hWndOwner: HWndi 
hInstance: THandlei 
lpstrFilter: PChari 
lpstrCustomFilter: PChari 
nMaxCustFilter: Longinti 
nFilterIndex: Longinti 
lpstrFile: PChari 
nMaxFile: Longinti 
lpstrFileTitle: PChari 
nMaxFileTitle: Longinti 
lpstrInitialDir: PChari 
lpstrTitle: PChari 
Flags: Longinti 
nFileOffset: Wordi 
nFileExtension: Wordi 
lpstrDefExt: PChari 
lCustData: Longinti 
lpfnHook: function (Wnd: HWndi Msg, wParam: Wordi lParam: Longint): 

Word; 
lpTemplateName: PChari 

end; 

Members IStructSize Specifies the length of the structure, in bytes. This 
member is filled on input. 

hwndOwner Identifies the window that owns the dialog box. 
This member can be any valid window handle, or 
it should be NULL if the dialog box is to have no 
owner. 

Chapter 7, Structures 647 



OPENFILENAME 

hlnstance 

IpstrFilter 

IpstrCustomFilter 

nM axCustFilter 

648 

If the OFN_SHOWHELP flag is set, hwndOwner 
must identify the window that owns the dialog 
box. The window procedure for this owner 
window receives a notification message when the 
user chooses the Help button. (The identifier for 
the notification message is the value returned by 
the RegisterWindowMessage function when 
HELPMSGSTRING is passed as its argument.) 

This member is filled on input. 

Identifies a data block that contains a dialog box 
template specified by the IpTemplateName 
member. This member is used only if the Flags 
member specifies the OFN_ENABLETEMPLATE 
or the OFN_ENABLETEMPLATEHANDLE flag; 
otherwise, this member is ignored. 

This member is filled on input. 

Points to a buffer containing one or more pairs of 
null-terminated strings specifying filters. The first 
string in each pair describes a filter (for example, 
"Text Files"); the second specifies the filter pattern 
(for example, "*.txt"). Multiple filters can be 
specified for a single item; in this case, the 
semicolon (;) is used to separate filter pattern 
strings-for example, "*.txt;*.doc;*.bak". The last 
string in the buffer must be terminated by two null 
characters. If this parameter is NULL, the dialog 
box does not display any filters. The filter strings 
must be in the proper order-the system does not 
change the order. 

This member is filled on input. 

Points to a buffer containing a pair of user-defined 
strings that specify a filter. The first string 
describes the filter, and the second specifies the 
filter pattern (for example, "WinWord", "*.doc"). 
The buffer is terminated by two null characters. 
The system copies the strings to the buffer when 
the user chooses the OK button to close the dialog 
box. The system uses the strings as the initial filter 
description and filter pattern for the dialog box. If 
this parameter is NULL, the dialog box lists (but 
does not save) user-defined filter strings. 

Specifies the size, in bytes, of the buffer identified 
by the IpstrCustomFilter member. This buffer 

Windows API Guide 



nFilterlndex 

IpstrFile 

nMaxFile 

Chapter 7, Structures 

OPENFILENAME 

should be at least 40 bytes long. This parameter is 
ignored if the IpstrCustomFilter member is NULL. 

This member is filled on input. 

Specifies an index into the buffer pointed to by the 
IpstrFilter member. The system uses the index 
value to obtain a pair of strings to use as the initial 
filter description and filter pattern for the dialog 
box. The first pair of strings has an index value of 
1. When the user chooses the OK button to close 
the dialog box, the system copies the index of the 
selected filter strings into this location. If the 
nFilterlndex member is 0, the filter in the buffer 
pointed to by the IpstrCustomFilter member is 
used. If the nFilterlndex member is 0 and the 
IpstrCustomFilter member is NULL, the system 
uses the first filter in the buffer pointed to by the 
IpstrFilter member. If each of the three members is 
either 0 or NULL, the system does not use any 
filters and does not show any files in the File 
Name list box of the dialog box. 

Points to a buffer that specifies a filename used to 
initialize the File Name edit control. If 
initialization is not necessary, the first character of 
this buffer must be NULL. When the 
GetOpenFileName or GetSaveFileName function 
returns, this buffer contains the complete location 
and name of the selected file. 

If the buffer is too small, the dialog box procedure 
copies the required size into this member and 
returns O. To retrieve the required size, cast the 
IpstrFile member to type LPWORD. The buffer 
must be at least three bytes to receive the required 
size. When the buffer is too small, the 
CommDlgExtendedError function returns the 
FNERR_BUFFERTOOSMALL value. 

Specifies the size, in bytes, of the buffer pointed to 
by the IpstrFile member. The GetOpenFileName 
and GetSaveFileName functions return FALSE if 
the buffer is too small to contain the file 
information. The buffer should be at least 256 
bytes long. If the IpstrFile member is NULL, this 
member is ignored. 

This member is filled on input. 

649 



OPENFILENAME 

650 

IpstrFileTitle 

nMaxFileTitle 

Ipstrlnitial Dir 

IpstrTitle 

Flags 

Value 

Points to a buffer that receives the title of the 
selected file. This buffer receives the filename and 
extension but no path information. An application 
should use this string to display the file title. If this 
member is NULL, the function does not copy the 
file title. This member is filled on output. 

Specifies the maximum length, in bytes, of the 
string that can be copied into the IpstrFileTitie 
buffer. This member is ignored if IpstrFileTitle is 
NULL. This member is filled on input. 

Points to a string that specifies the initial file 
directory. If this member is NULL, the system uses 
the current directory as the initial directory. (If the 
IpstrFile member contains a string that specifies a 
valid path, the common dialog box procedure will 
use the path specified by this string instead of the 
path specified by the string to which IpstrlnitialDir 
points.) 

This member is filled on input. 

Points to a string to be placed in the title bar of the 
dialog box. If this member is NULL, the system 
uses the default title (that is, Save As or Open). 
This member is filled on input. 

Specifies the dialog box initialization flags. This 
member may be a combination of the following 
values: 

Meaning 

OFN_ALLOWMULTISELECT Specifies that the File Name list box is to 
allow multiple selections. When this flag 
is set, the IpstrFile member points to a 
buffer containing the path to the current 
directory and all filenames in the 
selection. The first filename is separated 
from the path by a space. Each 
subsequent filename is separated by one 
space from the preceding filename. Some 
of the selected filenames may be 
preceded by relative paths; for example, 
the buffer could contain something like 
this: 
c: \ files filel.txt file2.txt .. \bin \ file3. txt 

Windows API Guide 



OPEN FILENAME 

Value Meaning 

OFN_CREATEPROMPT Causes the dialog box procedure to 
generate a message box to notify the user 
when a specified file does not currently 
exist and to make it possible for the user 
to specify that the file should be created. 
(This flag automatically sets the 
OFN_PATHMUSTEXIST and 
OFN_FILEMUSTEXIST flags.) 

OFN_ENABLEHOOK Enables the hook function specified in 
the IpfnHook member. 

OFN_ENABLETEMPLATE Causes the system to use the dialog box 
template identified by the hlnstance and 
IpTemplateName members to create the 
dialog box. 

OFN_ENABLETEMPLATEHANDLE Indicates that the hlnstance member 
identifies a data block that contains a 
pre-loaded dialog box template. The 
system ignores the IpTemplateName 
member if this flag is specified. 

OFN_EXTENSIONDIFFERENT Indicates that the extension of the 
returned filename is different from the 
extension specified by the IpstrDefExt 
member. This flag is not set if IpstrDefExt 
is NULL, if the extensions match, or if the 
file has no extension. This flag can be set 
on output. 

OFN_FILEMUSTEXIST Specifies that the user can type only the 
names of existing files in the File Name 
edit control. If this flag is set and the user 
types an invalid filename in the File 
Name edit control, the dialog box 
procedure displays a warning in a 
message box. (This flag also causes the 
OFN_PATHMUSTEXIST flag to be set.) 

OFN_HIDEREADONLY Hides the Read Only check box. 
OFN_NOCHANGEDIR Forces the dialog box to reset the current 

directory to what it was when the dialog 
box was created. 

OFN_NOREADONLYRETURN Specifies that the file returned will not 
have the Read Only attribute set and will 
not be in a write-protected directory. 

Chapter 7, Structures 651 



OPEN FILENAME 

Value 

OFN_NOTESTFILECREATE 

OFN_NOVALIDATE 

OFN_OVERWRITEPROMPT 

OFN_PATHMUSTEXIST 

652 

Meaning 

Specifies that the file will not be created 
before the dialog box is closed. This flag 
should be set if the application saves the 
file on a create-no-modify network share 
point. When an application sets this flag, 
the library does not check against write 
protection, a full disk, an open drive 
door, or network protection. Therefore, 
applications that use this flag must 
perform file operations carefully-a file 
cannot be reopened once it is closed. 
Specifies that the common dialog boxes 
will allow invalid characters in the 
returned filename. Typically, the calling 
application uses a hook function that 
checks the filename using the 
FILEOKSTRING registered message. If 
the text in the edit control is empty or 
contains nothing but spaces, the lists of 
files and directories are updated. If the 
text in the edit control contains anything 
else, the nFileOffset and nFileExtension 
members are set to values generated by 
parsing the text. No default extension is 
added to the text, nor is text copied to the 
IpstrFileTitie buffer. 
If the value specified by the nFileOffset 
member is negative, the filename is 
invalid. If the value specified by 
nFileOffset is not negative, the filename 
is valid, and nFileOffset and 
nFileExtension can be used as if the 
OFN_NOVALIDATE flag had not been 
set. 
Causes the Save As dialog box to 
generate a message box if the selected file 
already exists. The user must confirm 
whether to overwrite the file. 
Specifies that the user can type only valid 
paths. If this flag is set and the user types 
an invalid path in the File Name edit 
control, the dialog box procedure 
displays a warning in a message box. 

Windows API Guide 



OPEN FILENAME 

Value Meaning 

OFN_READONLY Causes the Read Only check box to be 
initially checked when the dialog box is 
created. When the user chooses the OK 
button to close the dialog box, the state of 
the Read Only check box is specified by 
this member. This flag can be set on input 
and output. 

OFN_SHAREAWARE Specifies that if a call to the Open File 
function has failed because of a network 
sharing violation, the error is ignored 
and the dialog box returns the given 
filename. If this flag is not set, the 
registered message for SHAREVISTRING 
is sent to the hook function, with a 
pointer to a null-terminated string for the 
path name in the IParam parameter. The 
hook function responds with one of the 
following values: 

Value Meaning 

OFN_SHAREFALLTHROUGH Specifies that the filename is 
returned from the dialog box. 

OFN_SHARENOWARN Specifies no further action. 
OFN_SHAREWARN Specifies that the user receives the 

standard warning message for this 
error. (This is the same result as if 
there were no hook function.) 
This flag may be set on output. 

OFN_SHOWHELP Causes the dialog box to show the Help 
push button. The hwndOwner must not 
be NULL if this option is specified. 

nFileOffset 

nFileExtension 

Chapter 7, Structures 

These flags may be set when the structure is 
initialized, except where specified. 

Specifies a zero-based offset from the beginning of 
the path to the filename specified by the string in 
the buffer to which IpstrFile points. For example, if 
IpstrFile points to the string, 
"c: \ dirl \ dir2 \ file.ext", this member contains the 
value 13. 

This member is filled on output. 

Specifies a zero-based offset from the beginning of 
the path to the filename extension specified by the 
string in the buffer to which IpstrFile points. For 

653 



OPENFILENAME 

IpstrDefExt 

ICustData 

IpfnHook 

IpTemplateName 

654 

example, if IpstrFile points to the following string, 
"c:\dirl \dir2 \ file.ext", this member contains the 
value 18. If the user did not type an extension and 
IpstrDefExt is NULL, this member specifies an 
offset to the terminating null character. If the user 
typed a period (.) as the last character in the 
filename, this member is O. 

This member is filled on output. 

Points to a buffer that contains the default 
extension. The GetOpenFileName or 
GetSaveFileName function appends this extension 
to the filename if the user fails to enter an 
extension. This string can be any length, but only 
the first three characters are appended. The string 
should not contain a period (.). If this member is 
NULL and the user fails to type an extension, no 
extension is appended. This member is filled on 
input. 

Specifies application-defined data that the system 
passes to the hook function pointed to by the 
IpfnHook member. The system passes a pointer to 
the OPEN FILENAME structure in the IParam 
parameter of the WM_INITDIALOG message; this 
pointer can be used to retrieve the ICustData 
member. 

Points to a hook function that processes messages 
intended for the dialog box. To enable the hook 
function, an application must specify the 
OFN_ENABLEHOOK flag in the Flags member; 
otherwise, the system ignores this structure 
member. The hook function must return zero to 
pass a message that it didn't process back to the 
dialog box procedure in COMMDLG.DLL. The 
hook function must return a nonzero value to 
prevent the dialog box procedure in 
COMMDLG.DLL from processing a message it has 
already processed. 

This member is filled on input. 

Points to a null-terminated string that specifies the 
name of the resource file for the dialog box 
template that is to be substituted for the dialog box 
template in COMMDLG.DLL. An application can 
use the MAKEINTRESOURCE macro for numbered 
dialog box resources. This member is used only if 
the Flags member specifies the 

Windows API Guide 



OUTLINETEXTMETRIC 

OFN_ENABLETEMPLATE flag; otherwise, this 
member is ignored. 

This member is filled on input. 

See Also GetOpenFileName, GetSaveFileName 

OUTLINETEXTMETRIC 3.1 

The OUTLINETEXTMETRIC structure contains metrics describing a 
TrueType font. 

Chapter 7, Structures 

typedef struct tagOUTLINETEXTMETRIC 
UINT otmSize; 
TEXTMETRIC otmTextMetrics; 
BYTE otmFiller; 
PANOSE 
UINT 
UINT 
UINT 
UINT 
UINT 
UINT 
INT 
INT 
UINT 
UINT 
UINT 
RECT 
INT 
INT 
UINT 
UINT 
POINT 
POINT 
POINT 
POINT 
UINT 
INT 
INT 

otmPanoseNumber; 
otmfsSelection; 
otmfsType; 
otmsCharSlopeRise; 
otmsCharSlopeRun; 
otmItalicAngle i 
otmEMSquare i 
otmAscenti 
otmDescenti 
otmLineGapi 
otmsXHeight; 
otmsCapEmHeight; 
otmrcFontBoxi 
otmMacAscent; 
otmMacDescenti 
otmMacLineGapi 
otmusMinimumPPEMi 
otmptSubscriptSizei 
otmptSubscriptOffseti 
otmptSuperscriptSizei 
otmptSuperscriptOffseti 
otmsStrikeoutSizei 
otmsStrikeoutPositioni 
otmsUnderscorePositioni 

UINT otmsUnderscoreSizei 
PSTR otmpFamilyNamei 
PSTR otmpFaceNamei 
PSTR otmpStyleNamei 
PSTR otmpFullNamei 

OUTLINETEXTMETRICi 

655 



OUTLINETEXTMETRIC 

656 

TOutlineTextMetric=record 
otmSize: Word; I size of this structure } 
otmTextMetrics: TTextMetric; regular text metrics } 
otmFiller: Byte; want to be word aligned } 
otmPanoseNumber: TPanose; Panose number of font } 
otmfsSelection: Word; B Font selection flags (see #defines) } 
otmfsType: Word; B Type indicators (see #defines) } 
otmsCharSlopeRise: Word; Slope angle Rise / Run 1 vertical } 
otmsCharSlopeRun: Word; 0 vertical } 
otmEMSquare: Word; N size of EM } 
otmAscent: Word; D ascent above baseline } 
otmDescent: Word; D descent below baseline } 
otmLineGap: Word; D } 
otmCapEmHeight: Word; D height of upper case M } 
otrnXHeight: Word; D height of lower case chars in font } 
otmrcFontBox: TRect; D Font bounding box } 
otmMacAscent: Word; D ascent above baseline for Mac } 
otmMacDescent: Word; D descent below baseline for Mac } 
otmMacLineGap: Word; D } 
otmusMinimumPPEM: Word; D Minimum point ppem } 
otmptSubscriptSize: TPoint; D Size of subscript } 
otmptSubscriptOffset: TPoint; D Offset of subscript } 
otmptSuperscriptSize: TPoint; D Size of superscript } 
otmptSuperscriptOffset: TPoint;{ D Offset of superscript } 
otmsStrikeoutSize: Word; { D Strikeout size } 
otmsStrikeoutPosition: Word; {D Strikeout position } 
otmsUnderscoreSize: Word; { D Underscore size } 
otmsUnderscorePosition: Word; { D Underscore position } 
otmpFamilyName: PChar; { offset to family name } 
otmpFaceName: PChar; { offset to face name } 
otmpStyleName: PChar; { offset to Style string } 
otmpFullName: PChar; { offset to full name } 

end; 

Members otmSize 

otmTextMetrics 

otmFiller 

otmPanoseNumber 

otmfsSelection 

Specifies the size, in bytes, of the 
OUTLINETEXTMETRIC structure. 

Specifies a TEXTMETRIC structure containing 
further information about the font. 

Specifies a value that causes the structure to be 
byte-aligned. 

Specifies the Panose number for this font. 

Specifies the nature of the font pattern. This 
member can be a combination of the following bits: 

Bit Meaning 

a Italic 
1 Underscore 
2 Negative 
3 Outline 
4 Strikeout 
5 Bold 

Windows API Guide 



otmfsType 

otmsCharSlopeRise 

otmsCharSlopeRun 

otmltalicAngle 

otmEMSquare 

otmAscent 

otmDescent 

otmLineGap 

otmsXHeight 

otmsCapEmHeight 

otmrcFontBox 

otmMacAscent 

Chapter 7, Structures 

OUTLINETEXTMETRIC 

Specifies whether the font is licensed. Licensed 
fonts may not be modified or exchanged. If bit 
1 is set, the font may not be embedded in a 
document. If bit 1 is clear, the font can be 
embedded. If bit 2 is set, the embedding is 
read-only. 

Specifies the slope of the cursor. This value is 1 
if the slope is vertical. Applications can use this 
value and the value of the otmsCharSlopeRun 
member to create an italic cursor that has the 
same slope as the main italic angle (specified 
by the otmltalicAngle member). 

Specifies the slope of the cursor. This value is 
zero if the slope is vertical. Applications can 
use this value and the value of the 
otmsCharSlopeRise member to create an italic 
cursor that has the same slope as the main italic 
angle (specified by the otmltalicAngle member). 

Specifies the main italic angle of the font, in 
counterclockwise degrees from vertical. 
Regular (roman) fonts have a value of zero. 
Italic fonts typically have a negative italic angle 
(that is, they lean to the right). 

Specifies the number of logical units defining 
the x- or y-dimension of the em square for this 
font. (The number of units in the x- and 
y-directions are always the same for an em 
square.) 

Specifies the maximum distance characters in 
this font extend above the base line. This is the 
typographic ascent for the font. 

Specifies the maximum distance characters in 
this font extend below the base line. This is the 
typographic descent for the font. 

Specifies typographic line spacing. 

Not supported. 

Not supported. 

Specifies the bounding box for the font. 

Specifies the maximum distance characters in 
this font extend above the base line for the 
Macintosh. 

657 



OUTLINETEXTMETRIC 

658 

otmMacDescent Specifies the maximum distance characters in 
this font extend below the base line for the 
Macintosh. 

otmMacLineGap Specifies line-spacing information for the 
Macintosh. 

otmusMinimumPPEM Specifies the smallest recommended size for 
this font, in pixels per em-square. 

otmptSubscriptSize Specifies the recommended horizontal and 
vertical size for subscripts in this font. 

otmptSubscriptOffset Specifies the recommended horizontal and 
vertical offset for subscripts in this font. The 
subscript offset is measured from the character 
origin to the origin of the subscript character. 

otmptSuperscriptSize Specifies the recommended horizontal and 
vertical size for superscripts in this font. 

otmptSuperscriptOffset Specifies the recommended horizontal and 
vertical offset for superscripts in this font. The 
subscript offset is measured from the character 
base line to the base line of the superscript 
character. 

otmsStrikeoutSize Specifies the width of the strikeout stroke for 
this font. Typically, this is the width of the 
em-dash for the font. 

otmsStrikeoutPosition Specifies the position of the strikeout stroke 
relative to the base line for this font. Positive 
values are above the base line and negative 
values are below. 

otmsUnderscorePosition Specifies the position of the underscore 
character for this font. 

otmsUnderscoreSize 

otmpFam ilyName 

otmpFaceName 

otmpStyleName 

Specifies the thickness of the underscore 
character for this font. 

Specifies the offset from the beginning of the 
structure to a string specifying the family name 
for the font. 

Specifies the offset from the beginning of the 
structure to a string specifying the face name 
for the font. (This face name corresponds to the 
name specified in the LOG FONT structure.) 

Specifies the offset from the beginning of the 
structure to a string specifying the style name 
for the font. 

Windows API Guide 



PANOSE 

otmpFullName Specifies the offset from the beginning of the 
structure to a string specifying the full name 
for the font. This name is unique for the font 
and often contains a version number or other 
identifying information. 

Comments The sizes returned in OUTLINETEXTMETRIC are given in logical units; 
that is, they depend on the current mapping mode of the specified display 
context. 

See Also GetOutlineTextMetrics 

PANOSE 3.1 

The PANOSE structure describes the Panose font-classification values for 
a TrueType font. 

Chapter 7, Structures 

typedef struct tagPANOSE 
BYTE bFamilyType; 
BYTE bSerifStyle; 
BYTE bWeight; 
BYTE bProportion; 
BYTE bContrast; 
BYTE bStrokeVariation; 
BYTE bAnnStyle; 
BYTE bLetterform; 
BYTE bMidline; 
BYTE bXHeight; 

PANOSE; 

TPanose = record 
bFamilyType: Byte; 
bSerifStyle: Byte; 
bWeight: Byte; 
bProportion: Byte; 
bContrast: Byte; 
bStrokeVariation: Byte; 
bArmStyle: Byte; 
bLetterform: Byte; 
bMidline: Byte; 
bXHeight: Byte; 

end; 

/* panose */ 

659 



PANOSE 

Members bFamilyType 

bSerifStyle 

bWeight 

660 

Specifies the font family. This member can be one 
of the following values: 

Value Meaning 

0 Any 
1 No fit 
2 Text and display 
3 Script 
4 Decorative 
5 Pictorial 

Specifies the style of serifs for the font. This 
member can be one of the following values: 

Value Meaning 

0 Any 
1 No fit 
2 Cove 
3 Obtuse cove 
4 Square cove 
5 Obtuse square cove 
6 Square 
7 Thin 
8 Bone 
9 Exaggerated 
10 Triangle 
11 Normal sans 
12 Obtuse sans 
13 Perpsans 
14 Flared 
15 Rounded 

Specifies the weight of the font. This member can 
be one of the following values: 

Value Meaning 

0 Any 
1 No fit 
2 Very light 
3 Light 
4 Thin 
5 Book 
6 Medium 

Windows API Guide 



bProportion 

bContrast 

Chapter 7, Structures 

PANOSE 

Value Meaning 

7 Demi 
8 Bold 
9 Heavy 
10 Black 

11 Nord 

Specifies the proportion of the font. This member 
can be one of the following values: 

Value Meaning 

0 Any 
1 No fit 

2 Old style 
3 Modern 
4 Even width 
5 Expanded 
6 Condensed 
7 Very expanded 
8 Very condensed 
9 Monospaced 

Specifies the contrast of the font. This member can 
be one of the following values: 

Value Meaning 

0 Any 
1 No fit 
2 None 

3 Very low 
4 Low 

5 Medium low 
6 Medium 
7 Medium high 
8 High 
9 Very high 

661 



PANOSE 

bStrokeVariation 

bArmStyle 

bletterform 

662 

Specifies the stroke variation for the font. This 
member can be one of the following values: 

Value Meaning 

0 Any 
1 No fit 
2 Gradual/ diagonal 
3 Grad ual / transi tional 
4 Gradual/ vertical 
5 Grad ual/ horizon tal 
6 Rapid/ vertical 
7 Rapid/horizontal 
8 Instant/ vertical 

Specifies the style for the arms in the font. This 
member can be one of the following values: 

Value Meaning 

0 Any 
1 No fit 
2 Straight arms/horizontal 
3 Straight arms / wedge 
4 Straight arms/vertical 
5 Straight arms/ single serif 
6 Straight arms/ double serif 
7 N on-straight arms /horizontal 
8 Non-straight arms/wedge 
9 Non-straight arms/vertical 
10 Non-straight arms/single serif 
11 Non-straight arms/ double serif 

Specifies the letter form for the font. This member 
can be one of the following values: 

Value Meaning 

0 Any 
1 No fit 
2 Normal/ contact 
3 Normal/weighted 
4 Normal/boxed 
5 Normal/flattened 
6 Normal/ rounded 
7 Normal/off-center 

Windows API Guide 



bMidline 

bXHeight 

Chapter 7, Structures 

PANOSE 

Value Meaning 

8 N ormal/ square 
9 Oblique/ contact 
10 Oblique/ weighted 
11 Oblique/boxed 
12 Oblique/ flattened 
13 Oblique/ rounded 
14 Oblique/ off-center 
15 Oblique/ square 

Specifies the style of the midline for the font. This 
member can be one of the following values: 

Value Meaning 

0 Any 
1 No fit 
2 Standard/ trimmed 
3 Standard/ pointed 
4 Standard / serifed 
5 High/ trimmed 
6 High/ pointed 
7 High/ serifed 
8 Constant/ trimmed 
9 Constant/ pointed 
10 Constant/ serifed 
11 Low /trimmed 
12 Low / pointed 
13 Low / serifed 

Specifies the x-height of the font. This member can 
be one of the following values: 

Value Meaning 

0 Any 
1 No fit 
2 Constant/ small 
3 Constant/ standard 
4 Constant/large 
5 Ducking/ small 
6 Ducking/ standard 
7 Ducking/large 

663 



PRINTDLG 

POINTFX 3.1 

The POINTFX structure contains the coordinates of points that describe 
the outline of a character in a TrueType font. POINTFX is a member of the 
TTPOL YCURVE and TTPOL YGONHEADER structures. 

typedef struct tagPOINTFX 
FIXED X; 
FIXED y; 

} POINTFX; 

TPointFX = record 
x: TFixed; 
y: TFixed; 

end; 

Members x Specifies the x-component of a point on the outline of a 
TrueType character. 

y Specifies the y-component of a point on the outline of a 
TrueType character. 

See Also FIXED, TTPOLYCURVE, TTPOLYGONHEADER 

PRINTDLG 3.1 

664 

The PRINTDLG structure contains information that the system uses to 
initialize the system-defined Print dialog box. After the user chooses the 
OK button to close the dialog box, the system returns information about 
the user's selections in this structure. 

#include <commdlg.h> 

typedef struct tagPD { 1* pd *1 
DWORD lStructSize; 
HWND hwndOwneri 
HGLOBAL hDevModei 
HGLOBAL hDevNameSi 
HDC hDC; 
DWORD Flags; 
UINT nFromPagei 
UINT nToPage; 
UINT nMinPage; 
UINT nMaxPage; 
UINT nCopiesi 
HINSTANCE hInstancei 
LPARAM lCustDatai 

Windows API Guide 



PRINTDLG 

UINT (CALLBACK* IpfnPrintHook) (HWND, UINT, WPARAM, LPARAM); 
UINT (CALLBACK* IpfnSetupHook) (HWND, UINT, WPARAM, LPARAM); 
LPCSTR IpPrintTemplateName; 
LPCSTR IpSetupTemplateName; 
HGLOBAL hPrintTemplate; 
HGLOBAL hSetupTemplate; 

PRINTDLG; 

TPrintDlg = record 
lStructSize: Longint; 
hWndOWner: HWnd; 
hOevMode: THandle; 
hOevNames: THandle; 
hOC: HDC; 
Flags: Longint; 
nFromPage: Word; 
nToPage: Word; 
nMinPage: Word; 
nMaxPage: Word; 
nCopies: Word; 
hInstance: THandle; 
lCustData: Longint; 
IpfnPrintHook: function (Wnd: HWnd; Msg, wParam: Word; 

IParam: Longint): Integer; 
IpfnSetupHook: function (Wnd: HWnd; Msg, wParam: Word; 

IParam: Longint): Integer; 
IpPrintTemplateName: PChar; 
IpSetupTemplateName: PChar; 
hPrintTemplate: THandle; 
hSetupTemplate: THandle; 

end; 

Members IStructSize Specifies the length of the structure, in bytes. This member 
is filled on input. 

hwndOwner Identifies the window that owns the dialog box. This 
member can be any valid window handle, or it should be 
NULL if the dialog box is to have no owner. 

hDevMode 

Chapter 7, Structures 

If the PD _SHOWHELP flag is set, hwndOwner must 
identify the window that owns the dialog box. The 
window procedure for this owner window receives a 
notification message when the user chooses the Help 
button. (The identifier for the notification message is the 
value returned by the RegisterWindowMessage function 
when HELPMSGSTRING is passed as its argument.) 

This member is filled on input. 

Identifies a movable global memory object that contains a 
DEVMODE structure. Before the PrintDlg function is called, 
the members in this structure may contain data used to 
initialize the dialog box controls. When the PrintDlg 

665 



PRINTDLG 

666 

function returns, the members in this structure specify the 
state of each of the dialog box controls. 

If the application uses the structure to initialize the dialog 
box controls, it must allocate space for and create the 
DEVMODE structure. (The application should allocate a 
movable memory object.) 

If the application does not use the structure to initialize the 
dialog box controls, the hDevMode member may be NULL. 
In this case, the PrintDlg function allocates memory for the 
structure, initializes its members, and returns a handle that 
identifies it. 

If the device drive~ for the specified printer does not 
support extended device modes, the hDevMode member is 
NULL when PrintDlg returns. 

If the'device name (specified by the dmDeviceName 
member of the DEVMODE structure) does not appear in 
the [devices] section of WIN.INI, the PrintDlg function 
returns an error. 

The value of hDevMode may change during the execution 
of the Print Dig function. This member is filled on input 
and output. 

hDevNames Identifies a movable global memory object that contains a 
DEVNAMES structure. This structure contains three 
strings; these strings specify the driver name, the printer 
name, and the output-port name. Before the PrintDlg 
function is called, the members of this structure contain 
strings used to initialize the dialog box controls. When the 
Print Dig function returns, the members of this structure 
contain the strings typed by the user. The calling 
application uses these strings to create a device context or 
an information context. 

If the application uses the structure to initialize the dialog 
box controls, it must allocate space for and create the 
DEVMODE data structure. (The application should allocate 
a movable global memory object.) 

If the application does not use the structure to initialize the 
dialog box controls, the hDevNames member can be 
NULL. In this case, the PrintDlg function allocates memory 
for the structure, initializes its members (using the printer 
name specified in the DEVMODE data structure), and 
returns a handle that identifies it. When the PrintDlg 
function initializes the members of the DEVNAMES 
structure, it uses the first port name that appears in the 
[devices] section of WIN.INI. For example, the function 

Windows API Guide 



hOC 

PRINTDLG 

uses "LPTl" as the port name if the following string 
appears in the [devices] section: 

PCL/HPLaserJet=HPPCL,LPT1:,LPT2: 

If both the hOevMode and hOevNames members are 
NULL, PrintOlg specifies the current default printer for 
hOevNames. 

The value of hOevNames may change during the 
execution of the PrintOlg function. This member is filled on 
input and output. 

Identifies either a device context or an information context, 
depending on whether the Flags member specifies the 
PD _RETURN DC or the PC_RETURNIC flag. If neither flag 
is specified, the value of this member is undefined. If both 
flags are specified, hOC is PD_RETURNDC. 

This member is filled on output. 

Flags Specifies the dialog box initialization flags. This member 
may be a combination of the following values: 

Value Meaning 

PD_ALLPAGES Indicates that the All radio button 
was selected when the user closed 
the dialog box. (This value is used as 
a placeholder, to indicate that the 
PD _PAGENUMS and 
PD _SELECTION flags are not set. 
This value can be set on input and 
output.) 

PD _COLLATE Causes the Collate Copies check box 
to be checked when the dialog box is 
created. When the PrintDlg function 
returns, this flag indicates the state 
in which the user left the Collate 
Copies check box. This flag can be 

PD _DISABLEPRINTTOFILE 
PD _ENABLEPRINTHOOK 

PD _ENABLEPRINTTEMPLATE 

Chapter 7, Structures 

set on input and output. 
Disables the Print to File check box. 
Enables the hook function specified 
in the IpfnPrintHook member of this 
structure. 
Causes the system to use the dialog 
box template identified by the 
hlnstance and IpPrintTemplateName 
members to create the Print dialog 
box. 

667 



PRINTDLG 

668 

Value Meaning 

PD_ENABLEPRINTTEMPLATEHANDLE Indicates that the hPrintTemplate 
member identifies a data block that 
contains a pre-loaded dialog box 
template. The system ignores the 
hlnstance member if this flag is 
specified. 

PD_ENABLESETUPHOOK Enables the hook function specified 
in the IpfnSetupHook member of 
this structure. 

PO _ENABLESETUPTEMPLATE Causes the system to use the dialog 
box template identified by the 
hlnstance and 
IpSetupTemplateName members to 
create the Print Setup dialog box. 

PO _ENABLESETUPTEMPLATEHANDLE Indicates that the hSetupTemplate 
member identifies a data block that 
contains a pre-loaded dialog box 
template. The system ignores the 
hlnstance member if this flag is 
specified. 

PO _HIDEPRINTTOFILE Hides and disables the Print to File 
check box. 

PD_NOPAGENUMS 

PO _NOSELECTION 
PD_NOWARNING 

PD_PAGENUMS 

PO _PRINTTOFILE 

Disables the Pages radio button and 
the associated edit controls. 
Disables the Selection radio button. 
Prevents the warning message from 
being displayed when there is no 
default printer. 
Causes the Pages radio button to be 
selected when the dialog box is 
created. When the PrintDlg function 
returns, this flag is set if the Pages 
button is in the selected state. If 
neither PD_PAGENUMS nor 
PO_SELECTION is specified, the All 
radio button is in the selected state. 
This flag can be set on input and 
output. 
Causes the system to display the 
Print Setup dialog box rather than 
the Print dialog box. 
Causes the Print to File check box to 
be checked when the dialog box is 
created. 
This flag can be set on input and 
output. 

Windows API Guide 



Value 

PD_RETURNDEFAULT 

Chapter 7, Structures 

PRINTDLG 

Meaning 

Causes the PrintDlg function to 
return a device context matching the 
selections that the user made in the 
dialog box. The handle to the device 
context is returned in the hOC 
member. If neither PD _RETURNDC 
nor PD _RETURNIC is specified, the 
hOC parameter is undefined on 
output. 
Causes the PrintDlg function to 
return OEVMOOE and OEVNAMES 
structures that are initialized for the 
system default printer. PrintOlg does 
this without displaying a dialog box. 
Both the hOevNames and the 
hOevMode members should be 
NULL; otherwise, the function 
returns an error. If the system 
default printer is supported by an 
old printer driver (earlier than 
Windows version 3.0), only the 
hDevNames member is 
returned-the hDevMode member is 
NULL. 
Causes the PrintDlg function to 
return an information context 
matching the selections that the user 
made in the dialog box. The 
information context is returned in 
the hOC member. If neither 
PD _RETURNDC nor 
PD _RETURNIC is specified, the hOC 
parameter is undefined on output. 
Causes the Selection radio button to 
be selected when the dialog box is 
created. When the PrintOlg function 
returns, this flag is set if the 
Selection button is in the selected 
state. If neither PD_PAGENUMS nor 
PD _SELECTION is specified, the All 
radio button is in the selected state. 
This flag can be set on input and 
output. 
Causes the dialog box to show the 
Help button. If this flag is specified, 
the hwndOwner must not be NULL. 

669 



PRINTDLG 

670 

Value Meaning 

PD _ USEDEVMODECOPIES Disables the Copies edit control if a 
printer driver does not support 
multiple copies. If a driver does 
support multiple copies, setting this 
flag indicates that the PrintDlg 
function should store the requested 
number of copies in the dmCopies 
member of the DEVMODE structure 
and store the value 1 in the nCopies 
member of the PRINTDLG structure. 
If this flag is not set, the PRINTDLG 
structure stores the value 1 in the 
dmCopies member of the DEVMODE 
structure and stores the requested 
number of copies in the nCopies 
member of the PRINTDLG structure. 

These flags may be set when the structure is 
initialized, except where specified. 

nFromPage Specifies the initial value for the starting page 
in the From edit control. When the PrintDlg 
function returns, this member specifies the 
page at which to begin printing. This value is 
valid only if the PD _P AGENUMS flag is 
specified. The maximum value for this member 
is OxFFFE; if OxFFFF is specified, the From edit 
control is left blank. 

nToPage 

nMinPage 

nMaxPage 

This member is filled on input and output. 

Specifies the initial value for the ending page in 
the To edit control. When the PrintDlg function 
returns, this member specifies the last page to 
print. This value is valid only if the PD _PAGE 
NUMS flag is specified. The maximum value 
for this member is OxFFFE; if OxFFFF is 
specified, the To edit control is left blank. 

This member is filled on input and output. 

Specifies the minimum number of pages that 
can be specified in the From and To edit 
controls. This member is filled on input. 

Specifies the maximum number of pages that 
can be specified in the From and To edit 
controls. This member is filled on input. 

Windows API Guide 



nCopies 

hlnstance 

ICustData 

IpfnPrintHook 

Chapter 7, Structures 

PRINTDLG 

Before the PrintDlg function is called, this 
member specifies the value to be used to 
initialize the Copies edit control if the 
hDevMode member is NULL; otherwise, the 
dmCopies member of the DEVMODE structure 
contains the value used to initialize the Copies 
edit control. 

When PrintDlg returns, the value specified by 
this member depends on the version of 
Windows for which the printer driver was 
written. For printer drivers written for 
Windows versions earlier than 3.0, this 
member specifies the number of copies 
requested by the user in the Copies edit 
control. For printer drivers written for 
Windows versions 3.0 and later, this member 
specifies the number of copies requested by the 
user if the PD _ USEDEVMODECOPIES flag 
was not set; otherwise, this member specifies 
the value 1 and the actual number of copies 
requested appears in the DEVMODE structure. 

This member is filled on input and output. 

Identifies a data block that contains the 
pre-loaded dialog box template specified by the 
IpPrintTemplateName or the 
IpSetupTemplateName member. This member 
is used only if the Flags member specifies the 
PD_ENABLEPRINTTEMPLATE or 
PD _ENABLESETUPTEMPLATE flag; 
otherwise, this member is ignored. This 
member is filled on input. 

Specifies application-defined data that the 
system passes to the hook function identified 
by the IpfnPrintHook or the IpfnSetupHook 
member. The system passes a pointer to the 
PRINTDLG structure in the IParam parameter of 
the WM_INITDIALOG message; this pointer 
can be used to retrieve the ICustData member. 

Points to the exported hook function that 
processes dialog box messages if the 
application customizes the Print dialog box. 
This member is ignored unless the 
PD _ENABLEPRINTHOOK flag is specified in 
the Flags member. 

This member is filled on input. 

671 



PRINTDLG 

IpfnSetupHook 

IpPrintTemplateName 

Points to the exported hook function that 
processes dialog box messages if the 
application customizes the Print Setup dialog 
box. This member is ignored unless the 
PD _ENABLESETUPHOOK flag is specified in 
the Flags member. 

This member is filled on input. 

Points to a null-terminated string that specifies 
the dialog box template that is to be substituted 
for the standard dialog box template in 
COMMDLG. An application must specify the 
PD _ENABLEPRINTTEMPLATE constant in 
the Flags member to enable the hook function; 
otherwise, the system ignores this structure 
member. 

This member is filled on input. 

IpSetupTemplateName Points to a null-terminated string that specifies 
the dialog box template that is to be substituted 
for the standard dialog box template in 
COMMDLG. An application must specify the 
PD_ENABLEPRINTTEMPLATE constant in 
the Flags member to enable the hook function; 
otherwise, the system ignores this structure 
member. 

This member is filled on input. 

hPrintTemplate Identifies the handle of the global memory 
object that contains the pre-loaded dialog box 
template to be used instead of the default 
template in COMMDLG.DLL for the Print 
dialog box. To use the dialog box template, the 
PD_ENABLEPRINTTEMPLATEHANDLE flag 
must be set. 

This member is filled on input. 

hSetupTemplate Identifies the handle of the global memory 
object that contains the pre-loaded dialog box 
template to be used instead of the default 
template in COMMDLG.DLL for the Print 
Setup dialog box. To use the dialog box 
template, the PD _ENABLEPRINTTEMPLATE­
HANDLE flag must be set. 

This member is filled on input. 

See Also Create DC, CreatelC, PrintDlg, DEVMODE, DEVNAMES 

672 Windows API Guide 



SEGINFO 

RASTERIZER_STATUS 3. , 

The RASTERIZER_STATUS structure contains information about 
whether TrueType is installed. This structure is filled when an application 
calls the GetRasterizerCaps function. 

typedef struct tagRASTERIZER_STATUS 
int nSize; 
int wFlags; 
int nLanguageID; 

RASTERIZER_STATUS; 

TRasterizer Status=record 
nSize: Integer; 
wFlags: Integer; 
nLanguageID: Integer; 

end; 

/* rs */ 

Members nSize Specifies the size, in bytes, of the 
RASTERIZER_STATUS structure. 

wFlags Specifies whether at least one TrueType font is 
installed and whether TrueType is enabled. This 
value is TT_AVAILABLE and/ or TT_ENABLED if 
TrueType is on the system. 

nLanguagelD Specifies the language in the system's SETUP .INF 
file. For more information about Microsoft 
language identifiers, see the StringTable structure. 

See Also GetRasterizerCaps 

SEGINFO 3.' 

The SEGINFO structure contains information about a data or code 
segment. This structure is filled in by the GetCodelnfo function. 

typedef struct tagSEGINFO 
UINT offSegrnent; 
UINT cbSegrnent; 
UINT flags; 
UINT cbAlloc; 
HGLOBAL h; 
UINT alignShift; 
UINT reserved[2]; 

SEGINFO; 

Chapter 7, Structures 673 



SEGINFO 

674 

TSeglnfo = record 
off Segment: Word; 
cbSegment: Word; 
flags: Word; 
cbAlloc: Word; 
h: THandle; 
alignShift: Word; 
reserved: array[O .. l] of Word; 

end; 

Members off Segment Specifies the offset, in sectors, to the contents of the 
segment data, relative to the beginning of the file. (Zero 
means no file data is available.) The size of the sector is 
determined by shifting left by 1 the value given in the 
alignShift member. 

cbSegment Specifies the length of the segment in the file, in bytes. 
Zero means 64K. 

flags Contains flags which specify attributes of the segment. The 
following list describes these flags: 

Bit 

0-2 

3 

4 

5-6 
7 

8 

9 

10-15 

Meaning 

Specifies the segment type. If bit 0 is set to 1, the 
segment is a data segment. Otherwise, the segment is 
a code segment. 
Specifies whether segment data is iterated. When this 
bit is set to 1, the segment data is iterated. 
Specifies whether the segment is movable or fixed. 
When this bit is set to 1, the segment is movable. 
Otherwise, it is fixed. 
Reserved. 
Specifies whether the segment is a read-only data 
segment or an execute-only code segment. If this bit 
is set to 1 and the segment is a code segment, the 
segment is an execute-only segment. If this bit is set 
to zero and the segment is a data segment, it is a 
read-only segment. 
Specifies whether the segment has associated 
relocation information. If this bit is set to 1, the 
segment has relocation information. Otherwise, the 
segment does not have relocation information. 
Specifies whether the segment has debugging 
information. If this bit is set to 1, the segment has 
debugging information. Otherwise, the segment does 
not have debugging information. 
Reserved. 

Windows API Guide 



SIZE 

ebAlloe Specifies the total amount of memory allocated for the 
segment. This amount may exceed the actual size of the 
segment. Zero means 64K. 

Identifies the global memory for the segment. h 

alignShift Specifies the size of the addressable sector as an exponent 
of 2. An executable file pads the application's code, data, 
and resource segments with zero bytes so that the 
segments are always a multiple of the file-segment size. 
Windows discards the extra bytes when it loads the 
segments from the file. 

reserved Specifies two reserved UINT values. 

See Also GetCodelnfo 

SIZE 3.1 

The SIZE structure contains viewport extents, window extents, text 
extents, bitmap dimensions, and the aspect-ratio filter for some extended 
functions for Windows 3.1. 

Members ex 

ey 

typedef struet tagSIZE 
int ex; 
int ey; 

} SIZE; 

TSize = record 
eX: Integer; 
eY: Integer; 

end; 

Specifies the x-extent when a function returns. 

Specifies the y-extent when a function returns. 

See Also GetAspeetRatioFilterEx, GetBitmapDimensionEx, GetTextExtentPoint, 
GetViewportExtEx, GetWindowExtEx, SealeViewportExtEx, 
SealeWindowExtEx, SetBitmapDimensionEx, SetViewportExtEx, 
SetWindowExtEx 

Chapter 7, Structures 675 



STACKTRACEENTRY 

STACKTRACEENTRY 3.1 

676 

The STACKTRACEENTRY structure contains information about one stack 
frame. This information enables an application to trace back through the 
stack of a specific task. 

#include <toolhelp.h> 

typedef struct tagSTACKTRACEENTRY { 1* ste *1 
DWORD dwSize; 
HTASK hTask; 
WORD wSS; 
WORD wBP; 
WORD wCS; 
WORD wIP; 
HMODULE hModule; 
WORD wSegment; 
WORD wFlags; 

STACKTRACEENTRY; 

TStackTraceEntry=record 
dwSize: Longint; 
hTask: THandle; 
wSS: Word; 
wBP: Word; 
wCS: Word; 
wIP: Word; 
hModule: THandle; 
wSegment: Word; 
wFlags: Word; 

end; 

Members dwSize 

hTask 

wSS 

wBP 

wCS 

wlP 

Specifies the size of the STACKTRACEENTRY structure, in 
bytes. 

Identifies the task handle for the stack. 

Contains the value in the SS register. This value is used 
with the value of the wBP member to determine the next 
entry in the stack-trace table. 

Contains the value in the BP register. This value is used 
with the wSS value to determine the next entry in the 
stack-trace table. 

Contains the value in the CS register on return. This value 
is used with the value of the wlP member to determine the 
return value of the function. 

Contains the value in the IP register on return. This value 
is used with the wCS value to determine the return value 
of the function. 

Windows API Guide 



SYSHEAPINFO 

hModule Identifies the module that contains the currently executing 
function. 

wSegment 

wFlags 

Contains the segment number of the current selector. 

Indicates the frame type. This type can be one of the 
following values: 

Value 

FRAME_FAR 

Meaning 

The CS register contains a valid code 
segment. 
The CS register is null. 

See Also StackTraceCSIPFirst, StackTraceNext, StackTraceFirst 

SYSHEAPINFO 3.1 

The SYSHEAPINFO structure contains information about the USER and 
GDI modules. 

#include <toolhelp.h> 

typedef struct tagSYSHEAPINFO { /* shi */ 
DWORD dwSize; 
WORD wUserFreePercent; 
WORD wGDIFreePercent; 
HGLOBAL hUserSegment; 
HGLOBAL hGDISegment; 

SYSHEAPINFO; 

TSysHeaplnfo = record 
dwSize: Longint; 
wUserFreePercent: Word; 
wGDIFreePercent: Word; 
hUserSegment: THandle; 
hGDISegment: THandle; 

end; 

Members dwSize 

wUserFreePercent 

wGDIFreePercent 

Specifies the size of the SYSHEAPINFO structure, 
in bytes. 

Specifies the percentage of the USER local heap 
that is free. 

Specifies the percentage of the GD! local heap that 
is free. 

hUserSegment Identifies the DGROUP segment of the USER local 
heap. 

Chapter 7, Structures 677 



TASKENTRV 

hGDISegment 

See Also SystemHeaplnfo 

Identifies the DGROUP segment of the GDI local 
heap. 

TASKENTRY 3.1 

678 

The TASKENTRY structure contains information about one task. 

#include <toolhelp.h> 

typedef struct tagTASKENTRY 
DWORD dwSize; 
HTASK hTask; 
HTASK hTaskParent; 
HINSTANCE hlnst; 
HMODULE hModule; 
WORD wSS; 
WORD wSP; 
WORD wStackTop; 
WORD wStackMinimum; 
WORD wStackBottom; 
WORD wcEvents; 
HGLOBAL hQueue; 

/* te */ 

char szModule[MAX_MODULE_NAME 
WORD wPSPOffset; 
HANDLE hNext; 

TASKENTRY; 

TTaskEntry = record 
dwSize: Longint; 
hTask: THandle; 
hTaskParent: THandle; 
hlnst: THandle; 
hModule: THandle; 
wSS: Word; 
wSP: Word; 
wStackTop: Word; 
wStackMinimum: Word; 
wStackBottom: Word; 
wcEvents: Word; 
hQueue: THandle; 

+ 1]; 

szModule: array[O .. max_Module_Name] of Char; 
wPSPOffset: Word; 
hNext: THandle; 

end; 

Members dwSize Specifies the size of the TASKENTRY structure, in 
bytes. 

hTask Identifies the task handle for the stack. 

Windows API Guide 



hTaskParent 

hlnst 

hModule 

wSS 

wSP 

wStackTop 

wStackMinimum 

wStackBottom 

wcEvents 

hQueue 

szModule 

wPSPOffset 

hNext 

TIMERINFO 

Identifies the parent of the task. 

Identifies the instance handle of the task. This 
value is equivalent to the task's DGROUP segment 
selector. 

Identifies the module that contains the currently 
executing function. 

Contains the value in the SS register. 

Contains the value in the SP register. 

Specifies the offset to the top of the stack (lowest 
address on the stack). 

Specifies the lowest segment number of the stack 
during execution of the task. 

Specifies the offset to the bottom of the stack 
(highest address on the stack). 

Specifies the number of pending events. 

Identifies the task queue. 

Specifies the name of the module that contains the 
currently executing function. 

Specifies the offset from the program segment 
prefix (PSP) to the beginning of the executable 
code segment. 

Identifies the next entry in the task list. This 
member is reserved for internal use by Windows. 

See Also TaskFindHandle, TaskFirst, TaskNext 

TIMERINFO 3.1 

The TIMERINFO structure contains the elapsed time since the current task 
became active and since the virtual machine (VM) started. 

Chapter 7, Structures 

#include <toolhelp.h> 

typedef struct tagTlMERINFO { /* ti */ 
DWORD dwSize; 
DWORD dwmsSinceStart; 
DWORD dwmsThisVM; 

TlMERINFO; 

679 



TTPOLYCURVE 

TTirnerlnfo = record 
dwSize: Longint; 
dwmsSinceStart: Longint; 
dwmsThisVM: Longint; 

end; 

Members dwSize 

dwmsSinceStart 

dwmsThisVM 

Specifies the size of the TIMERINFO structure, in 
bytes. 

Contains the amount of time, in milliseconds, since 
the current task became active. 

Contains the amount of time, in milliseconds, since 
the current VM started. 

Comments In standard mode, the dwmsSinceStart and dwmsThisVM values are the 
same. 

See Also TimerCount 

TIPOLYCURVE 3.1 

680 

The TTPOL YCURVE structure contains information about a curve in the 
outline of a TrueType character. 

typedef struct tagTTPOLYCURVE 
UINT wType; 
UINT cpfx; 
POINTFX apfx[l); 

TTPOLYCURVE; 

TTTPolyCurve = record 
wType: Word; 
cpfx: Word; 
apfx: array[O .. O) of TPointFX; 

end; 

Members wType Specifies the type of curve described by the structure. This 
member can be one of the following values: 

cpfx 

apfx 

Value Meaning 

IT _PRIM_LINE Curve is a polyline. 
IT _PRIM_ QSPLINE Curve is a quadratic spline. 

Specifies the number of POINTFX structures in the array. 

Specifies an array of POINTFX structures that define the 
polyline or quadratic spline. 

Windows API Guide 



TTPOL YGONHEADER 

Comments When an application calls the GetGlyphOutiine function, a glyph outline 
for a TrueType character is returned in a TTPOL YGONHEADER structure 
followed by as many TTPOL VCURVE structures as are required to 
describe the glyph. All points are returned as POINTFX structures and 
represent absolute positions, not relative moves. The starting point given 
by the pfxStart member of the TTPOL VGONHEADER structure is the 
point at which the outline for a contour begins. The TTPOL VCURVE 
structures that follow can be either polyline records or spline records. 

Polyline records are a series of points; lines drawn between the points 
describe the outline of the character. Spline records represent the 
quadratic curves used by TrueType (that is, quadratic b-splines). 

See Also POINTFX, TTPOL VGONHEADER 

TIPOLYGONHEADER 3.1 

The TTPOL VGONHEADER structure specifies the starting position and 
type of a TrueType character outline. 

Members cb 

typedef struct tagTTPOLYGONHEADER { 
DWORD cb; 
DWORD dwType; 
POINTFX pfxStart; 

TTPOLYGONHEADER; 

TPolygonHeader=record 
cb: Longint; 
dwType: Longint; 
pfxStart: TPointFX; 

end; 

Specifies the number of bytes required by the 
TTPOL VGONHEADER structure. 

dwType Specifies the type of character outline that is returned. 
Currently, this value must be TT_POLYGON_TYPE. 

pfxStart Specifies the starting point of the character outline. 

Comments The character outline is described by a series of TTPOL YCURVE 
structures that follow the TTPOL VGONHEADER structure. 

See Also POINTFX, TTPOL VCURVE 

Chapter 7, Structures 681 



VS_FIXEDFILEINFO 

VS_FIXEDFILEINFO 3.1 

682 

The VS_FIXEDFILEINFO structure contains version information about a 
file. 

#include <ver. h> 

typedef struct tagVS FlXEDFlLEINFO 
DWORD dWSignature; 
DWORD dwStrucVersion; 
DWORD dwFileVersionMS; 
DWORD dwFileVersionLS; 
DWORD dWProductVersionMS; 
DWORD dwProductVersionLS; 
DWORD dwFileFlagsMask; 
DWORD dwFileFlags; 
DWORD dwFileOS; 
DWORD dwFileType; 
DWORD dwFileSubtype; 
DWORD dwFileDateMS; 
DWORD dwFileDateLS; 

VS_F IXEDFlLE INFO; 

Tvs FixedFilelnfo=record 
dwSignature: Longint; 
dwStrucVersion: Longint; 
dwFileVersionMS: Longint; 
dwFileVersionLS: Longint; 
dwProductVersionMS: Longint; 
dwProductVersionLS: Longint; 
dwFileFlagsMask: Longint; 
dwFileFlags: Longint; 
dwFileOS: Longint; 
dwFileType: Longint; 
dwFileSubtype: Longint; 
dwFileDateMS: Longint; 
dwFileDateLS: Longint; 

end; 

/* vsffi */ 

e.g. $feef04bd } 
e.g. $00000042 "0.42" 
e.g. $00030075 "3.75" 
e.g. $00000031 "0.31" 
e.g. $00030010 "3.10" 
e.g. $00000031 "0.31" 
= $3F for version "0.42" } 
e.g. vff_Debug I vff_Prerelease 

{ e.g. vos_DOS_Windows16 } 
e.g. vft DRIVER} 

{ e. g.-vft2 _DR V _Keyboard 
{ e.g. 0 } 
{ e.g. 0 } 

Members dwSignature Specifies the value OxFEEF04BD. 

dwStrucVersion 

dwFileVersionMS 

Specifies the binary version number of this 
structure. The high-order word contains the 
major version number, and the low-order word 
contains the minor version number. This value 
must be greater than Ox00000029. 

Specifies the high-order 32 bits of the binary 
version number for the file. The value of this 
member is used with the value of the 
dwFileVersionLS member to form a 64-bit 
version number. 

Windows API Guide 



dwFileVersionLS 

dwProductVersionMS 

dwProductVersionLS 

dwFileFlagsMask 

dwFileFlags 

Value 

VS_FF _SPECIALBUILD 

Chapter 7, Structures 

VS_FIXEDFILEINFO 

Specifies the low-order 32 bits of the binary 
version number for the file. The value of this 
member is used with the dwFileVersionMS 
value to form a 64-bit version number. 

Specifies the high-order 32 bits of the binary 
version number of the product with which the 
file is distributed. The value of this member is 
used with the value of the 
dwProductVersionLS member to form a 64-bit 
version number. 

Specifies the low-order 32 bits of the binary 
version number of the product with which the 
file is distributed. The value of this member is 
used with the dwProductVersionMS value to 
form a 64-bit version number. 

Specifies which bits in the dwFileFlags member 
are valid. If a bit is set, the corresponding bit in 
the dwFileFlags member is valid. 

Specifies the Boolean attributes of the file. The 
attributes can be a combination of the 
following values: 

Meaning 

File contains debugging infonnation or is compiled 
with debugging features enabled. 
File contains a dynamically created 
version-infonnation resource. Some of the blocks 
for the resource may be empty or incorrect. This 
value is not intended to be used in 
version-infonnation resources created by using the 
VERSIONINFO statement. 
File has been modified and is not identical to the 
original shipping file of the same version number. 
File is a development version, not a commercially 
released product. 
File was not built using standard release 
procedures. If this value is given, the StringFilelnfo 
block must contain a PrivateBuild string. 
File was built by the original company using 
standard release procedures but is a variation of the 
standard file of the same version number. If this 
value is given, the StringFilelnfo block must contain 
a SpecialBuild string. 

683 



VS_FIXEDFILEINFO 

684 

dwFileOS 

Value 

VOS_UNKNOWN 

VOS_DOS 
VOS_NT 
VOS_ WINDOWS16 
VOS_ WINDOWS32 
VOS_DOS_ WINDOWS16 

VOS_NT_ WINDOWS32 

dwFileType 

Value 

VFf_UNKNOWN 
VFf_APP 
VFf_DLL 
VFf_DRV 

VFf_FONT 

VFf_VXD 
VFf _STATIC_LIB 

dwFileSubtype 

Specifies the operating system for which this 
file was designed. This member can be one of 
the following values: 

Meaning 

Operating system for which the file was designed is 
unknown to Windows. 
File was designed for MS-DOS. 
File was designed for Windows NT. 
File was designed for Windows version 3.0 or later. 
File was designed for 32-bit Windows. 
File was designed for Windows version 3.0 or later 
running with MS-DOS. 
File was designed for 32-bit Windows running with 
MS-DOS. 
File was designed for 32-bit Windows running with 
Windows NT. 

The values Ox00002L, Ox00003L, Ox20000L and 
Ox30000L are reserved. 

Specifies the general type of file. This type can 
be one of the following values: 

Meaning 

File type is unknown to Windows. 
File contains an application. 
File contains a dynamic-link library (DLL). 
File contains a device driver. If the dwFileType 
member is VFf_DRV, the dwFileSubtype member 
contains a more specific description of the driver. 
File contains a font. If the dwFileType member is 
VFf_FONT, the dwFileSubtype member contains a 
more specific description of the font. 
File contains a virtual device. 
File contains a static-link library. 

All other values are reserved for use by 
Microsoft. 

Specifies the function of the file. This member 
is zero unless the dwFileType member is 
VFf_DRV, VFf_FONT, or VFf_ VXD. 

If dwFileType is VFf_DRV, dwFileSubtype 
may be one of the following values: 

Windows API Guide 



Value 

VFf2_UNKNOWN 
VFf2_DRV _ COMM 
VFf2_DRV _PRINTER 
VFf2_DRV _KEYBOARD 
VFf2_DRV _LANGUAGE 
VFf2_DRV _DISPLAY 
VFf2_DRV _MOUSE 
VFf2_DRV _NETWORK 
VFf2_DRV _SYSTEM 
VFf2_DRV _INSTALLABLE 
VFf2_DRV _SOUND 

Value 

VFf2_UNKNOWN 
VFf2_FONT _RASTER 
VFf2_FONT _VECTOR 
VFf2_FONT_TRUETYPE 

dwFileDateMS 

dwFileDateLS 

VS_FIXEDFILEINFO 

Meaning 

Driver type is unknown to Windows. 
File contains a communications driver. 
File contains a printer driver. 
File contains a keyboard driver. 
File contains a language driver. 
File contains a display driver. 
File contains a mouse driver. 
File contains a network driver. 
File contains a system driver. 
File contains an installable driver. 
File contains a sound driver. 

If dwFileType is VFT_FONT, dwFileSubtype 
may be one of the following values: 

Meaning 

Font type is unknown to Windows. 
File contains a raster font. 
File contains a vector font. 
File contains a TrueType font. 

If dwFileType is VFT_ VXD, dwFileSubtype 
contains the virtual-device identifier included 
in the virtual-device control block. 

All dwFileSubtype values not listed here are 
reserved for use by Microsoft. 

Specifies the high-order 32 bits of a binary 
date/ time stamp for the file. The value of this 
member is used with the value of the 
dwFileDateLS member to form a 64-bit number 
representing the date and time the file was 
created. 

Specifies the low-order 32 bits of a binary 
date/ time stamp for the file. The value of this 
member is used with the dwFileDateMS value 
to form a 64-bit number representing the date 
and time the file was created. 

Comments The binary version numbers specified in this structure are intended to be 
integers rather than character strings. For a file or product that has 
decimal points or letters in its version number, the corresponding binary 
version number should be a reasonable numeric representation. 

Chapter 7, Structures 685 



WINDEBUGINFO 

A third-party developer can use the file-version values to reflect a private 
version-numbering scheme, as long as each new version of the product 
has a higher number than the previous version. The File Installation 
library functions use these values when comparing the ages of files. 

Microsoft Windows Resource Compiler sets the dwFileDateMS and 
dwFileDateLS members to zero. 

See Also VerQueryValue 

WINDEBUGINFO 3.1 

686 

The WINDEBUGINFO structure contains current system-debugging 
information for the debugging version of Windows 3.1. 

typedef struct tagWINDEBUGINFO 
UINT flags; 
DWORD dwOptions; 
DWORD dwFilter; 
char achAllocModule[8]; 
DWORD dwAllocBreak; 
DWORD dwAllocCount; 

WINDEBUGINFO; 

TWinDebuglnfo = record 
Flags: Word; 
dwOptions: Longint; 
dwFilter: Longint; 
achAllocModule: array[O .. 7] of Char; 
dwAllocBreak: Longint; 
dwAllocCount: Longint; 

end; 

Members flags Specifies which members of the WINDEBUGINFO 
structure are valid. This member can be one or 
more of the following values: 

Value 

WDCOPTIONS 
WDCFILTER 
WDCALLOCBREAK 

Meaning 

dwOptions member is valid. 
dwFilter member is valid. 
achAllocModule, dwAllocBreak, and dwAliocCount 
members are valid. 

Windows API Guide 



dwOptions 

Constant 

DBa _ CHECKHEAP 

DBa _BUFFERFILL 

WINDEBUGINFO 

Specifies debugging options. This member is valid 
only if WOe OPTIONS is specified in the flags 
member. It can be one or more of the following 
values: 

Value 

OxOOOl 

Ox0004 

Meaning 

Performs local heap checking 
after all calls to functions that 
manipulate local memory. 
Fills buffers passed to API 
functions with OxF9. This ensures 
that the supplied buffer is 
completely writable and helps 
detect overwrite problems when 
the supplied buffer size is not 
large enough. 

DBa _DISABLEGPTRAPPING OxOOlO Disables hooking of the fault 
interrupt vectors. This option is 
not typically used by application 
developers, because parameter 
validation can cause many 
spurious traps that are not errors. 

DBa _ CHECKFREE Ox0020 

DBa _INT3BREAK OxOlOO 

DBa _NOFATALBREAK Ox0400 

DBO_NOERRORBREAK Ox0800 

Chapter 7, Structures 

Fills all freed local memory with 
OxFB. All newly allocated 
memory is checked to ensure that 
it is still filled with OxFB-this 
ensures that no application has 
written into a freed memory 
object. This option has no effect if 
DBa _ CHECKHEAP is not 
specified. 
Breaks to the debugger with 
simple INT 3 rather than a call to 
the FatalExit function. This option 
does not generate a stack 
backtrace. 
Does not break with the "abort, 
break, ignore" prompt if a 
DBF _FATAL message occurs. 
Does not break with the "abort, 
break, ignore" prompt if a 
DBF _ERROR message occurs. 
This option also applies to invalid 
parameter errors. 

687 



WINDEBUGINFO 

688 

Constant 

DBa_WARNING BREAK 

DBa_TRACE BREAK 

DBa_SILENT 

dwFilter 

Constant 

DBF _KRN_MEMMAN 

Value 

OxlOOO 

Ox2000 

Ox8000 

Meaning 

Breaks with the "abort, break, 
ignore" prompt if a 
DBF_WARNING 
message occurs. (Normally, 
DBF _WARNING messages are 
displayed but no break occurs). 
This option also applies to invalid 
parameter warnings. 
Breaks with the "abort, break, 
ignore" on any DBF _TRACE 
message that matches the value 
specified in the dwFilter member. 
Does not display warning, error, 
or fatal messages except in cases 
where a stack trace and "abort, 
break, ignore" prompt would 
occur. 

Specifies filtering options for DBF _TRACE 
messages. (Normally, trace messages are not sent 
to the debug terminal.) This member can be one or 
more of the following values: 

Value Meaning 

OxOOOl Enables KERNEL messages 
related to local and global 
memory management. 

DBF _KRN_LOADMODULE OxOOO2 Enables KERNEL messages 
related to module loading. 

DBF _KRN_SEGMENTLOAD OxOOO4 Enables KERNEL messages 
related to segment loading. 

DBF _APPLICATION OxOOO8 Enables trace messages 
originating from an application. 

DBF_DRIVER OxOO1O Enables trace messages 
originating from device drivers. 

DBF_PENWIN OxOO20 Enables trace messages 
originating from PENWIN. 

DBF _MMSYSTEM OxOO40 Enables trace messages 
originating from MMSYSTEM. 

DBF_GDI Ox0400 Enables trace messages 
originating from GDI. 

DBF_USER Ox0800 Enables trace messages 
originating from USER. 

Windows API Guide 



Constant 

DBF_KERNEL 

achAllocModule 

dwAllocBreak 

dwAliocCount 

Value 

Oxl000 

WINDEBUGINFO 

Meaning 

Enables any trace message 
originating from KERNEL. (This 
is a combination of 
DBF _KRN_MEMMAN, 
DBF _KRN_LOADMODULE, and 
DBF _KRN_SEGMENTLOAD.) 

Specifies the name of the application module. (This 
can be different from the name of the executable 
file.) This cannot be the name of a dynamic-link 
library (DLL). The name is limited to 8 characters. 

Specifies the number of global or local memory 
allocations to allow before failing allocation 
requests. When the count of allocations reaches the 
number specified in this member, that allocation 
and all subsequent allocations fail. If this member 
is zero, no allocation break is set, but the system 
counts allocations and reports the current count in 
the dwAliocCount member. 

Current count of allocations. (This information is 
typically retrieved by calling the 
GetWin Debuglnfo function.) 

Comments Developers can use the achAllocModule, dwAllocBreak, and 
dwAliocCount members to ensure that an application performs correctly 
in out-of-memory conditions. Because memory allocations made by the 
system fail once the break count is reached, calls to functions such as 
CreateWindow, CreateBrush, and SelectObject will fail as well. Only 
allocations made within the context of the application specified by the 
achAllocModule member are affected by the allocation break count. 

See Also DebugOutput, GetWinDebuglnfo, SetWinDebuglnfo 

Chapter 7, Structures 689 



WINDOWPLACEMENT 

WINDOWPLACEMENT 3.1 

690 

The WINDOWPLACEMENT structure contains information about the 
placement of a window on the screen. 

typedef struct tagWINDOWPLACEMENT 
OINT length; 
UINT flags; 
OINT showCmd; 
POINT ptMinPosition; 
POINT ptMaxPosition; 
RECT rcNormalPosition; 

WINDOWPLACEMENT ; 

TWindowPlacernent=record 
length: Word; 
flags: Word; 
showCmd: Word; 
ptMinPosition: TPoint; 
ptMaxPosition: TPoint; 
rcNormalPosition: TRect; 

end; 

/* wndpl */ 

Members length Specifies the length, in bytes, of the structure. (The 
GetWindowPlacement function returns an error if 
this member is not specified correctly.) 

flags 

Value 

WPF _SETMINPOSITION 

Specifies flags that control the position of the 
minimized window and the method by which the 
window is restored. This member can be one or 
both of the following flags: 

Meaning 

Specifies that the x- and y-positions of the 
minimized window may be specified. This 
flag must be specified if the coordinates 
are set in the ptMinPosition member. 

WPF _RESTORETOMAXIMIZED Specifies that the restored window will be 
maximized, regardless of whether it was 
maximized before it was minimized. This 
setting is valid only the next time the 
window is restored. It does not change the 
default restoration behavior. This flag is 
valid only when the 
SW _SHOWMINIMIZED value is specified 
for the showCmd member. 

Windows API Guide 



showCmd 

Value 

WINDOWPLACEMENT 

Specifies the current show state of the window. 
This member may be one of the following values: 

Meaning 

Hides the window and passes activation to 
another window. 
Minimizes the specified window and activates 
the top-level window in the system's list. 
Activates and displays a window. If the window 
is minimized or maximized, Windows restores it 
to its original size and position (same as 
SW _SHOWNORMAL). 
Activates a window and displays it in its current 
size and position. 
Activates a window and displays it as a 
maximized window. 

SW _SHOWMINIMIZED 
SW _SHOWMINNOACTIVE 

Activates a window and displays it as an icon. 
Displays a window as an icon. The window that 
is currently active remains active. 
Displays a window in its current state. The 
window that is currently active remains active. 

SW_SHOWNOACTIVATE Displays a window in its most recent size and 
position. The window that is currently active 
remains active. 

SW_SHOWNORMAL 

ptMinPosition 

ptMaxPosition 

rcNormalPosition 

Activates and displays a window. If the window 
is minimized or maximized, Windows restores it 
to its original size and position (same as 
SW _RESTORE). 

Specifies the position of the window's top-left 
corner when the window is minimized. 

Specifies the position of the window's top-left 
corner when the window is maximized. 

Specifies the window's coordinates when the 
window is in the normal (restored) position. 

See Also POINT, RECT, ShowWindow 

Chapter 7, Structures 691 



WINDOWPOS 

WIN DOWPOS 

The WINDOWPOS structure contains information about the size and 
position of a window. 

typedef struet tagWINDOWPOS /* wp * / 
HWND hwnd; 
HWND hwndInsertAfter; 
int x; 
int y; 
int ex; 
int ey; 
UINT flags; 

WINDOWPOS; 

TWindowPos = record 
hWnd: HWnd; 
hWndInsertAfter: HWnd; 
x: Integer; 
y: Integer; 
ex: Integer; 
ey: Integer; 
flags: Word; 

end; 

3.1 

Members hwnd Identifies the window. 

692 

hwndlnsertAfter 

x 

y 

ex 

ey 
flags 

Identifies the window behind which this window 
is placed. 

Specifies the position of the left edge of the 
window. 

Specifies the position of the right edge of the 
window. 

Specifies the window width. 

Specifies the window height. 

Specifies window-positioning options. This 
member can be one of the following values: 

Value Meaning 

Draws a frame (defined 
in the class description 
for the window) around 
the window. The 
window receives a 
WM_NCCALCSIZE 
message. 

Windows API Guide 



See Also EndDeferWindowPos 

Chapter 7, Structures 

WINDOWPOS 

Value Meaning 

SWP _HIDEWINDOW Hides the window. 
SWP _NOACTIVATE Does not activate the 

window. 
SWP _NOMOVE Retains current position 

(ignores the x and y 
members). 

SWP _NOOWNERZORDER Does not change the 
owner window's 
position in the Z order. 

SWP _NOSIZE Retains current size 
(ignores the ex and ey 
members). 

SWP _NOREDRAW Does not redraw 
changes. 

SWP _NOREPOSITION Same as SWP _NOOWN­
ERZORDER. 

SWP _NOZORDER Retains current ordering 
(ignores the 
hwndlnsertAfter 
member). 

SWP _SHOWWINDOW Displays the window. 

693 



694 Windows API Guide 



c H A p T E R 

8 

Macros 

DECLARE_HANDLE 3.1 

Syntax DECLARE_HANDLE(name) 

The DECLARE_HANDLE macro creates a data type that can be used to 
define 16-bit handles. 

Parameters name Specifies the name of the new data type. 

Comments The DECLARE_HANDLE macro is defined in WINDOWS.H as follows: 

#define DECLARE_HANDLE (name) struct name## {int unused; }; \ 
typedef const-Struct name## __ NEAR*name 

See Also DECLARE_HANDLE32 

DECLARE_HANDLE32 3.1 

Syntax #include <ddeml.h> 
DECLARE_HANDLE32(name) 

The DECLARE_HANDLE32 macro creates a data type that can be used to 
define 32-bit handles. 

Parameters name Specifies the name of the new data type. 

Chapter 8, Macros 695 



GetBValue 

Parameters name Specifies the name of the variable for which a pointer is 
created. 

Comments The DECLARE_HANDLE32 macro is defined in DDEML.H as follows: 

#define DECLARE_HANDLE 32 (name) struct name## {int unused; }; \ 
typedef const~truct name## ___ far* name 

See Also DECLARE_HANDLE 

FIELDOFFSET 3. , 

Syntax int FIELDOFFSET(type, field) 

The FIELDOFFSET macro computes the address offset of the specified 
member in the structure specified by the type parameter. 

Parameters type Specifies the name of the structure. 

field Specifies the name of the member defined within the given 
structure. 

Return Value The return value is the address offset of the given structure member. 

Comments The FIELDOFFSET macro is defined in WINDOWS.H as follows: 

#define FIELDOFFSET(type, field) ((int) (& ((type NEAR*) 1) ->field) -1) 

GetBValue 3.' 
Syntax BYTE CetBValue(rgb) 

The GetBValue macro extracts the intensity value of the blue color field 
from the 32-bit integer value specified by the rgb parameter. 

Parameters rgb Specifies the RCB color value. 

Return Value The return value specifies the intensity of the blue color field. 

Comments The GetBValue macro is defined in WINDOWS.H as follows: 

#define GetBValue(rgb) ((BYTE) ((rgb»>16» 

See Also GetGValue, GetRValue, RGB 

696 Windows API Guide 



MAKELP 

GetGValue 3.1 

Syntax BYTE GetGValue(rgb) 

The GetGValue macro extracts the intensity value of the green color field 
from the 32-bit integer value specified by the rgb parameter. 

Parameters rgb Specifies the RGB color value. 

Return Value The return value specifies the intensity of the green color field. 

Comments The GetGValue macro is defined in WINDOWS.H as follows: 

#define GetGValue (rgb) ((BYTE) (( (WORD) (rgb)) » 8)) 

See Also GetBValue, GetRValue, RGB 

GetRValue 3.1 

Syntax BYTE GetRValue(rgb) 

The GetRValue macro extracts the intensity value of the red color field 
from the 32-bit integer value specified by the rgb parameter. 

Parameters rgb Specifies the RGB color value. 

Return Value The return value specifies the intensity of the red color field. 

Comments The GetRValue macro is defined in WINDOWS.H as follows: 

#define GetRValue (rgb) ((BYTE) (rgb) ) 

See Also GetBValue, GetGValue, RGB 

MAKELP 3.1 

Syntax void FAR* MAKELP( wSel, wOff) 

The MAKELP macro combines a segment selector and an address offset to 
create a long (32-bit) pointer to a memory address. 

Parameters wSel Specifies a segment selector. 

Chapter 8, Macros 697 



MAKELRESULT 

woft Specifies an offset from the beginning of the given segment 
to the desired byte. 

Return Value The return value is a long pointer to an unspecified data type. 

Comments The MAKELP macro is defined in WINDOWS.H as follows: 

#define MAKELP(sel, off) ((void FAR*)MAKELONG( (off), (sel))) 

See Also MAKE LONG 

MAKE LPARAM 3.1 

Syntax LPARAM MAKELPARAM(wLow, wHigh) 

The MAKELPARAM macro creates an unsigned long integer for use as an 
IParam parameter in a message. The macro concatenates two integer 

. values, specified by the wLow and wHigh parameters. 

Parameters wLow 

wHigh 

Specifies the low-order word of the new long value. 

Specifies the high-order word of the new long value. 

Return Value The return value specifies an unsigned long-integer value. 

Comments The MAKELPARAM macro is defined in WINDOWS.H as follows: 

#define MAKELPARAM(low, high) ((LPARAM)MAKELONG(low, high)) 

See Also MAKELONG, MAKELRESUL T 

MAKELRESULT 3.1 

Syntax LRESULTMAKELRESULT(wLow, wHigh) 

The MAKELRESUL T macro creates an unsigned long integer for use as a 
return value from a window procedure. The macro concatenates two 
integer values, specified by the wLow and wHigh parameters. 

Parameters wLow 

wHigh 

Specifies the low-order word of the new long value. 

Specifies the high-order word of the new long value. 

Return Value The return value specifies an unsigned long-integer value. 

698 Windows API Guide 



SELECTOROF 

Comments The MAKELRESUL T macro is defined in WINDOWS.H as follows: 

#define MAKELRESULT(low, high) ((LRESULT)MAKELONG(low, high)) 

See Also MAKELONG, MAKELPARAM 

OFFSETOF 3.1 

Syntax WORD OFFSETOF(lp) 

The OFFSETOF macro retrieves the address offset of the specified long 
pointer. 

Parameters Ip Specifies a long pointer. 

Return Value The return value is the offset address. 

Comments The OFFSETOF macro is defined in WINDOWS.H as follows: 

#define OFFSETOF(lp) LOWORD (lp) 

See Also LOWORD, SELECTOROF 

SELECTOROF 3.1 

Syntax WORD SELECTOROF(lp) 

The SELECTOROF macro retrieves the segment selector from the 
specified long pointer. 

Parameters Ip Specifies a long pointer. 

Return Value The return value is the segment selector. 

Comments The SELECTOROF macro is defined in WINDOWS.H as follows: 

#define SELECTOROF(lp) HIWORD(lp) 

See Also HIWORD,OFFSETOF 

Chapter 8, Macros 699 



700 Windows API Guide 



c H A p T E R 

9 

Printer escapes 

MOUSETRAILS 

Syntax short Escape(hdc, MOUSETRAILS, sizeof(WORD), lpTrailSize, NULL) 

The MOUSETRAILS escape enables or disables mouse trails for display 
devices. 

Parameters hdc HOC Identifies the device context. 

IpTrailSize LPINT points to a 16-bit variable containing a value 
specifying the action to take and the number of mouse 
cursor images to display (trail size). The variable can be 
one of the following values: 

Value Meaning 

1 through 7 Enables mouse trails and sets the trail size to the specified number. 
A value of 1 requests a single mouse cursor. A value of 2 requests 
that one extra mouse cursor be drawn behind the current mouse 
cursor, and so on, up to a maximum of 7 total cursor images. The 
escape sets the MouseTrails entry in the WIN.lNI file to the given 
value and returns the new trail size. 

D Disables mouse trails. The escape sets the MouseTrails entry to the 
negative value of the current trail size (if positive) and returns the 
negative value. 

Chapter 9, Printer escapes 701 



Value Meaning 

-1 Enables mouse trails. The display driver reads the MouseTrails 
entry from the [windows] section of the WIN.lNI file. If the value 
of the entry is positive, the escape sets the trail size to the given 
value. If the entry is negative, the escape sets the trail size to the 
entry's absolute value and writes the positive value back to 
WIN.INI. If the MouseTrails entry is not found, the escape sets the 
trail size to 7 and writes a new MouseTrails entry to the WIN.INI 
file, setting its value to 7. The escape then returns the new trail size. 

-2 Disables mouse trails but does not cause the display driver to 
update the WIN.lNI file. 

-3 Enables mouse trails but does not cause the display driver to 
update the WIN.lNI file. 

Return Value The return value specifies the new trail size if the escape is successful. The 
return value is zero if the escape is not supported. 

POSTSCRIPT_DATA 

The POSTSCRIPT_DATA printer escape is identical to the 
PASSTHROUGH escape. 

POSTSCRIPT_IGNORE 

Syntax short Escape(hdc, POSTSCRIPT_IGNORE, NULL, lpfOutput, NULL) 

The POSTSCRIPT_IGNORE printer escape sets a flag indicating whether 
or not to suppress output. 

Parameters hdc 

IpfOutput 

HDC Identifies the device context. 

BOOl FAR* Points to a flag indicating whether output 
should be suppressed. This value is nonzero to suppress 
output and zero otherwise. 

Return Value The return value specifies the previous setting of the output flag. 

Comments Applications that generate their own PostScript code can use the 
POSTSCRIPT_IGNORE escape to prevent the PostScript device driver 
from generating output. 

702 Windows API Guide 



SETALUUSTVALUES 

Syntax short Escape(hdc, SET ALLJUSTV ALUES, sizeof(EXTTEXTDATA), 
IpInData, NULL) 

The SETALLJUSTVALUES printer escape is not recommended. 
Applications should use the ExtTextOut function instead of this escape. 
This escape sets all of the text-justification values that are used for text 
output in Windows 3.0 and earlier. 

Text justification is the process of inserting extra pixels among break 
characters in a line of text. The space character is normally used as a break 
character. 

Parameters hdc HOC Identifies the device context. 

IplnData EXTTEXTDATA FAR * Points to an EXTTEXTOATA 
structure that defines the text-justification values. For more 
information about this structure, see the Comments section. 

Return Value The return value specifies the outcome of the escape. This value is 1 if the 
escape is successful. Otherwise, it is zero. 

Comments The IplnData parameter points to an EXTTEXTDAT A structure that 
describes the text-justification values used for text output. The 
EXTTEXTDAT A structure has the following form: 

typedef struct { 
short nSizei 
LPALLJUSTREC lplnDatai 
LPFONTINFO lpFonti 
LPTEXTXFORM lpXFormi 
LPDRAWMODE lpDrawModei 

EXTTEXTDATAi 

This structure contains a JUST_VALUE_STRUCT structure that has the 
following form: 

typedef struct 
short nCharExtrai 
WORD CChi 
short nBreakExtrai 
WORD nBreakCounti 

JUST_VALUE_STRUCTi 

Following are the members of JUST_VALUE_STRUCT structure: 

nCharExtra 

Chapter 9, Printer escapes 

Specifies the total extra space, in font units, that 
must be distributed over cch characters. 

703 



704 

cch 

nBreakExtra 

nBreakCount 

Specifies the number of characters over which the 
nCharExtra member is distributed. 

Specifies the total extra space, in font units, that is 
distributed over nBreakCount characters. 

Specifies the number of break characters over 
which the nBreakExtra member is distributed. 

The units used for the nCharExtra and nBreakExtra members are the font 
units of the device and are dependent on whether relative character 
widths were enabled with the ENABLERELATIVEWIDTHS escape. 

The values set with this escape apply to subsequent calls to the TextOut 
function. The driver stops distributing the extra space specified in the 
nCharExtra member when it has output the number of characters 
specified in the nCharCount member. Likewise, it stops distributing the 
space specified by the nBreakExtra member when it has output the 
number of characters specified by the nBreakCount member. A call on the 
same string to the GetTextExtent function made immediately after the call 
to the TextOut function will be processed in the same manner. 

To reenable justification with the SetTextJustification and 
SetTextCharacterExtra functions, an application should call the 
SETALLJUSTVALUES escape and set the nCharExtra and nBreakExtra 
members to zero. 

Windows API Guide 



c H A p T E R 

10 

Dynamic Data Exchange 
transactions 

The Dynamic Data Exchange Management Library (DDEML) notifies an 
application of dynamic data exchange (DDE) activity that affects the 
application by sending transactions to the application's DOE callback 
function. A transaction is similar to a message-it is a named constant 
accompanied by other parameters that contain additional information 
about the transaction. 

This chapter lists the ODE transactions in alphabetic order. 

#include <ddeml.h> 

XTYP ADVDATA 
hszTopic = hszl; /* handle of topic-name string */ 
hszltem = hsz2; /* handle of item-name string */ 
hDataAdvise = hData; /* handle of the advise data */ 

A client's DDE callback function can receive this transaction after the 
client has established an advise loop with a server. This transaction 
informs the client that the value of the data item has changed. 

3.1 

Parameters hszTopic Value of hszl. Identifies the topic name. 

Value of hsz2. Identifies the item name. hszItem 

Chapter 10, Dynamic Data Exchange transactions 705 



hDataAdvise Value of hData. Identifies the data associated with the 
topic/item name pair. If the client specified the 
XTYPF _NODATA flag when it requested the advise loop, 
this parameter is NULL. 

Return Value A DDE callback function should return DDE_FACK if it processes this 
transaction, DDE_FBUSY if it is too busy to process this transaction, or 
DDE_FNOTPROCESSED if it denies this transaction. 

Comments An application need not free the data handle obtained during this 
transaction. If the application needs to process the data after the callback 
function returns, however, it must copy the data associated with the data 
handle. An application can use the DdeGetData function to copy the data. 

See Also DdeClientTransaction, DdePostAdvise 

XlYP ~DVREQ 3.1 

706 

#include <ddeml.h> 

XTYP_ADVREQ 
hszTopic = hszl; /* handle of topic-name string */ 
hszltem = hsz2i /* handle of item-name string */ 
cAdvReq = LOWORD(dwDatal)i /* count of remaining transactions */ 

The system sends this transaction to a server after the server calls the 
DdePostAdvise function. This transaction informs the server that an 
advise transaction is outstanding on the specified topic/item name pair 
and that data corresponding to the topic/ item name pair has changed. 

Parameters hszTopic 

hszItem 

cAdvReq 

Value of hszl. Identifies the topic name. 

Value of hsz2. Identifies the item name that has changed. 

Value of the low-order word of dwDatal. Specifies the 
count of XTYP _ADVREQ transactions that remain to be 
processed on the same topic/ item/ format name set, within 
the context of the current call to the DdePostAdvise 
function. If the current XTYP _ADVREQ transaction is the 
last one, the count is zero. A server can use this count to 
determine whether to create an HDATA_APPOWNED 
data handle for the advise data. 

Windows API Guide 



If the DDEML issued the XTYP _ADVREQ transaction 
because of a late-arriving DDE_FACK transaction flag 
from a client, the low-order word is set to 
CADY _LATEACK. The DDE_FACK transaction flag 
arrives late when a server is sending information faster 
than a client can process it. 

Return Value The server should call the DdeCreateDataHandle function to create a data 
handle that identifies the changed data and then should return the 
handle. If the server is unable to complete the transaction, it should return 
NULL. 

comments A server cannot block this transaction type; the CBR_BLOCK return value 
is ignored. 

See Also DdeCreateDataHandle, Ddelnitialize, DdePostAdvise 

XlYP _A DVSTART 

#include <ddeml.h> 

XTYP ADVSTART 
hszTopic = hszl; 
hszltem = hsz2; 

/* handle of topic-name string */ 
/* handle of item-name string */ 

3.1 

A server's DDE callback function receives this transaction when a client 
specifies XTYP _ADVSTART for the wType parameter of the 
DdeClientTransaction function. A client uses this transaction to establish 
an advise loop with a server. 

Parameters hszTopic 

hszltem 

Value of hszl. Identifies the topic name. 

Value of hsz2. Identifies the item name. 

Return Value To allow an advise loop on the specified topic/item name pair, a server's 
DDE callback function should return a nonzero value. To deny the advise 
loop, it should return zero. If the callback function returns a nonzero 
value, any subsequent call by the server to the DdePostAdvise function 
on the same topic/item name pair will cause the system to send a 
XTYP _ADVREQ transaction to the server. 

Comments If a client requests an advise loop on a topic/item/format name set for 
which an advise loop is already established, the DDEML does not create a 
duplicate advise loop. Instead, the DDEML alters the advise loop flags 
(XTYPF _ACKREQ and XTYPF _NODAT A) to match the latest request. 

Chapter 70, Dynamic Data Exchange transactions 707 



708 

If the server application specified the CBF _FAIL_ADVISES flag in the 
Ddelnitialize function, this transaction is filtered. 

See Also DdeClientTransaction, Ddelnitialize, DdePostAdvise 

#include <ddeml.h> 

XTYP ADVSTOP 
hszTopic = hszl; 
hszltem = hsz2; 

/* handle of topic-name string */ 
/* handle of item-name string */ 

3.' 

A server's DDE callback function receives this transaction when a client 
specifies XTYP _ADVSTOP for the wType parameter of the 
DdeClientTransaction function. A client uses this transaction to end an 
advise loop with a server. 

Parameters hszTopic 

hszltem 

Value of hszl. Identifies the topic name. 

Value of hsz2. Identifies the item name. 

Return Value This transaction does not return a value. 

Comments If the server application specified the CBF _FAIL_ADVISES flag in the 
Ddelnitialize function, this transaction is filtered. 

See Also DdeClientTransaction, Ddelnitialize, DdePostAdvise 

#include <ddeml.h> 

XTYP CONNECT 

3. , 

hszTopic = hszl; /* handle of topic-name string */ 
hszService = hsz2; /* handle of service-name string */ 
pcc = (CONVCONTEXT FAR *)dwDatal; /* address of CONVCONTEXT structure */ 
fSamelnst = (BOOL) dwData2; /* same instance flag */ 

A server's DDE callback function receives this transaction when a client 
specifies a service name that the server supports and a topic name that is 
not set to NULL in a call to the DdeConnect function. 

Parameters hszTopic Value of hszl. Identifies the topic name. 

Windows API Guide 



Value of hsz2. Identifies the service name. hszServiee 

pee Value of dwDatal. Points to a CONVCONTEXT data 
structure that contains context information for the 
conversation. If the client is not a DDEML application, this 
parameter should be set to zero. 

fSamelnst Value of dwData2. Specifies whether the client is the same 
application instance as the server. If this parameter is 
TRUE, the client is the same instance; if this parameter is 
FALSE, the client is a different instance. 

Return Value To allow the client to establish a conversation on the specified 
service/topic name pair, a server's DOE callback function should return a 
nonzero value. To deny the conversation, it should return zero. If the 
callback function returns a nonzero value and a conversation is 
successfully established, the system passes the conversation handle to the 
server by issuing an XTYP _CONNECT_CONFIRM transaction to the 
server's DOE callback function (unless the server specified the 
CBF _FAIL_CONNECT_CONFIRMS flag in the Ddelnitialize function). 

Comments If the server application specified the CBF _FAIL_CONNECTIONS flag in 
the Ddelnitialize function, this transaction is filtered. 

A server cannot block this transaction type; the CBR_BLOCK return value 
is ignored. 

See Also DdeConnect, Ddelnitialize 

3.1 

#include <ddernl.h> 

XTYP CONNECT CONFIRM - -
hszTopic = hszl; /* handle of topic-name string */ 
hszService = hsz2; /* handle of service-name string */ 
fSameInst = (BOOL) dwData2; /* same instance flag */ 

A server's DOE callback function receives this transaction to confirm that 
a conversation has been established with a client and to provide the 
server with the conversation handle. The system sends this transaction as 
a result of a previous XTYP _CONNECT or XTYP _ WILDCONNECT 
transaction. 

Parameters hszTopie Value of hszl. Identifies the topic name on which the 
conversation has been established. 

Chapter 70, Dynamic Data Exchange transactions 709 



XTYP _DISCONNECT 

hszService 

[SameInst 

Value of hsz2. Identifies the service name on which the 
conversation has been established. 

Value of dwData2. Specifies whether the client is the same 
application instance as the server. If this parameter is a 
nonzero value, the client is the same instance. If this 
parameter is zero, the client is a different instance. 

Return Value This transaction does not return a value. 

Comments If the server application specified the CBF _FAIL_CONFIRMS flag in the 
Ddelnitialize function, this transaction is filtered. 

A server cannot block this transaction type; the CBR_BLOCK return value 
is ignored. 

See Also DdeConnect, DdeConnectList, Ddelnitialize 

XlYP _DISCONNECT 3.1 

#include <ddeml.h> 

XTYP DISCONNECT 
fSamelnst = (BaaL) dwData2; /* same instance flag */ 

An application's DDE callback function receives this transaction when the 
application's partner in a conversation uses the DdeDisconnect function 
to terminate the conversation. 

Parameters [SameInst Value of dwData2. Specifies whether the partners in the 
conversation are the same application instance. If this 
parameter is TRUE, the partners are the same instance. If 
this parameter is FALSE, the partners are different 
instances. 

Return Value This transaction does not return a value. 

Comments If the application specified the CBF _SKIP _DISCONNECTS flag in the 
Ddelnitialize function, this transaction is filtered. 

710 Windows API Guide 



The application can obtain the status of the terminated conversation by 
calling the DdeQueryConvlnfo function while processing this transaction. 
The conversation handle becomes invalid aft.er the callback function 
returns. 

An application cannot block this transaction type; the CBR_BLOCK return 
value is ignored. 

See Also DdeDisconnect, DdeQueryConvlnfo 

#include <ddeml.h> 

XTYP ERROR 
wErr = LOWORD(dwDatal)i /* error value */ 

A DDE callback function receives this transaction when a critical error 
occurs. 

Parameters wErr Value of dwDatal. Specifies the error value. Currently, only 
the DMLERR_LOW _MEMORY error value is supported. It 
means that memory is low-advise, poke, or execute data 
may be lost, or the system may fail. 

Return Value This transaction does not return a value. 

Comments An application cannot block this transaction type; the CBR_BLOCK return 
value is ignored. The DDEML attempts to free memory by removing 
noncritical resources. An application that has blocked conversations 
should unblock them. 

XfYP _EXECUTE 3.1 

#include <ddeml.h> 

XTYP EXECUTE 
hszTopic = hszli /* handle of the topic-name string */ 
hDataCmd = hDatai /* handle of the command string */ 

A server's DDE callback function receives this transaction when a client 
specifies XTYP _EXECUTE for the wType parameter of the 
DdeClientTransaction function. A client uses this transaction to send a 
command string to the server. 

Chapter 10, Dynamic Data Exchange transactions 711 



712 

Parameters hszTopic Value of hszl. Identifies the topic name. 

hDataCmd Value of hData. Identifies the command string. 

Return Value A server's DDE callback function should return DDE_FACK if it 
processes this transaction, DDE_FBUSY if it is too busy to process this 
transaction, or DDE_FNOTPROCESSED if it denies this transaction. 

Comments If the server application specified the CBF _FAIL_EXECUTES flag in the 
Ddelnitialize function, this transaction is filtered. 

An application need not free the data handle obtained during this 
transaction. If the application needs to process the string after the callback 
function returns, however, the application must copy the command string 
associated with the data handle. An application can use the DdeGetData 
function to copy the data. 

See Also DdeClientTransaction, Ddelnitialize 

3.' 

#include <ddeml.h> 

XTYP MONITOR 
hDataEvent = hDatai 
fwEvent = dwData2i 

/* handle of event data */ 
/* event flag */ 

The DDE callback function of a DDE debugging application receives this 
transaction whenever a DDE event occurs in the system. An application 
can receive this transaction only if it specified the APPCLASS_MONITOR 
flag when it called the Ddelnitialize function. 

Parameters hDataEvent 

fwEvent 

Value 

Value of hData. Identifies a global memory object that 
contains information about the DDE event. The application 
should use the DdeAccessData function to obtain a 
pointer to the object. 

Value of dwData2. Specifies the DDE event. This parameter 
may be one of the following values: 

Meaning 

MF _CALLBACKS The system sent a transaction to a DDE callback function. 
The global memory object contains a MONCBSTRUCT 
structure that provides information about the transaction. 

Windows API Guide 



Value 

MF_CONV 

MF_LINKS 

Meaning 

A DOE conversation was established or terminated. The 
global memory object contains a MONCONVSTRUCT 
structure that provides information about the 
conversation. 
A DOE error occurred. The global memory object contains 
a MONERRSTRUCT structure that provides information 
about the error. 
A DOE application created or freed a string handle or 
incremented the use count of a string handle, or a string 
handle was freed as a result of a call to the DdeUninitialize 
function. The global memory object contains a 
MONHSZSTRUCT structure that provides information 
about the string handle. 
A DOE application started or ended an advise loop. The 
global memory object contains a MONLINKSTRUCT 
structure that provides information about the advise loop. 
The system or an application posted a DDE message. The 
global memory object contains a MONMSGSTRUCT 
structure that provides information about the message. 
The system or an application sent a DOE message. The 
global memory object contains a MONMSGSTRUCT 
structure that provides information about the message. 

Return Value The callback function should return zero if it processes this transaction. 

See Also DdeAccessData, Ddelnitialize 

#include <ddeml.h> 

XTYP POKE 
hszTopic = hszl; 
hszltem = hsz2; 
hDataPoke = hData; 

/* handle of topic-name string */ 
/* handle of item-name string */ 
/* handle of data for server */ 

A server's DOE callback function receives this transaction when a client 
specifies XTYP _POKE as the wType parameter of the 
DdeClientTransaction function. A client uses this transaction to send 
unsolicited data to the server. 

Parameters hszTopic 

hszItem 

Value of hszl. Identifies the topic name. 

Value of hsz2. Identifies the item name. 

Chapter 70, DynamiC Data Exchange transactions 713 



hDataPoke Value of hData. Identifies the data that the client is sending 
to the server. 

Return Value A server's DDE callback function should return DDE_FACK if it 
processes this transaction, DDE_FBUSY if it is too busy to process this 
transaction, or DDE_FNOTPROCESSED if it denies this transaction. 

Comments If the server application specified the CBF _FAIL_POKES flag in the 
Ddelnitialize function, this transaction is filtered. 

See Also DdeClientTransaction, Ddelnitialize 

XlYP _REGISTER 3.1 

#include <ddeml.h> 

XTYP REGISTER 
hszBaseServName = hszl; /* handle of base service-name string */ 
hszlnstServName = hsz2; /* handle of instance service-name string */ 

A DDE callback function receives this transaction type whenever a 
DDEML server application uses the DdeNameService function to register 
a service name or whenever a non-DDEML application that supports the 
System topic is started. 

Parameters hszBaseServName 

hszlnstServName 

Value of hszl. Identifies the base service name 
being registered. 

Value of hsz2. Identifies the instance-specific 
service name being registered. 

Return Value This transaction does not return a value. 

Comments If the application specified the CBF _SKIP _REGISTRATIONS flag in the 
Ddelnitialize function, this transaction is filtered. 

An application cannot block this transaction type; the CBR_BLOCK return 
value is ignored. 

An application should use the hszBaseServName parameter to add the 
service name to the list of servers available to the user. An application 
should use the hszlnstServNameparameter to identify which application 
instance has started. 

See Also Ddelnitialize, DdeNameService 

714 Windows API Guide 



3.1 

#include <ddeml.h> 

XTYP_REQUEST 
hszTopic = hszl; 
hszItem = hsz2; 

/* handle of topic-name string */ 
/* handle of item-name string */ 

A DDE server callback function receives this transaction when a client 
specifies XTYP _REQUEST for the wType parameter of the 
DdeClientTransaction function. A client uses this transaction to request 
data from a server. 

Parameters hszTopic Value of hszl. Identifies the topic name. 

hszltem Value of hsz2. Identifies the item name that has changed. 

Return Value The server should call the DdeCreateDataHandle function to create a data 
handle that identifies the changed data and then should return the 
handle. The server should return NULL if it is unable to complete the 
transaction. If the server returns NULL, the client receives a 
DDE_FNOTPROCESSED acknowledgment flag. 

Comments If the server application specified the CBF _FAIL_REQUESTS flag in the 
Ddelnitialize function, this transaction is filtered. 

If responding to this transaction requires lengthy processing, the server 
can return CBR_BLOCK to suspend future transactions on the current 
conversation and then process the transaction asynchronously. When the 
server has finished and the data is ready to pass to the client, the server 
can call the DdeEnableCallback function to resume the conversation. 

See Also DdeClientTransaction, DdeCreateDataHandle, DdeEnableCallback, 
Ddelnitialize 

#include <ddeml.h> 

XTYP UNREGISTER 
hszBaseServName = hszl; /* handle of base service-name string */ 
hszlnstServName = hsz2; /* handle of instance service-name string */ 

A DDE callback function receives this transaction type whenever a 
DDEML server application uses the DdeNameService function to 

Chapter 10, Dynamic Data Exchange transactions 

3.1 

715 



716 

unregister a service name or whenever a non-DDEML application that 
supports the System topic is terminated. 

Parameters hszBaseServName 

hszlnstServName 

Value of hszl. Identifies the base service name 
being unregistered. 

Value of hsz2. Identifies the instance-specific 
service name being unregistered. 

Return Value This transaction does not return a value. 

Comments If the application specified the CBF _SKIP _REGISTRATIONS flag in the 
Ddelnitialize function, this transaction is filtered. 

An application cannot block this transaction type; the CBR_BLOCK return 
value is ignored. 

An application should use the hszBaseServName parameter to remove the 
service name from the list of servers available to the user. An application 
should use the hszlnstServNameparameter to identify which application 
instance has terminated. 

See Also Ddelnitialize, DdeNameService 

3.1 

#include <ddernl.h> 

XTYP WILDCONNECT 
hszTopic = hszl; /* handle of topic-name string */ 
hszService = hsz2; /* handle of service-name string */ 
pcc = (CONVCONTEXT FAR *)dwDatal; /* address of CONVCONTEXT structure */ 
fSamelnst = (BOOL) dwData2; /* same-instance flag */ 

A server's DDE callback function receives this transaction when a client 
specifies a service name that is set to NULL, a topic name that is set to 
NULL, or both in a call to the DdeConnect function. This transaction 
allows a client to establish a conversation on each of the server's 
service/topic name pairs that matches the specified service name and 
topic name. 

Parameters hszTopic Value of hszl. Identifies the topic name. If this parameter is 
NULL, the client is requesting a conversation on all topic 
names that the server supports. 

Windows API Guide 



hszServiee Value of hsz2. Identifies the service name. If this parameter 
is NULL, the client is requesting a conversation on all 
service names that the server supports. 

pee Value of dwDatal. Points to a CONVCONTEXT data 
structure that contains context information for the 
conversation. If the client is not a DDEML application, this 
parameter is set to zero. 

fSameInst Value of dwData2. Specifies whether the client is the same 
application instance as the server. If this parameter is 
TRUE, the client is same instance. If this parameter is 
FALSE, the client is a different instance. 

Return Value The server should return a data handle that identifies an array of 
HSZPAIR structures. The array should contain one structure for each 
service/topic name pair that matches the service/topic name pair 
requested by the client. The array must be terminated by a NULL string 
handle. The system sends the XTYP _CONNECT_CONFIRM transaction 
to the server to confirm each conversation and tc pass the conversation 
handles to the server. If the server specified the 
CBF _SKIP _CONNECT_CONFIRMS flag in the Ddelnitialize function, it 
cannot receive these confirmations. 

To refuse the XTYP _ WILDCONNECT transaction, the server should 
return NULL. 

Comments If the server application specified the CBF _FAIL_CONNECTIONS flag in 
the Ddelnitialize function, this transaction is filtered. 

A server cannot block this transaction type; the CBR_BLOCK return code 
is ignored. 

See Also DdeConnect, Ddelnitialize 

#include <ddeml.h> 

XTYP XACT COMPLETE 
hszTopic = hszl; 
hszltem = hsz2; 
hDataxact = hData; 
dwXactID = dwDatal; 
fwStatus = dWData2; 

/* handle of topic-name string *! 
/* handle of item-name string *! 
!* handle of transaction data *! 
/* transaction identifier *! 
!* status flag *! 

Chapter 10, Dynamic Data Exchange transactions 

3.1 

717 



A DOE client callback function receives this transaction when an 
asynchronous transaction, initiated by a call to the DdeClientTransaction 
function, has concluded. 

Parameters hszTopic 

hszltem 

hDataXact 

dwXactID 

fwStatus 

Value of hszl. Identifies the topic name involved in the 
completed transaction. 

Value of hsz2. Identifies the item name involved in the 
completed transaction. 

Value of hData. Identifies the data involved "in the 
completed transaction, if applicable. If the transaction was 
successful but involved no data, this parameter is TRUE. If 
the transaction was unsuccessful, this parameter is NULL. 

Value of dwDatal. Contains the transaction identifier of the 
completed transaction. 

Value of dwData2. Contains any applicable DDE_ status 
flags in the low-order word. This provides support for 
applications dependent on DDE_APPSTATUS bits. It is 
recommended that applications no longer use these 
bits-future versions of the DDEML may not support 
them. 

Return Value This transaction does not return a value. 

Comments An application need not free the data handle obtained during this 
transaction. If the application needs to process the data after the callback 
function returns, however, the application must copy the data associated 
with the data handle. An application can use the DdeGetData function to 
copy the data. 

See Also DdeClientTransaction 

718 Windows API Guide 



c H A p T E R 

1 1 

Common dialog box 
messages 

A common dialog box sends a message to notify applications that the user 
has made or changed a selection in the dialog box. Applications can use 
these messages to carry out custom actions, such as rejecting certain user 
selections or setting custom colors. 

Before an application can use a common dialog box message, it must 
register that message by using the RegisterWindowMessage function and 
the message constants given in this chapter and defined in the 
COMMDLG.H header file. 

This chapter describes the common dialog box messages. The messages 
appear in alphabetic order. 

COLOROKSTRING 3.1 

The COLOROKSTRING message is sent by the Color dialog box to the 
application's hook function immediately before the dialog box is closed. 
This message allows more control over custom colors by giving the 
application the opportunity to leave the Color dialog box open when the 
user presses the OK button. 

Parameters wParam 

IParam 

Not used. 

Points to a CHOOSECOLOR structure that specifies the 
currently selected color. 

Chapter 7 7, Common dialog box messages 719 



FILEOKSTRING 

Return Value If the application returns a nonzero value when it processes this message, 
the dialog box is not dismissed. 

Comments To use this message, the application must create a new message identifier 
by calling the RegisterWindowMessage function and passing the 
COLOROKSTRING constant as the single parameter. 

See Also RegisterWindowMessage 

FILEOKSTRING 3.1 

The FILEOKSTRING message is sent by the Open dialog box or Save As 
dialog box to the application's hook function when the user has selected a 
filename and chosen the OK button. The message lets the application 
accept or reject the user-selected filename. 

Parameters wParam 

IParam 

Not used. 

Points to an OPEN FILENAME structure containing 
information about the user's selection. (This information 
includes the filename for the selection.) 

Return Value The hook function should return 1 if it rejects the user-selected filename. 
In this case, the dialog box remains open and the user must select another 
filename. The hook function should return 0 if it accepts the user-selected 
filename or does not process the message. 

Comments To use this message, the application must create a message identifier by 
using the RegisterWindowMessage function and passing the 
FILEOKSTRING constant as the function's single parameter. 

See Also RegisterWindowMessage 

720 Windows API Guide 



HELPMSGSTRING 

FINDMSGSTRING 3.1 

The FINDMSGSTRING message is sent to the application by the Find 
dialog box or Replace dialog box whenever the user has typed selections 
and chosen the OK button. This message contains data specified by the 
user in the dialog box controls, such as the direction in which the 
application should search for a string, whether the application should 
match the case of the specified string, or whether the application should 
match the string as an entire word. 

Parameters wParam 

IParam 

Not used. 

Points to a FINDREPLACE structure containing 
information about the user's selections. 

Return Value The application should return zero. 

Comments To use the FINDMSGSTRING message, the application must create a 
message identifier by using the RegisterWindowMessage and passing the 
FINDMSGSTRING constant as the function's only parameter. 

See Also RegisterWindowMessage 

HELPMSGSTRING 3.1 

The HELPMSGSTRING message is sent by a common dialog box to its 
owner's window procedure whenever the user chooses the Help button. 
This message lets an application provide custom Help for the common 
dialog boxes. 

Parameters wParam 

IParam 

Not used. 

Points to the structure that describes the common dialog 
box. 

Return Value The application returns zero. 

Comments To use the HELPMSGSTRING message, the application must create a 
message identifier by using the RegisterWindowMessage function and 
passing the HELPMSGSTRING constant as the function's single 
parameter. 

Chapter 7 7, Common dialog box messages 721 



· LBSELCHSTRING 

In addition to creating a new message identifier, the application must set 
the hwndOwner member in the appropriate data structure for the 
common dialog box. This member must contain the handle of the window 
to receive the HELPMSGSTRING message. 

The application can also process the request for Help in a hook function. 
The hook function would identify this request by checking whether the 
wParam parameter of the WM_ COMMAND message was equal to psh 15. 

See Also RegisterWindowMessage 

LBSELCHSTRING 3.1 

The LBSELCHSTRING message is sent to an application's hook function 
by the Open or Save As dialog box whenever the user makes or changes a 
selection in the File Name list box. This message lets an application 
identify a new selection and carry out any application-specific actions, 
such as updating a custom control in the dialog box. 

Parameters wParam 

IParam 

Identifies the list box in which the selection occurred. 

Identifies the list box item and type of selection. The 
low-order word of the IParam parameter identifies the list 
box item. The high-order word of the IParam parameter is 
one of the following values: 

Value Meaning 

CD _LBSELCHANGE Specifies that the item identified by the low-order word 
of lParam was the item in single-selection list box. 

CD _LBSELSUB Specifies that the item identified by the low-order word 
of lParam is no longer selected in a multiple-selection list 
box. 

CD_LBSELADD Specifies that the item identified by the low-order word 
of lParam was selected from a multiple-selection list box. 

CD _LBSELNOITEMS Specifies that no items exist in multiple-selection list box. 

Return Value The application returns zero. 

Comments To use the LBSELCHSTRING message, the application must create a 
message identifier by using the RegisterWindowMessage function and 
passing the LBSELCHSTRING constant as the function's single parameter. 

See Also RegisterWindowMessage 

722 Windows API Guide 



SETRGBSTRING 

SHAREVISTRING 

3.1 

The SETRGBSTRING message is sent by an application's hook function to 
a Color dialog box to set a custom color. 

Parameters wParam Not used. 

IParam Specifies the color to set. This parameter must be a red, 
green, blue (RGB) value. 

Return Value This message has no return value. 

Comments To use the SETRGBSTRING message, the application must create a 
message identifier by using the RegisterWindowMessage function and 
passing the SETRGBSTRING constant as the function's single parameter. 

See Also RegisterWindowMessage 

SHAREVISTRING 3.1 

The SHAREVISTRING message is sent to the application's hook function 
by the Open or Save As dialog box if a sharing violation occurs when the 
dialog box tries to open a file on the network. 

Parameters wParam 

IParam 

Not used. 

Points to a string identifying the path and filename that 
caused the sharing violation. This string is the 
szPathName member of the OFSTRUCT structure that is 
pointed to by the second parameter of the Open File 
function. 

Return Value The return value is described in the following Comments section. 

Comments To use the SHAREVISTRING message, the application must create a 
message identifier by using the RegisterWindowMessage function and 
passing the SHAREVISTRING constant as the function's single parameter. 

This message is sent by the Open File function. The message is not sent 
when the OFN_SHAREA WARE flag is set in the Flags member of the 
OPENFILENAME structure. 

Chapter 7 7, Common dialog box messages 723 



SHAREVISTRING 

When the hook function receives SHAREVISTRING, it should return 
OFN_SHAREWARN, OFN_SHARENOWARN, or 
OFN_SHAREFALLTHROUGH. For more information about these flags, 
see the description of the OPEN FILENAME structure in Chapter 7, 
"Structures." 

See Also Open File, RegisterWindowMessage 

724 Windows API Guide 



n d 

A 
ABC structure, 539 
Advise transaction, DDEML, 59 
Application (service) name, DDE servers, 40 
Asynchronous transaction, DDEML, 61 

B 
BN HILITE message, 536 
BN - PAINT message, 536 
BN= UNHILITE message, 536 

C 
CB ADDSTRING message, 503 
CB - DELETESTRING message, 504 
CB - FINDSTRINGEXACT message, 505 
CB=GETDROPPEDCONTROLRECT 
message, 505 
CB GETDROPPEDSTATE message, 506 
CB - GETEXTENDEDUI message, 507 
CB - GETITEMHEIGHT message, 507 
CB - SETEXTENDEDUI message, 508 
CB - SETITEMHEIGHT message, 509 
CB.N CLOSEUP message, 537 
CBN -SELENDCANCEL message, 537 
CBN - SELENDOK message, 538 
CBT -CREATEWND structure, 540 
CBTACTIVATESTRUCT structure, 540 
ChooseColor function, 8, 9 
CHOOSECOLOR structure, 7, 8,541 
ChooseFont function, 11 
CHOOSE FONT structure, 11,544 
Class Name Object command, 

OLE applications, 109 

Index 

e x 

CLASSENTRY structure, 551 
Client applications 

DDE transactions, 39 
OLE client applications 

asynchronous operations, 99 
Class Name Object command, 109 
closing, 11 0 
closing documents, 99 
compound documents, opening, 97 
copying objects, 103 
creating objects, 105 
DDE, direct use of, 124 
deleting objects, 103 
described, 80 
displaying objects, 102 
opening and closing objects, 103 
Paste and Paste Link commands, 107 
printing objects, 102 
saving documents, 99 
starting, 96 
Undo command, 108 

Client user interface, OLE applications, 88 
ClientCallback function, OLECLEINTVTBL 

structure, 618 
Clipboard 

formats, 82 
OLE conventions, 81 

Close function, OLESERVERDOCVTBL 
structure, 631 

Color dialog box 
described, 3 
displaying basic colors, 7 
displaying custom colors, 8 

725 



HSL color model, 6 
RGB color model, 5 

COLOROKSTRING message, 719 
CommDlgExtendedError function, 35 
Common dialog box library 

Color dialog box 
described, 3 
displaying basic colors, 7 
displaying custom colors, 8 
HSL color model, 6 
RGB color model, 5 

COMMDLG.DLL library, 1 
common dialog boxes, described, 1 
customizing common dialog boxes 

described, 27 
dialog box template, 31 
displaying custom dialog boxes, 32 
hook function, 28 

error detection, 35 
Find dialog box, 23, 26 
Font dialog box, 11 
Help button in common dialog boxes, 34 
Open dialog box 

displaying, 13 
monitoring filenames, 19 
monitoring list box controls, 18 

Print dialog box, 20, 21 
Print Setup dialog box, 20 
Replace dialog box, 25, 26 
Save As dialog box 

displaying, 16 
monitoring filenames, 19 
monitoring list box controls, 18 

Compound document, OLE applications 
described, 72 
illustrated, 72 
opening, 97 

COMSTAT structure, 552 
CONVCONTEXT structure, 553 
CONVINFO structure, 53, 554 
Copy command 

OLE client applications, 103 
OLE server applications, 92, 115 

CPLINFO structure, 557 

726 

Create function, OLESERVERVTBL 
structure, 638 
CreateFromTemplate function, 

OLESERVERVTBL structure, 639 
CTLINFO structure, 558 
CTLSTYLE structure, 559 
CTLTYPE structure, 561 
Cut command 

D 

OLE client applications, 103 
OLE server applications, 92, 115 

Data handle 
dynamic data exchange, 54 

Data types, defined, 493 
DdeAbandonTransaction function, 62 
DdeAccessData function 

command strings, 60 
global memory objects, 56 

DDEACK structure, 562 
DdeAddData function, 57 
DDEADVISE structure, 563 
DdeCallback function, 44 
DdeClientTransaction function 

ad vise transaction, 59 
execute transaction, 60 
poke transaction, 58 
request transaction, 57 
synchronous and asynchronous 

transactions, 61 
DdeConnect function, 49 
DdeConnectList function, 52, 53 
DdeCreateDataHandle function, 54 
DdeCreateStringHandle function, 45 
DDEDATA structure, 564 
DdeDisconnect function, 52, 54 
DdeDisconnectList function, 54 
DdeEnableCallback function, 62 
DdeFreeDataHandle function, 57 
DdeFreeStringHandle function, 46 
DdeGetData function, 56 
Ddelnitialize function 

initializing DDEML, 42 
monitoring DDE applications, 66 

Windows API Guide 



DdeKeepStringHandle function, 46 
DdeNameService function, 47, 48 
DDEPOKE structure, 565 
DdePostAdvise function, 59 
DdeQueryConvlnfo function, 52, 53, 62 
DdeQueryNextServer function, 53 
DdeQueryString function, 45 
DdeReconnect function, 52 
DdeSetU ser Handle function, 62 
DdeUnaccessData function, 56 
DdeUninitialize function, 43 
DEBUGHOOKINFO structure, 566 
DECLARE_HANDLE macro, 695 
DECLARE_HANDLE32 macro, 695 
DefLoadFromStream function, 123 
DEVNAMES structure, 567 
DllCreateFromClip function, 122 
DllLoadFromStream function, 123 
DOCINFO structure, 568 
Do Verb function, OLEOBJECTVTBL 
structure, 625 
DRIVERINFOSTRUCT structure, 569 
DRVCONFIGINFO structure, 569 
Dynamic data exchange (DDE) 

described, 37 
OLE libraries 

client applications, 124 
conversations, 128 
execute strings, 131, 132 
server applications, 127 
standard item names, 129 
System topic, items for, 128 
using for standard DDE operations, 77 

Dynamic Data Exchange Management 
Library 

(DDEML) 
callback function, 44 
client and server interaction, 39 
conversations 

multiple conversations, 52 
single conversations, 49 
suspending, 62 
termina ting, 43 

data management, 54 

Index 

E 

described, 37 
error detection, 66 
initializing, 42 
item names, 40 
monitoring applications, 66 
vs. OLE, 76 
OLE, using with DDEML, 79 
service names 

described,40 
registering, 47 
service-name filter, 48 

string management, 45 
System topic, 40 
topic names,40 
transaction management 

advise transaction, 59 
asynchronous transactions, 61 
controlling transactions, 62 
execute transaction, 60 
poke transaction, 58 
request transaction, 57 
synchronous transactions, 61 
transaction classes, 63 
transaction summary, 64 

transaction, defined, 39 

Edit function, OLESERVERVTBL structure, 
640 
EM_ GETFIRSTVISIBLELINE message, 510 
EM_GETPASSWORDCHAR message, 510 
EM_ GETWORDBREAKPROC message, 511 
EM_SETREADONLY message, 511 
EM_SETWORDBREAKPROC message, 512 
Embedded object 

defined, 74 
EnumClipboardFormats function, 108 
Error detection 

common dialog boxes, 35 
DDEML functions, 66 

EVENTMSG structure, 570 
Execute function 

OLESERVERDOCVTBL structure, 636 
OLESERVERVTBL structure, 642 

727 



Execute strings, OLE 
international execute commands, 131 
required commands, 132 
syntax for standard commands, 131 

Execute transaction, DDEML,60 
Exit function, OLESERVERVTBL structure, 
641 
ExtDeviceMode function, 21 

F 
FIELDOFFSET macro, 696 
FILEOKSTRING message, 720 
Find dialog box 

displaying, 23 
processing messages, 26 

FINDMSGSTRING message, 26, 721 
FINDREPLACE structure, 23, 25, 571 
FindText function, 23 
FIXED structure, 575 
FMS_GETDRIVEINFO structure, 576 
FMS_ GETFILESEL structure, 577 
FMS_LOAD structure, 578 
Font dialog box, 11 
Functions 

G 

DdeCallback function, 44 
OLE functions 

asynchronous operations, 101 
document management, 98 
object creation, 105 
object handlers, 120 
server applications, 111 

Get function, OLESTREAMVTBL structure, 
644 
GetBValue macro, 696 
GetData function, 79 
GetData function, OLEOBJECTVTBL 
structure, 626 
GetGValue macro, 697 
GetObject function, 79 
GetObject function, OLESERVERDOCVTBL 
structure, 633 
GetOpenFileName function, 13 
728 

GetRValue macro, 697 
GetSaveFileName function, 16 
GetWinFlags function 

initializing DDEML, 42 
GLOBALENTRY structure, 579 
GLOBALINFO structure, 582 
GLYPHMETRICS structure, 583 

H 
HARDWAREHOOKSTRUCT structure, 584 
Help button in common dialog boxes, 34 
HELPMSGSTRING message, 721 
HELPWININFO structure, 585 
Hook function, common dialog boxes, 28 
HSL color model, 6 
HSZPAIR structure, 52, 585 

Insert Object command, OLE applications, 
106 
Item name, DDE servers, 40 

J 
JUST_VAL UE_STRUCT structure, 703 

K 
KERNINGPAIR structure, 586 

l 
LB_FINDSTRINGEXACT message,513 
LB_GETCARETINDEX message, 514 
LB _SETCARETINDEX message, 514 
LBN_SELCANCEL message, 538 
LBSELCHSTRING message, 722 
Linked object 

defined,73 
LoadString function, 16 
LOCALENTRY structure, 587 
LOCALINFO structure, 590 
LOGFONT structure 

Font dialog box, 13 
TrueType fonts, server applications, 116 

Windows API Guide 



M 
MAKELP macro, 697 
MAKELPARAM macro, 698 
MAKELRESULT macro, 698 
MAT2 structure, 591 
MEMMANINFO structure, 592 
Metafile 

OLE server applications, 116 
METAHEADER structure, 593 
METARECORD structure, 594 
MINMAXINFO structure, 595 
MODULE ENTRY structure, 596 
MONCBSTRUCT structure, 597 
MONCONVSTRUCT structure, 598 
MONERRSTRUCT structure, 599 
MONHSZSTRUCT structure, 600 
Monitoring applications, 66 
MONLINKSTRUCT structure, 602 
MONMSGSTRUCT structure, 603 
MOUSEHOOKSTRUCT structure, 604 
MOUSETRAILS printer escape, 701 

N 
Native clipboard format, 82 
NCCALCSIZE_PARAMS structure, 605 
NEWCPLINFO structure, 606 
NEWTEXTMETRIC structure, 607 
NFYLOADSEG structure, 612 
NFYLOGERROR structure, 613 
NFYLOGPARAMERROR structure, 614 
NFYRIP structure, 615 
NFYSTARTDLL structure, 616 

o 
Object handler, OLE libraries 

creating objects in, 122 
described, 80 
implementing, 119 

Object linking and embedding (OLE) 
benefits of OLE, 75 
client applications 

asynchronous operations, 99 
Class Name Object command, 109 

Index 

closing, 110 
closing documents, 99 
copying objects, 103 
creating objects, 105 
deleting objects, 103 
described, 95 
displaying objects, 102 
document management, 98 
opening and closing objects, 103 
Paste and Paste Link commands, 107 
printing objects, 102 
saving documents, 99 
starting,96 
Undo command, 108 

compound documents 
described, 72 
illustrated, 72 
opening, 97 

data transfer 
client applications, 80 
client user interface, 88 
clipboard conventions, 81 
commands, new and changed, 88 
communication between libraries, 81 
object handlers, 80 
packages, 91 
registration database, 85 
server applications, 80 
server user interface, 92 
version control for servers, 87 

DDEML 
vs. OLE, 76 
using with OLE, 79 

dynamic data exchange 
client applications, 124 
conversations, 128 
DDE operations, using OLE for, 77 
execute strings, 131, 132 
server applications, 127 
standard item names, 129 
System topic, items for, 128 

embedded object, defined, 74 
formats for storing objects, 93 
linked object, defined, 73 

729 



object handlers 
creating objects in, 122 
implementing,119 

OLECLI.DLL library, 80 
OLESVR.DLL library, 80 
packages, 74 
server applications 

closing, 117 
Cut and Copy commands, 115 
functions, 111 
opening documents or objects, 115 
Save and Save As commands, 116 
starting, 112 
Update command, 116 

verbs, 74 
ObjectLink clipboard format, 82 
ObjectLong function, OLEOBJECTVTBL 
structure, 627 
OFFSETOF macro, 699 
OleActivate function 

Class Name Object command, 
implementing,109 

opening objects, 103 
OleBlockServer function 

asynchronous operations, 100 
queued client-library requests, 114 

OLECLIENT structure, 617 
object handlers, 121 
opening compound documents, 98 
starting client applications, 96 

OLECLIENTVTBL structure, 96, 617 
OleClone function 

copying objects to the clipboard, 105 
restoring updated objects, 108 

OleClose function, 103 
OleCopyFromLink function, 106 
OleCopyToClipboard function, 89, 103 
OleCreate function, 106 
OleCreateFromClip function 

client applications, 107 
object handlers, 122 

OleCreateFromFile function, 78 
OleCreateFromTemplate function, 106 
OleCreateLinkFromClip function, 107 

730 

OleDelete function, 103 
OleDraw function, 102 
OleEnumFormats function, 103 
OleGetData function, 110 
OleGetLinkUpdateOptions command, 109 
OleLoadFromStream function, 97 
OLEOBJECT structure, 620 

client applications, creating objects, 106 
object handlers, 120 
server applications 

opening objects, 115 
starting, 113 

OleObjectConvert function, 110 
OLEOBJECTVTBL structure, 120,621 
OleQueryBounds function, 102 
OleQueryCreateFromClip function, 107 
OleQueryLinkFromClip function, 107 
OleQueryOpen function, 103 
OleQueryReleaseError function 

closing client applications, 110 
creating objects, 106 

OleQueryReleaseMethod function, 110 
OleQueryReleaseStatus function 

activating objects, 103 
asynchronous operations, 101 
closing client applications, 110 

OleQuerySize function, 99 
OleQueryType function, 107 
OleReconnect function, 103 
OleRegisterClientDoc function, 97, 105 
OleRegisterServer function 

DDE operations, 79 
server applications, starting, 112 

OleRegisterServerDoc function 
DDE operations, 79 
opening documents or objects, 115 
starting server applications, 112 

OleRelease function 
closing client applications, 110 
closing documents, 99 
closing objects, 103 

OleRenameServerDoc function, 116 
OleRequestData function, 87 
OleRevertClientDoc function, 99 

Windows API Guide 



OleRevokeClientDoc function, 99, 105 
OleRevokeObject function, 118 
OleRevokeServerDoc function, 118 
OleSavedClientDoc function, 99, 105 
OleSavedServerDoc function, 116 
OleSaveToStream function, 99, 105 
OLESERVER structure, 629 

object handlers, 121 
starting server applications, 112 

OLESERVERDOC structure, 630 
object handlers, 121 
opening documents, 115 

OLESERVERDOCVTBL structure, 630 
DDE operations, 79 
starting server applications, 112 

OLESERVERVTBL structure, 636 
closing server applications, 117 
opening documents or objects, 115 
starting server applications, 112 
updating documents, 117 

OleSetBounds function, 102 
OleSetData function 

changing links, 110 
DDE operations, using OLE for, 78 
registering data formats, 87 

OleSetHostNames function, 103 
OleSetLinkUpdateOptions command, 109 
OleSetTargetDevice function, 102 
OLESTREAM structure, 643 

object handlers, 121 
opening compound documents, 98 
starting client applications, 96 

OLESTREAMVTBL structure, 97, 98, 643 
OLET ARGETDEVICE structure, 645 
OleUnblockServer function, 114 
OleUpdate function 

displaying objects, 102 
updating links, 109 

Open dialog box 
displaying, 13 
filenames, monitoring, 19 
list box controls, monitoring, 18 

Open function, OLESERVERVTBL 
structure, 637 

Index 

OPENFILENAME structure, 646 
Open dialog box, 13 
Save As dialog box, 16 

OUTLINETEXTMETRIC structure, 655 
OwnerLink clipboard format, 82 

p 
Package, OLE applications, 74, 91 
PANOSE structure, 659 
Paste command, OLE applications, 107 
Paste Link command, OLE applications, 107 
Paste Special command, OLE applications, 
108 
POINTFX structure, 664 
Poke transaction, DDEML, 58 
POSTSCRIPT_DATA printer escape 

See PASSTHROUGH printer escape 
POSTSCRIPT_IGNORE printer escape, 702 
Print dialog box, 20, 21 
Print Setup dialog box, 20 
PrintDlg function, 21 
PRINTDLG structure, 21, 665 
Printer 

default printer, 21 
Put function, OLESTREAMVTBL structure, 
644 

R 
RASTERIZER_STATUS structure, 673 
RegisterClipboardFormat function, 87, 113 
RegisterWindowMessage function 

Color dialog box, 10 
filenames, monitoring, 19 
Find and Replace dialog boxes, 26 
Help button in common dialog boxes, 34 
list box controls, monitoring, 18 
Open dialog box, 16 

Registration database 
OLE applications, 85 

Release function 
OLEOBJECTVTBL structure, 624 
OLESERVERDOCVTBL structure, 634 
OLESERVERVTBL structure, 641 

Replace dialog box 
731 



displaying, 25 
processing messages, 26 

ReplaceText function, 25 
Request transaction, DDEML, 57 
RGB color model,S 

S 
Save As command, OLE server applications, 
116 
Save As dialog box 

displaying, 16 
filenames, monitoring, 19 
list box controls, monitoring, 18 

Save command, OLE server applications, 116 
Save function, OLESERVERDOCVTBL 

structure, 631 
SearchFile function, 26 
SEGINFO structure, 673 
SELECTOROF macro, 699 
Server applications 

DDE transactions, 39 
OLE servers 

closing, 117 
Cut and Copy commands, 115 
DDE, direct use of, 127 
DDE, required commands, 132 
described, 80 
functions, 111 
opening documents or objects, 115 
Save and Save As commands, 116 
server user interface, 92 
starting, 112 
Update command, 116 
version control, 87 

Service name, DDE servers, 40 
SETALLJUSTVALUES printer escape, 703 
SetClipboardData function 

client applications, 103 
server applications, 115 

SetColorScheme function 
OLEOBJECTVTBL structure, 628 
OLESERVERDOCVTBL structure, 635 

SetData function, OLEOBJECTVTBL 
structure, 626 

732 

SetDocDimensions function, 
OLESERVERDOCVTBL structure, 633 
SetHostNames function 
OLESERVERDOCVTBL structure, 632 
SETRGBSTRING message, 723 
SetTargetDevice function, 
OLEOBJECTVTBL structure, 627 
SHAREVISTRING message, 723 
Shell library 

OLE applications, 85 
Show function, OLEOBJECTVTBL 
structure, 624 
SIZE structure, 675 
STACKTRACEENTRY structure, 676 
STM_ GETICON message, 515 
STM_SETICON message, 515 
String handle, DDE, 45 
Synchronous transaction, DDEML, 61 
SYSHEAPINFO structure, 677 
System topic, DDEML, 40 
Systems topic, DDE-based OLE, 128 

T 
TASKENTRY structure, 678 
Template, common dialog box, 31 
TIMERINFO structure, 679 
Topic name, DDE servers, 40 
Transaction, DDE 

defined, 39 
TrueType fonts, server applications, 116 
TTPOLYCURVE structure, 680 
TTPOLYGONHEADER structure, 681 

U 
Undo command, OLE applications, 108 
Update command, OLE server applications, 
116 

V 
Verb, object linking and embedding, 74 
Version control for OLE servers, 87 
VS_FIXEDFILEINFO structure, 682 

Windows API Guide 



W 
WINDEBUGINFO structure, 686 
WINDOWPLACEMENT structure, 690 
WINDOWPOS structure, 692 
Windows data types, defined, 493 
WinHelp function, 34 
WM_CHOOSEFONT_GETLOGFONT 
message, 

13,516 
WM_COMMNOTIFY message, 517 
WM_DDE_ACK message, 517 
WM_DDE_ADVISE message, 79,520 
WM_DDE_DATA message, 521 
WM_DDE_EXECUTE message, 523 
WM_DDE_INITIATE message, 524 
WM_DDE_POKE message, 78, 526 
WM_DDE_REQUEST message, 527 
WM_DDE_TERMINATE message, 528 
WM_DDE_UNADVISE message, 529 
WM_DROPFILES message, 107,530 
WM_INITDIALOG message, 27 
WM_PALETTEISCHANGING message, 530 
WM_POWER message, 531 
WM_ QUEUE SYNC message, 532 
WM_SYSTEMERROR message, 532 
WM_USER message, 533 
WM_ WINDOWPOSCHANGED message, 
534 
WM_ WINDOWPOSCHANGING message, 
535 

X 
XTYP _ADVDATA transaction, 705 
XTYP _ADVREQ transaction, 706 
XTYP _ADVSTART transaction, 59, 707 
XTYP _ADVSTOP transaction, 60, 708 
XTYP _CONNECT transaction, 49, 708 
XTYP _CONNECT_CONFIRM transaction, 

49,52,709 
XTYP _DISCONNECT transaction, 52, 54, 
710 
XTYP _ERROR transaction, 711 
XTYP _EXECUTE transaction, 60, 711 
XTYP _MONITOR transaction, 68, 712 
Index 

XTYP _POKE transaction, 58,713 
XTYP _REGISTER transaction, 47, 714 
XTYP _REQUEST transaction, 45, 57, 715 
XTYP _ UNREGISTER transaction, 715 
XTYP _ WILDCONNECT transaction, 52, 716 
XTYP _XACT_COMPLETE transaction, 61, 
717 

733 







YAYuN 1fJ)((J)~VJ~ fo,\lf,_ 
W(Q)ll,lUJ/~\I§: IJIIII 

BORLAND 
Corporate Headquarters: 1800 Green Hills Road, P.O. Box 660001, Scotts Valley, CA 95067-0001, (408) 438-5300. Offices in: Australia, 
Belgium, Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Malaysia, Netherlands, New Zealand, Singapore, Spain, 
Sweden, Taiwan and United Kingdom. Part #14MN-API03-31 • BOR 3985 


